Functional Programming with Haskell

CSC 372, Spring 2023
The University of Arizona
William H. Mitchell whm@cs

CSC 372 Spring 2023, Haskell Slide 1

Paradigms

Paradigms

Thomas Kuhn's The Structure of Scientific Revolutions (1962) describes a paradigm as a scientific achievement that is...

- "...sufficiently unprecedented to attract an enduring group of adherents away from competing modes of scientific activity."
- "...sufficiently open-ended to leave all sorts of problems for the redefined group of practitioners to resolve."

Examples of books that documented paradigms:

- Newton's Principia
- Lavoisier's Elementary Treatise on Chemistry
- Lyell's Principles of Geology

Paradigms, continued

Kuhn says a paradigm has:

- A world view
- A vocabulary
- A set of techniques for solving problems

A paradigm provides a conceptual framework for understanding and solving problems.

Kuhn equates a paradigm shift with a scientific revolution.

The imperative programming paradigm

Imperative programming is a very early paradigm that's still used.
Originated with machine-level programming:

- Instructions change memory locations or registers
- Branching instructions alter the flow of control

Examples of areas of study for those interested in the paradigm:

- Data types
- Operators
- Branching mechanisms and (later) control structures

Imperative programming fits well with the human mind's ability to describe and understand processes as a series of steps.

The imperative paradigm, continued

Language-wise, imperative programming requires:

- "Variables"-data objects whose values can be changed
- Expressions to compute values
- Support for iteration-a "while" control structure, for example.
- Statements are sequentially executed

Support for imperative programming is very common.

- Java
- C
- Python
- and hundreds more
- but not Haskell

Typically, code in a Java method or Python function is imperative.

The procedural programming paradigm

An outgrowth of imperative programming was procedural programming:

- Programs are composed of bodies of code (procedures) that manipulate individual data elements or structures.
- Procedures encapsulate complexity.

Examples of areas of study:

- How to decompose a computation into procedures and calls
- Parameter-passing mechanisms in languages
- Scoping of variables and nesting of procedures
- Visualization of procedural structure

The procedural paradigm, continued

Support for procedural programming is very common.

- Java
- Python
- C
- and lots more

The procedural and imperative paradigms can be combined:

- Procedural programming: the set of procedures
- Imperative programming: the contents of procedures

Devising the set of functions for a C program is an example of procedural programming.

Procedural programming is possible in Java but classes devolve into collections of static methods and data

The object-oriented paradigm

Object-oriented programming fits Kuhn's paradigm criteria well:
World view:
Systems are interacting objects. Pillars of OOP are abstraction, encapsulation, inheritance, polymorphism.

Vocabulary:
Methods, instances, constructors, super/subclasses, and more

Techniques:
Model with classes, work out responsibilities and collaborators, don't have public data, etc.

The object-oriented paradigm, continued

Many languages support OO programming but don't force it.

- C++
- Python
- Ruby

Java forces at least a veneer of OO programming.
The OO and imperative paradigms can be combined:

- OO: the set of classes and their methods
- Imperative: the code inside methods

Multiple paradigms(?)

Paradigms in a field of science are often incompatible.
Example: geocentric vs. heliocentric model of the universe
Imperative programming is used both with procedural and objectoriented programming.

Wikipedia's Programming_paradigm has this:
Programming paradigms are a way to classify programming languages based on their features. Languages can be classified into multiple paradigms.

Are "programming paradigms" really paradigms by Kuhn's definition or are they just characteristics?

The level of a paradigm

Programming paradigms can apply at different levels:

- Making a choice between procedural and object-oriented programming fundamentally determines the nature of the highlevel structure of a program.
- The imperative paradigm is focused more on the small aspects of programming-how code looks at the line-by-line level.

Do co-existing paradigms imply they're solving fundamentally different types of problems?

The influence of paradigms

The programming paradigms we know affect how we approach problems.

- If we use the procedural paradigm, we'll first think about breaking down a computation into a series of steps.
- If we use the object-oriented paradigm, we'll first think about modeling the problem with a set of objects and then consider their interactions.

Imperative programming revisited

Recall these language requirements for imperative programming:

- "Variables"-data objects whose values can be changed
- Expressions to compute values
- Support for iteration-a "while" control structure, for example.
- Statements are sequentially executed

Imperative summation

Here's an imperative solution in Java to sum the integers in an array:

```
int sum(int a[])
{
    int sum = 0;
    for (int i = 0; i < a.length; i++)
        sum += a[i];
    return sum;
}
```

How does it exemplify imperative programming?

- The values of sum and i change over time.
- An iterative control structure is at the heart of the computation.
- Statements are executed in sequence

Imperative summation, continued

With Java's "enhanced for" we can avoid array indexing:

```
int sum(int a[])
{
    int sum = 0;
    for (int val: a)
        sum += val;
```

 return sum;
 \}

Is this an improvement? If so, why?
Can we write sum in a non-imperative way?

Non-imperative summation

We can use recursion to get rid of loops and assignments, but...ouch!

```
int sum(int a[])
{
    return sum(a, 0);
}
int sum(int a[],int i)
{
    if (i == a.length)
        return 0;
    else
        return a[i] + sum(a,i+l);
}
```

Which of the three versions is the easiest to believe as correct? (simple for-loop, enhanced for-loop, or icky recursion)

Non-imperative summation, cont.

A recursive solution is far simpler in Python:
def sumnums(nums):
if len(nums) $==0$:
return 0
else:
return nums[0] + sumnums(nums[l:])
Any loops or assignments?
What feature of Python enables this cleaner solution?
Could we do better with recursion in Java by using java.util.List?
Challenge: If you know C, write a non-imperative version of strlen.

Expressions: Value, type, side effect

Value, type, and side effect

An expression is a sequence of symbols that can be evaluated to produce a value.

Here are some Java expressions:
'x'
$i+j * k$
f (args.length * 2) +n
Here are three questions we can ask about an expression:

- What value does the expression produce?
- What's the type of that value?
- Does the expression have any side effects?

Mnemonic aid for the trio: Imagine you're wearing a vest that's reversed.
"vest" reversed is "t-se-v": type/side-effect/value.

What is the value of the following expressions?
$3+4 \quad$ \# Java
[1][-1] \# Python
s = 3 + 4 + "5" \# Java
"a,bb,c3".split(",") \# Java
list(\{1:2,3:4,5:6\}) \# Python

Type

What is the type of each of the following expressions?
$3+4$ \# Java
[(1,2)][-1] \# Python
s=3+4+"5" \# Java
"a,bb, c3".split(",") \# Java
['x'].append(3) \# Python

When we ask,
"What's the type of this expression?"
we're actually asking,
"What's the type of the value produced by this expression?"

How can we determine the type of an expression in Python? In Java?

Sidebar: A litmus test for expressions?

Q: What's an experiment to test if something is an expression?
A: See if we can pass it as an argument!
System.out.println(i = 7) // works!
>>> print($\mathrm{i}=7$)
TypeError: ' i ' is an invalid keyword argument for print()
>>> print(3 in range(5))
True
>>> print(l if $2<3$ else 4)
1

Side effects

Evaluating some expressions causes other things to happen in addition to computing a value.
jshell> ArrayList<Integer> L = new ArrayList<>();
jshell> L
$\mathrm{L}==>$ []
jshell> L.add(7)
\$2 ==> true
jshell> L
$\mathrm{L}==>$ [7] // L.add(7) has the side effect of adding 7 to L

Side effects, continued

A side effect is something that happens in addition to the computation of an expression's value. It must be "observable".
"A side effect is a change you can witness."
—Jasmine Ying, Fall '22 Original Thought
Examples of side effects of expressions:

- The value of a variable was 5 but now is 6
- A line of output appeared
- A pixel changed color
- A list has one more element
- A file is gone
- A table in a database has one more row

Side effects, continued

What is the value, type, and side effect of these expressions? $\mathrm{n}=5$ \# Java, given int $\mathrm{n}=3$;
>>> print($1,2,3$) \# Python
>>> print(print(1), print(2))

Side effects, continued

What is the value of the following Java expression? i++

The value of $i++$ is i, whatever i is.
Does i++ have a side effect?
Evaluating i++ has a side effect of incrementing i.
Let's experiment with JShell!

Side effects, continued

Which of these Java expressions have a side effect?

$$
x+3 * y
$$

$x+=3 * y$
s.length ()$>2| |$ s.charAt(l) == '\#'

Side effects, continued

Some Python to ponder wrt. side effects: "testing".upper()

print("ok!")

sys.stdin.readline()
base[n].launch_missles()

The hallmark of imperative programming

Side effects are the hallmark of imperative programing.
Code written in an imperative style is essentially an orchestration of side effects.

Recall:

$$
\begin{aligned}
& \text { int sum }=0 ; \\
& \text { for (int } i=0 ; i<a . l e n g t h ; i++ \text {) } \\
& \quad \text { sum }+=a[i] ;
\end{aligned}
$$

Can we program without side effects?

The Functional Paradigm

What is Functional Programming?

"Functional programming is so called because its fundamental operation is the application of functions to arguments."
-John Hughes, Why Functional Programming Matters
"Generally speaking, however, functional programming can be viewed as a style of programming in which the basic method of computation is the application of functions to arguments."
-Graham Hutton, Programming in Haskell
It seems that a competing name years ago was "applicative programming".

The term "function-oriented programming" crosses my mind.

The functional programming paradigm

A key characteristic of the functional paradigm is writing functions that are like pure mathematical functions.

Pure mathematical functions:

- Always produce the same value for given input(s)
- Have no side effects
- Can be easily combined to produce more powerful functions
- Are often specified with cases and expressions

Functional programming, continued

Other characteristics of the functional paradigm:

- Values are never changed but lots of new values are created.
- Recursion is used in place of iteration.
- Functions are values. Functions are put into data structures, passed to functions, and returned from functions. Lots of temporary functions are created.

Haskell basics

What is Haskell?

Haskell is a lazy and pure functional programming language.
Lazy: Only evaluates expressions when needed
Pure: Expressions never have any side effects
But, I/O is performed with monadic effects
Haskell is statically typed, with a very elaborate type system.
Haskell is not object-oriented in any way.

Designed by a committee, formed in 1987, with the goal of creating a standard language for research into functional programming.

First version appeared in 1990. Latest version is known as Haskell 2010. Here is the Haskell 2010 Report, which I'll call "H10". http://haskell.org/definition/haskell2010.pdf

Haskell resources

Website: haskell.org
Here are three books I can recommend:
Learn You a Haskell for Great Good!, by Miran Lipovača http://learnyouahaskell.com (Known as LYAH.)

Haskell: The Craft of Functional Programming, 3rd edition, by Simon Thompson. (2nd edition is pretty good, too.)

Programming in Haskell, 2e by Graham Hutton. (First edition here.)
Real World Haskell, by O'Sullivan, Stewart, and Goerzen http://book.realworldhaskell.org (I'll call it RWH.)

There's a pile of stuff at haskell.org/documentation, but it's a big pile!
For the curious: A History of Haskell: Being Lazy With Class

Getting Haskell

Haskell 8.6 .5 is installed on lectura and if you wish, you can simply work with ghci there.

To get Haskell for your machine, start at haskell.org/ghcup
The GHCup page shows copy-and-paste command lines for UNIX-like platforms (curl ... | sh), and for Windows PowerShell that start an installer.

The installer will offer options to install HLS and stack. HLS can be handy if you're using VSCode, vim, or Emacs. You won't need stack for what we're doing. On Windows, you'll also be asked about MSys2, and it appears the installation won't proceed without it.

The latest version of Haskell appears to be 9.4.1 but 8.10.7 gets installed by default and that seems to be what's recommended by the Haskell folks.

Interacting with Haskell

We'll usually interact with Haskell by running ghci in a terminal window on UNIX-like machines, or in a PowerShell or cmd.exe window on Windows.
\% ghci
GHCi, version 8.6.5...
Prelude> $3+4$
7
Prelude $>{ }^{\wedge} \mathrm{D}$ (control-D to quit)
\%

With no arguments, ghci starts a read-eval-print loop (REPL):
Expressions typed at the prompt (Prelude>) are evaluated and the result is printed.

The $\sim /$. ghci file
When ghci starts up on UNIX-like systems it looks for the file ~/.ghci - a .ghci file in the user's home directory.

I have these two lines in my $\sim /$. ghci file on both my Mac and on lectura:
:set prompt "> "
import Text.Show.Functions
The first line simply sets the prompt to "> " and that's just my preference.

The second line is very important:

- It loads a module that lets function values be shown as <function>, instead of producing an error.
- Without it, lots of examples in these slides won't work!

Fact: ~/.ghci must not be group- or world-writable!
If you see something like this, *** WARNING: /home/whm/.ghci is writable by someone else, IGNORING!
Suggested fix: execute 'chmod go-w /home/whm/.ghci'
the suggested fix should work.
Details on .ghci can be found by Googling for "the .ghci file" but much of what turns up is quite old.

On Windows, instead of looking for a $\sim /$. ghci file, ghci looks for ghc \backslash ghci.conf in your "app data" directory.

If you're using cmd.exe, do this to see where your app data is:
C: \>set appdata
APPDATA=C:\Users\whm\AppData\Roaming
If you're using PowerShell, do this:
\% \$env:APPDATA
C:\Users\whm\AppData\Roaming
Combing the two paths, the full path to the file for me is
C:\Users\whm\AppData\Roaming\ghc\ghci.conf

Extra Credit Assignment 1

For two assignment points of extra credit:

1. Run ghci somewhere and try ten Haskell expressions with some degree of variety and not simply the ones on the following slide.
2. Demonstrate that you've got import Text.Show.Functions in your $\sim /$.ghci or ghc.conf file, as described on slide 40, by showing that typing negate produces <function>, like this:

Prelude> negate
<function>
3. Capture the interaction (both expressions and results) and put it in a plain text file, eca1.txt. No need for your name, NetID, etc. in the file. No need to edit out errors.
4. On lectura, turn in eca1.txt with the following command: \% turnin 372-eca1 eca1.txt

Due: At the start of the next lecture after the lecture in which I present this slide.

Haskell by Observation

Let's see what we can learn about Haskell by trying some expressions:

$3+4$
3 * 4.5
it + it
it $/=3$
$3>4| | 5<7$
not $3<4$
$2^{\wedge} 200$
2**0.5
"abc" + 3

Functions and function types

Calling functions

In Haskell, juxtaposition indicates a function call:
$>$ negate 3
-3
$>$ even 5
False
$>$ pred 'C' 'B'
$>$ signum 2
1

Note: These functions and many more are defined in the Haskell "Prelude", which is loaded by default when ghci starts up.

Calling functions, continued

Function call with juxtaposition is left-associative.
signum negate 2 means (signum negate) 2
> signum negate 2
<interactive>:ll:l: error:

- Non type-variable argument ...

We add parentheses to call negate 2 first:
$>$ signum (negate 2)
-l

Calling functions, continued

Function call has higher precedence than any operator.
$>$ negate $3+4$
negate $3+4$ means (negate 3$)+4$. Use parens to force + first:
$>$ negate $(3+4)$
-7
$>$ signum (negate $(3+4)$)
-l

The Data.Char module

Haskell's Data.Char module has functions for working with characters. We'll use it to start learning about function types.

```
> import Data.Char (import the Data.Char module)
> isLower 'b'
> toUpper 'a'
> ord 'A'
```

$>\operatorname{chr} 66$
> Data.Char.ord 'G' (uses a qualified name)

Function types, continued

We can use ghci's :type command to see what the type of a function is:
> :type isLower isLower :: Char -> Bool

The type Char -> Bool says that isLower is a function that

1. Takes an argument of type Char
2. Produces a result of type Bool

The text
isLower :: Char -> Bool
is read as "isLower has type Char to Bool"
LHtLaL discernment: :type is part of ghci, not Haskell!
$>$ toUpper 'a'
'A'
> ord 'A'
65
> chr 66
'B'
What are the types of those three functions?
> :t toUpper
$>$:t ord
$>$:t chr

Sidebar: Contrast with Java

What are the types of the following Java methods?
jshell> Character.isLetter('4')
\$l==> false
jshell> Character.toUpperCase('a') \$2 ==> 'A'
\% javap java.lang.Character | grep "isLetter(\|toUpperCase(" public static boolean isLetter(char); public static boolean isLetter(int); public static char toUpperCase(char); public static int toUpperCase(int);

Important:

- Java: common to think of a method's return type as the method's type
- Haskell: a function's type includes both the type of argument(s) and the return type

Type consistency

Like most languages, Haskell requires that expressions be typeconsistent (or well-typed).

Here is an example of an inconsistency:
$>$ chr ' x '
<interactive>:1:5: error:

- Couldn't match expected type 'Int' with actual type 'Char' - In the first argument of 'chr', namely 'x'

```
> :t chr
chr :: Int -> Char
> :t 'x'
'x' :: Char
```

chr requires its argument to be an Int but we gave it a Char. We can say that chr ' x ' is ill-typed.

Type consistency, continued

State whether each expression is well-typed and if so, its type.
'a'
isUpper 'a'
not (isUpper 'a')
not not (isUpper 'a')
toUpper (ord 97)
isUpper (toUpper (chr 'a'))
isUpper (intToDigit l00)
isUpper

For reference:
'a' :: Char
chr :: Int -> Char
digitToInt :: Char -> Int intToDigit :: Int -> Char isUpper :: Char -> Bool not :: Bool -> Bool
ord :: Char -> Int
toUpper :: Char -> Char

Sidebar: Key bindings in ghci

ghci uses the haskeline package to provide line-editing.
A few handy bindings:
TAB completes identifiers
\wedge A \quad Start of line
$\wedge E \quad$ End of line
${ }^{\wedge} \mathrm{L} \quad$ Clear the screen
${ }^{\wedge} \mathrm{R} \quad$ Incremental search through previously typed lines
Windows: Use Home and End for start- and end-of-line
More:
https://github.com/judah/haskeline/wiki/KeyBindings

Sidebar: Using a REPL to help learn a language
ghci provides a REPL (read-eval-print loop) for Haskell.
How does a REPL help us learn a language?
What are some other languages that have a REPL available?
What characteristics does a language need to support a REPL?
If there's no REPL for a language, how hard is it to write one?

Type classes

What's the type of negate?

Recall the negate function:
$>$ negate 5
-5
> negate 5.0
-5.0

Speculate: What's the type of negate?

Type classes

"A type is a collection of related values." -Hutton
Bool, Char, and Int are examples of Haskell types.
Haskell also has type classes.
Type class:
A collection of types that support a specified set of operations.
Num is one of the many type classes defined in the Prelude.
Important:
The names of types and type classes are always capitalized.
Haskell's type classes are unrelated to classes in the OO sense.

The Num type class

$>$:info Num
type Num :: * -> Constraint
class Num a where

instance Num Word
instance Num Integer
instance Num Int
instance Num Float
instance Num Double
These five types are all instances of Num: If we need a Num, we can use a value of type Word, or of type Integer, or of type Int, or Float or Double.

Type classes, continued

Here's the type of negate:
$>$:type negate
negate ::Num a => a -> a
The type of negate is specified using a type variable, a.
The portion a -> a specifies that negate returns a value having the same type as its argument.
"If you give me an X, I'll give you back an X."
The portion Num a $=>$ is a class constraint. It specifies that the type a must be an instance of the type class Num.

How can we state the type of negate in English?

What's the type of a decimal fraction?
> :type 3.4
3.4 :: Fractional a => a
negate works with decimal fractions.
> :type negate
negate :: Num a => a -> a
> negate 3.4

There is a hierarchy of type classes

Type classes, continued

The arrow indicates that types that are instances of Fractional can be used where types that are instances of Num are required.

Given
negate :: Num a => a -> a
and
3.4 :: Fractional a => a
then
negate 3.4 is valid.

How does the direction of the arrow relate to inheritance in UML?

Type classes, continued

:info Type shows the classes that Type is an instance of.
> :info Int
type Int :: *
data Int = GHC.Types.I\# GHC.Prim.Int\#
instance Eq Int
instance Ord Int
instance Show Int
instance Read Int
instance Enum Int
instance Num Int
> :info Num
instance Real Int
instance Bounded Int
instance Integral Int

Try :info for each of the classes (Eq, Ord, etc.)

Type classes, continued

The Prelude has a truncate to integer function:
$>$ truncate 7.999
7

What does the type of truncate tell us? truncate :: (Integral b, RealFrac a) => a -> b

Explore the Integral and RealFrac type classes with :info.

Type classes, continued

Note that the following expressions are described by type classes, not types:
$>$:type 3
3 :: Num p => p
$>$:t $3.4+75$
$3.4+75$:: Fractional a => a
> :t 2^100000
$2^{\wedge} 100000$:: Num a => a
$>: t 2^{* *} 100000.1$
2** 100000.1 :: Floating a => a

Type classes, continued

In LYAH, Type Classes 101 has a good description of the Prelude's type classes.

Note:
Type classes are not required for functional programming but because Haskell makes extensive use of them, we must learn about them.

Remember:
Haskell's type classes are unrelated to classes in the OO sense.

negate is polymorphic

In essence, negate :: Num a => a -> a describes many functions:
negate :: Integer -> Integer
negate :: Int -> Int
negate :: Float -> Float
negate :: Double -> Double
...and more...
negate is a polymorphic function. It handles values of many forms.

If a function's type has any type variables, it is a polymorphic function.

Does Java have polymorphic methods? Does Python? C?

Consider this excerpt from Bounded:
> :info Bounded
class Bounded a where minBound :: a maxBound:: a

What sort of things are minBound and maxBound?

How can we use them?

Polymorphic values

The construct ::type is an expression type signature.
A usage of it:
> minBound::Char
> maxBound::Int
> maxBound::Bool
> maxBound::Integer

We can use :set +t to direct ghci to automatically show types:
$>$:set +t
>3
3
it : : Num $p=>p$
$>3+4.5$
7.5
it :: Fractional a => a
$>$ abs
<function>
it : Num a => a -> a

Use :unset $+t$ to turn off display of types.

Sidebar: LHtLaL—introspective tools

:type, :info and :set +t are three introspective tools that we can use to help learn Haskell.

When learning a language, look for such tools early on.
Some type-related tools in other languages:
Python: type(expr) and repr(expr)
JavaScript: typeof(expr)
PHP: var_dump(expr1, expr2, ...)
C: sizeof(expr)
Java: getClass(); /var in jshell.
What's a difference between ghci's :type and Java's getClass()?

Sidebar, continued

Here's a Java program that makes use of the "boxing" mechanism to show the type of values, albeit with wrapper types for primitives.
public class exprtype \{
public static void main(String args[]) \{
showtype(3 + 'a');
showtype (3 + 4.0);
showtype("(2<F".toCharArray()); showtype("a,b,c".split(","));
showtype(new HashMap<String,Integer>());
\}
private static void showtype(Object o) \{
System.out.println(o.getClass());
\}\}
Output:
class java.lang.Integer
class java.lang.Double
class [C
class [Ljava.lang.String;
class java.util.HashMap (Note: no String or Integer-type erasure!)

Sidebar: ~/notes/haskell.txt

LHtLAL: Start accumulating a file of brief notes on Haskell. \$ cat ~/notes/haskell.txt
\#faq
import Data.Char
\#ghci
:type EXPR
:set +t -- shows types of all expressions
:info TYPE or TYPECLASS
"instance Ord Int" means "[an] instance [of] Ord [is] Int"
Use -ignore-dot-ghci ... to suppress loading of .ghci
\#misc
REPL is read-eval-print loop
function call has higher precedence than any operator
isLower :: Char -> Bool is read as "isLower has type Char to Bool" type class hierarchy:
https://www2.cs.arizona.edu/classes/cs372/spring23/haskell.pdf\#page=63

More on functions

Writing simple functions

A function can be defined at the REPL prompt. Example:

```
> double x = x * 2
double :: Num a => a -> a (:set +t is in effect)
```

> double 5 10
it :: Num a => a
> double 2.7
5.4
it :: Fractional a => a
General form (i.e. syntax) of a function definition for the moment: function-name parameter $=$ expression

Function and parameter names must begin with a lowercase letter or an underscore.

Simple functions, continued

Two more functions:

$$
\begin{aligned}
& >\text { neg } x=-x \\
& \text { neg }: \text { : Num } \mathrm{a}=>\mathrm{a}->\mathrm{a} \\
& >\text { toCelsius temp }=(\text { temp }-32) * 5 / 9 \\
& \text { toCelsius }:: \text { Fractional } a=>a->a
\end{aligned}
$$

The determination of types based on the operations performed is known as type inferencing. (More on it later!)

Problem: Write isPositive x which returns True iff x is positive. Predict the function's type, too.

Simple functions, continued

We can use :: type to constrain a function's type:
$>$ neg $x=-x:$ Int
neg :: Int -> Int
$>$ toCelsius temp $=($ temp -32$) * 5 / 9:$ Double toCelsius :: Double -> Double
:: type has low precedence; parentheses are required for this:
$>$ isPositive $x=x>(0:$ Int $)$
isPositive :: Int -> Bool
Note that :: type applies to an expression, not a function.
We'll use :: type to simplify the types of some functions that follow.

Sidebar: loading functions from a file

We can put function definitions in a file.

The file simple.hs has four function definitions:

```
% cat simple.hs
double x = x * 2 :: Int
neg x = -x :: Int
isPositive x = x > (0::Int)
toCelsius temp = (temp - 32) * 5/9 :: Double
```

We'll use the extension .hs for Haskell source files.

Generally, code from the slides will be (poorly organized) here: https://www2.cs.arizona.edu/classes/cs372/spring23/haskell /cs/www/classes/cs372/spring23/haskell (on lectura)

Sidebar, continued

Assuming simple.hs is in the current directory, we can load it with :load and see what we got with :browse.
\% ghci
$>$:load simple (assumes .hs suffix)
[l of l] Compiling Main ...
Ok, one module loaded.
> :browse
double :: Int -> Int
neg :: Int -> Int
isPositive :: Int -> Bool
toCelsius :: Double -> Double

Sidebar: My usual edit-run cycle

ghci is clumsy to type! I've got an hs alias in my ~/.bashre: alias hs=ghci

I specify the file I'm working with as an argument to hs.
\% hs simple
[l of l] Compiling Main (simple.hs, interpreted)
Ok, one module loaded.
> ... experim ent ...
After editing in a different window, I use :r to reload the file.
$>$:
[l of l] Compiling Main (simple.hs, interpreted)
Ok, one module loaded.
> ...experiment some more...
If you don't see "Compiling", the file hasn't changed!
Lather, rinse, repeat.

Functions with multiple arguments

Functions with multiple arguments

Here's a function that produces the sum of its two arguments: $\operatorname{add} \mathrm{x} y=\mathrm{x}+\mathrm{y}::$ Int

Here's how we call it: (no commas or parentheses!)
$>$ add 35
8
Problem: Use add to compute the sum of 5, 3, 9 and 4.

Exercise

The Prelude has a min function:
$>\min 62$
2
Problem: Define a function min3 that computes the minimum of three values.
$>\min 35210$
2

Solution:

Does min3 exemplify functional programming?

The type of add

Recall add:
$\operatorname{add} \mathrm{x} \mathrm{y}=\mathrm{x}+\mathrm{y}::$ Int
Here is its type:
$>$:type add add :: Int -> Int -> Int

Int -> Int -> Int is a type expression. It describes a type.
The operator -> is right-associative. Let's add parentheses: Int -> (Int -> Int)

But what does that mean?

Multiple arguments, continued

For reference, here's add and its type, with parentheses added:
$>\operatorname{add} \mathrm{x} y=\mathrm{x}+\mathrm{y}::$ Int add :: Int -> (Int -> Int)
add is a function that takes an integer as an argument and produces a function as its result!
add 35 means (add 3) 5
Call add with the value 3 , producing a nameless function. Call that nameless function with the value 5 .

What does add (add 5 3) (add 9 4) mean?

The type of min3

Recall min3, but let's restrict it to Ints:
$>\min 3 \mathrm{abc}=\min \mathrm{a}(\min \mathrm{b} \mathrm{c}):$: Int

What's the type of min3?
$>$:t min3

How should the type expression be parenthesized to reflect associativity?

What does min3 749 mean?

Partial application

Partial application

When we give a function fewer arguments than it requires, the resulting value is a partial application. It is a function.

We can bind a name to a partial application like this:
$>$ plusThree $=$ add 3
plusThree :: Int -> Int
The name plusThree now references a function that takes an Int and returns an Int.

What will plusThree 5 produce?
$>$ plusThree 5

Partial application, continued

At hand:

```
    \(>\) add \(\mathrm{x} y=\mathrm{x}+\mathrm{y}::\) Int
    add :: Int -> (Int -> Int) -- parens added
```

 \(>\) plusThree \(=\) add 3
 plusThree :: Int -> Int
 Imagine add and plusThree as machines with inputs and outputs:

Weak analogy: plusThree is like a calculator where you've clicked 3 , then + , and handed it to somebody.

Examples!

> p7 = add 7
$>\mathrm{m} 3=\operatorname{add}(-3)$
> p7 5

```
At hand:
\(>\operatorname{add} \mathrm{x} y=\mathrm{x}+\mathrm{y}::\) Int
add :: Int -> Int -> Int
```

$>\mathrm{m} 3$ it
> add 4
> :type it
$>$ it 10
> add it

A little physics

Formula for displacement (s) of a falling object:

$$
s=1 / 2 a t^{2} \quad(a \text { is acceleration due to gravity, } t \text { is time })
$$

Haskell:

$$
\begin{aligned}
& >\mathrm{s} \text { a } \mathrm{t}=0.5 * \mathrm{a} * \mathrm{t}^{\wedge} 2 \\
& >\mathrm{s} 32 \mathrm{l} \\
& \text { \# one second of falling towards earth } \\
& 16.0
\end{aligned} \quad \text { \# 16 feet }
$$ 64.0

> s 5.312 \# two seconds of falling towards the moon 10.62

How can we make some use partial application?
(i.e., How can we use our brand new shiny tool?!)

A little physics, continued

At hand: (in gravity.hs)
> sat $=0.5 * a * t \wedge 2$
And...
> sEarth = s 32 \# sEarth is a partial application \# 32 is "wired-in" for a
$>$ sMoon = s 5.31
$>$ sEarth l
16.0
> sEarth 2
64.0
$>$ sMoon l
2.655
$>$ sMoon 2
10.62

Recall map:
Another peek ahead!
> words "a test for words"
["a","test","for","words"]
> map length it
[1,4,3,5]
> map sEarth [1..5]
[16.0,64.0,144.0,256.0,400.0]
> map sMoon [1..5]
[2.655,10.62,23.895,42.48,66.375]
$>\operatorname{map}(\mathrm{s} 80)$ [1..5]
[40.0,160.0,360.0,640.0,1000.0]

Another example
> hwrap t s = "<" ++ t ++ ">" ++ s ++ "</" ++ t ++ ">"
> hwrap "code" "print(3)"
"<code>print(3)</code>"
> bold = hwrap "b"
> uline = hwrap "u"
$>$ bold "test"
"test"
> bold "Not" ++ " again, " ++ bold (uline "never!")
"Not again, <u>never!</u>"

A model of partial application

Given

$$
\text { wrap c s }=c++s++c
$$

and the following binding, what does f look like?
f = wrap "*"

Process:
Replace RHS with eqn. for function to partially apply (FtPA): $\mathrm{f}=\mathrm{wrap} \mathrm{c} \mathbf{s}=\mathrm{c}++\mathrm{s}++\mathrm{c}$
Remove $=$, name of FtPA (wrap), and first parameter (c):
$\mathrm{f} \mathbf{s}=\mathbf{c}++\mathrm{s}++\mathrm{c}$
Replace occurrences of \mathbf{c} with FtPA's argument ("*")
f s = "*" ++ s ++ "*"
Let's try f :
> f "test"
"*test*"

Partial application, continued

Consider:
$>$ wrap c s = c ++ s ++ c
wrap :: [a] -> [a] -> [a]
$>\min 3 x y z=\min x(\min y z)$
min3 :: Ord a => a -> a -> a -> a

These functions are said to be defined in curried form, which allows partial application of arguments.

LYAH nails it:
... functions in Haskell are curried by default, which means that a function that seems to take several parameters actually takes just one parameter and returns a function that takes the next parameter and so on.

Partial application, continued

A little history:

- The idea of partially applying a function was first described by Moses Schönfinkel. (?)
- It was further developed by Haskell B. Curry.
- Both worked with David Hilbert in the 1920s.

What prior use have you made of partially applied functions?

Some key points about functions

- The general form of a function definition (for now): name param 1 param $2 \ldots$ param $N=$ expression
- A function with a type like Int $->$ Char $->$ Char takes two arguments, an Int and a Char. It produces a Char.
- Remember that $->$ is a right-associative type operator. Int -> Char -> Char means Int -> (Char -> Char)
- A function call like
fxyz
means
$((f x) y) z$
and (conceptually) causes two temporary, unnamed functions to be created.

Key points, continued

- Calling a function with fewer arguments than it requires creates a partial application, a function value.
- There's really nothing special about a partial applicationit's just another function.

Functions are values

A fundamental characteristic of a functional language:
Functions are values that can be used as flexibly as values of other types.

The following creates a function and binds the name add to it.

$$
>\operatorname{add} \mathrm{x} y=x+y
$$

add, plus
...code...
The following binds the name plus to the expression add.
$>$ plus = add

Either name can be used to reference the function value:
$>$ add 34
7
> plus 56
11

Functions are values in Python, too!

>>> def add(x, y): return $\mathrm{x}+\mathrm{y}$
>>> add
<function add at 0x7fda4efb68c8>
>>> add(3,4)
7
>>> plus = add
>>> plus(5,10)
15
>>> [plus][0] $(3,4)$
7
>>> f = "just a test".split
>>>f()
>>> f('t')
\ggg f
<built-in method split of str object at 0x7fc26703a230>
>>> str.split
<method 'split' of 'str' objects>

First-class values

Functions are said to be first-class values if a language allows them to be used in all ${ }^{*}$ contexts where other values are allowed.

Wikipedia:
In programming language design, a first-class citizen (also type, object, entity, or value) in a given programming language is an entity which supports all the operations generally available to other entities. ... (8/30/2022)

I consider "functions are values" to be synonymous with "functions are first-class whatevers".

If a language treats functions as values, then you can do some amount of functional programming in that language.

Python: Yes!
C: Yes!
Racket: Yes!
JavaScript: Yes!
Java: No! (Yes, there are lambdas, but still I say "No!")
Bash: Long answer...

Function/operator equivalence

What does the following suggest to you?
$>$:info add
add :: Num a => a -> a -> a
$>$:info +
class Num a where
(+) :: a -> a -> a
infixl $6+$
Operators in Haskell are simply functions that have a symbolic name bound to them.
infixl $6+$ indicates that the token + can be used as a infix operator that is left associative and has precedence level 6.

Use :info to explore these operators: $==,>,+, *,| |, \wedge, \wedge \wedge$ and $* *$.

Function/operator equivalence, continued

To use an operator like a function, enclose it in parentheses:
$>(+) 34$
7
Conversely, we can use a function like an operator by enclosing it in backquotes:
>3 `add` 4

$$
>11 \text { `rem` } 3
$$

Explore: Do add and rem have precedence and associativity?

Sidebar: Custom operators

We can define new operators in Haskell!

```
% cat plusper.hs
infixl 6 +%
x+% percentage = x + x * percentage / 100
```

Usage:

$$
\begin{aligned}
& >100+\% 1 \\
& >12+\% 25
\end{aligned}
$$

The characters ! \# \$ \% \& * + / < = > ? @ \^|-~: and others can be used in custom operators.

Haskell's standard modules define LOTS of custom operators.

Reference: Operators from the Prelude

Precedence	Left associative operators	Non associative operators	Right associative operators
9	!!		.
8			$\wedge, \wedge \wedge$, **
7	*, /, ‘div`, ‘mod`, ‘rem’, ‘quot'		
6	+, -		
5			:, ++
4		\[\begin{aligned}	==, /=,<,<=,
	>,>=, 'elem',		
	\text { 'notElem`} \end{aligned} \] & \\ \hline 3 & & & \&\& \\ \hline 2 & & & 11 \\ \hline 1 & >>, >>= & & \\ \hline 0 & & & \$, \$!,`seq`		
Note: From page 51 in H 10			

Type Inferencing

Observation and inference

Imagine we're observing someone in a foreign land.
What do we infer if they pick up a bottle of something andsquirt it on their food?
...squirt it into their mouth?
...squirt it onto some gears?
...squirt it onto a pile of wood and then sets it on fire?

What did Haskell infer?

Here's add again:
$>\operatorname{add} \mathrm{x} \boldsymbol{y}=\mathrm{x}+\mathrm{y}$
$>$:t add
add :: Numa => a -> a -> a
$>$:info +
class Num a where
(+) :: a -> a -> a

What did Haskell infer?

- Both arguments must have same type.
- That type must be an instance of the Num class.
- A value of that same type is returned.

Type inferencing

Haskell does type inferencing:

- The types of values are inferred based on the operations performed on the values.
- Inferences are based on an assumption of no errors.

Example:
$>$ isCapital c $=\mathrm{c}>=$ ' $^{\prime}$ ' \&\& c $<=$ ' $\mathrm{Z} '$ isCapital :: Char -> Bool

Process:

1. \mathbf{c} is being compared to ' A ' and ' Z '
2. 'A' and 'Z' are of type Char
3. c must be a Char
4. The result of $\& \&$, of type Bool, is returned

Type inferencing, continued

Recall ord in the Data.Char module:
$>$:t ord
ord :: Char -> Int
What type will be inferred for f below?
$\mathrm{f} \mathrm{x} \mathrm{y}=\operatorname{ord} \mathrm{x}==\mathrm{y}$

Type inferencing, continued

Recall this example:
$>$ isPositive $\mathrm{x}=\mathrm{x}>0$
isPositive :: (Num a, Ord a) => a -> Bool
:info shows that > operates on types that are instances of Ord:
$>$:info >
class Eq a => Ord a where
(>) :: a -> a -> Bool

1. Because x is an operand of $>$, Haskell infers that the type of x must be a member of the Ord type class.
2. Because x is being compared to 0 , Haskell also infers that the type of x must be an instance of the Num type class.

Type inferencing, continued

If a contradiction is reached during type inferencing, it's an error.
The function below compares \mathbf{x} to both a Num and a Char.
$>\mathrm{gxy}=\mathrm{x}>0 \& \& \mathrm{x}>{ }^{\prime} \mathrm{O}^{\prime}$
<interactive>:1:13: error:

- No instance for (Num Char) arising from the literal ' 0 '
- In the second argument of ' $(>$)', namely ' 0 ' In the first argument of '(\&\&)', namely ' $x>0$ ' In the expression: $x>0 \& \& x>{ }^{\prime} 0$ '

What does the error "No instance for (Num Char)" mean?

Type Specifications for Functions

Type specifications for functions

Even though Haskell has type inferencing, a common practice is to specify the types of functions.

Here's a file with several functions, each preceded by its type:
\% cat typespecs.hs
min3::Ord $a=>a->a->a->a$
$\min 3 x y z=\min x(\min y z)$
isCapital :: Char -> Bool isCapital c = c >= 'A' \&\& c <= 'Z'
isPositive :: (Num a, Ord a) => a -> Bool isPositive $\mathrm{x}=\mathrm{x}>0$

Type specifications, continued

Sometimes type specifications can backfire.
What's a ramification of the difference between the types of addl and add2?

$$
\begin{aligned}
& \text { addl }:: \text { Num } \mathrm{a}=>\mathrm{a}->\mathrm{a}->\mathrm{a} \\
& \text { addl } \mathrm{x} \mathrm{y}=\mathrm{x}+\mathrm{y}
\end{aligned}
$$

add2::Integer -> Integer -> Integer

$$
\operatorname{add} 2 \mathrm{x} y=\mathrm{x}+\mathrm{y}
$$

Challenge: Without using ::type, show an expression that works with addl but fails with add2.

Type specification for functions, continued

Two pitfalls related to type specifications for functions:

- Specifying a type, such as Integer, rather than a type class, such as Num, may make a function's type needlessly specific, like add2 on the previous slide.
- In some cases the type can be plain wrong without the mistake being obvious, leading to a baffling problem. (An "Ishihara".)

Recommendation:

- Try writing functions without a type specification and see what type gets inferred.
- If the inferred type looks reasonable, and the function works as expected, add a specification for that type.
- Toggling a type spec with a comment sometimes reveals problems.

Type specifications can prevent Haskell's type inferencing mechanism from making a series of bad inferences that lead one far away from the actual source of an error.

Indentation

Continuation with indentation

A Haskell source file is a series of declarations. Here's a file with two declarations:

```
% cat indentl.hs
add::Integer -> Integer -> Integer
add x y = x + y
```

Rule: A declaration can be continued across multiple lines by indenting subsequent lines more than the first line of the declaration.

These two weaving declarations are poor style but are valid:

```
add
    Integer-> Integer-> Integer
add x y
    =
    x
    +

\section*{Indentation, continued}

Rule: A line that starts in the same column as did the previous declaration ends that previous declaration and starts a new one.
\% cat indent2.hs
add::Integer -> Integer -> Integer
add \(\mathrm{x} \mathrm{y}=\)
\(x+y\)
\% ghci indent2
indent2.hs:3:1:error:


Note that \(3: 1\) indicates line 3 , column 1.

\section*{Guards}

\section*{Guards}

Recall this characteristic of mathematical functions:
"Are often specified with cases and expressions."
This function definition uses guards to specify three cases:
\[
\begin{gathered}
\operatorname{sign} x \mid x<0=-1 \\
x==0=0 \\
\text { otherwise }=1
\end{gathered}
\]

Notes:
- This definition would be found in a file, not typed in ghci.
- sign \(x\) appears just once. First guard might be on next line.
- The guards appear between \| and =, and produce Bools.
- What is otherwise?

\section*{Guards, continued}

Problem: Using guards, define a function smaller, like min:
> smaller 710
7
> smaller 'z' 'a'
'a'
Solution:

\section*{Guards, continued}

Problem: Write a function weather that classifies a given temperature as hot if \(80+\), else nice if \(70+\), and cold otherwise.
\(>\) weather 95
"Hot!"
> weather 32
"Cold!"
> weather 75
"Nice"
Hint: guards are tried in turn.
Solution:

\section*{if-else}

\section*{Haskell's if-else}

Here's an example of Haskell's if-else:
\(>\) if \(1<2\) then 3 else 4
3

How does it compare to Java's if-else?

\section*{Sidebar: Java's if-else}

Java's if-else is a statement. It cannot be used where a value is required. System.out.println(if (l < 2) 3; else 4;); // (?)

Does Java have an analog to Haskell's if-else?

Java's if-else statement has an else-less form but Haskell's if-else does not. Why doesn't Haskell allow it?

Java's if-else vs. Java's conditional operator provides a good example of a statement vs. an expression.

Remember Python's conditional expression, too:
"test"[1 if \(2<3\) else -1]

\section*{An Original Thought}
"A statement changes the state of the program while an expression wants to express itself. "
— Victor Nguyen, CSC 372, Spring 2014

\section*{Guards vs. if-else}

Which of the versions of sign below is better?
\(\operatorname{sign} x\)
\[
\left\lvert\, \begin{aligned}
& x<0=-1 \\
& x==0=0 \\
& \text { otherwise }=1
\end{aligned}\right.
\]
\(\operatorname{sign} x=\) if \(x<0\) then -1 else if \(\mathrm{x}==0\) then 0 else 1
- We'll later see that patterns add a third possibility for expressing cases.
- For now, prefer guards over if-else.

\section*{A Little Recursion}

\section*{Recursion}

A recursive function is a function that calls itself either directly or indirectly.

Computing the factorial of a integer ( N ! ) is a classic example of recursion.
\(>\) factorial 40

Write factorial in Haskell. Recall that 0! is 1.

What is the type of factorial?

\section*{Recursion, continued}

One way to manually trace through a recursive computation is to underline a call, then rewrite the call with a textual expansion.
factorial 4
4 * factorial 3
\(4 * 3 *\) factorial 2
\(4 * 3 * 2 *\) factorial l
\(4 * 3 * 2 * 1 *\) factorial 0
\(4 * 3 * 2 * 1 * 1\)

\section*{Lists}

\section*{List basics}

In Haskell, a list is a sequence of values of the same type.
Here's one way to make a list.
\(>[7,3,8]\)
[7,3,8]
it :: Num a => [a]
> ['x', 10]

We can say that Haskell lists are homogeneous.

\section*{List basics, continued}

The function length returns the number of elements in a list: \(>\) length \([3,4,5]\)
> length []

What's the type of length?
> :type length

With no class constraint specified, [a] indicates that length operates on lists containing elements of any type.

\section*{List basics, continued}

The head function returns the first element of a list.
\(>\) head \([3,4,5]\)

What's the type of head?

Here's what tail does. How would you describe it?
\(>\) tail \([3,4,5]\)
\([4,5]\)
What's the type of tail?

Important: head and tail are good for learning about lists but we'll almost always use patterns to access parts of a list!

\section*{List basics, continued}

The ++ operator concatenates two lists, producing a new list. \(>[3,4]++[10,20,30]\)
> it ++ reverse(it)

What are the types of ++ and reverse?
\(>\) :type (++)
> :type reverse

\section*{List basics, continued}

Haskell has an arithmetic sequence notation:

> > [1..20]
it :: (Enum a, Num a) => [a]
\(>[-5,-3 . .20]\)
> [10..5]

\section*{List basics, continued}

Here are sum and product:
> sum [1..10]
> product [1..5]

Problem: Write a factorial function.

Solution:

\title{
List basics, continue
}

Here are drop and take:
> drop 3 [1..10]
> take 5 [1.0,1.2..2]

\section*{Problem: halves}

Problem:
Write halves lst that returns a list with the two halves of lst, a list. If lst's length is odd, the second "half" is longer.
> halves [1..10]
[[1,2,3,4,5],[6,7,8,9,10]]
> halves [1] [[],[1]]
halves will be a little repetitious because we don't have the where clause in our toolbox yet.

\title{
Solution: halves
}

\section*{Solution: (halves.hs)}

\section*{List basics, continued}

The !! operator produces a list's Nth element, zero-based:
> [10,20..100] !! 3
> :type (!!)

Speculate: do negative indexes work?
\(>[10,20 . .100]\) !! (-2)

Important:
Much use of !! might indicate you're writing a Java, Python, C, etc. program in Haskell!

\section*{Comparing lists}

Haskell lists are values and can be compared as values:
\[
>[3,4]==[1+2,2 * 2]
\]
\(>[3]++[]++[4]==[3,4]\)
\(>\) tail (tail \([3,4,5,6])==[\) last \([4,5]]++[6]\)

\section*{Comparing lists, continued}

Lists are compared lexicographically:
- Corresponding elements are compared until an inequality is found.
- The inequality determines the result of the comparison.
- If Ll is a proper prefix of L 2 , then \(\mathrm{Ll}<\mathrm{L} 2\).
- (Same as Python...)

Example:
\(>[1,2,3]<[1,2,4]\)
\(>[1,2,3]>[1,2]\)

\section*{Lists of Lists}

We can make lists of lists.
\(>x=[[1],[2,3,4],[5,6]]\)
\(\mathrm{x}::\) Num \(\mathrm{a}=>\) [[a]]
Note the type: \(\mathbf{x}\) is a list of Num a => [a] lists.
What's the length of x ?
\(>\) length x

Wait! Is \(\mathbf{x}\) homogeneous?

More examples:
\[
>x=[[1],[2,3,4],[5,6]]
\]
\(>\) head x
\(>\) tail x
>x!! 1!! 2
\(>\) head (head (tail (tail x)))

Earlier I showed you this:
length :: [a] -> Int
Around version 7.10 length was generalized to this: length :: Foldable \(\mathrm{t}=>\mathrm{t}\) a -> Int

We're going to think of Foldable \(\mathrm{t}=>\mathrm{t}\) a as meaning [a].
Instead of \(\quad\) sum \(::\) (Num a, Foldable \(t)=>t a->a\)
Pretend this sum \(::\) Num a => [a] -> a
Instead of minimum :: (Ord a, Foldable t) \(=>\mathrm{ta}->\mathrm{a}\)
Pretend this minimum :: Ord a => [a] -> a

\section*{Strings are [Char]}

Strings in Haskell are simply lists of characters.
> "testing"
"testing"
it :: [Char]
> ['a'..'z']
> ["just", "a", "test"]
["just","a","test"]

What's the beauty of this?

All list functions work on strings, too!
\(>\) asciiLets \(=[\) 'A'..'Z'] ++ ['a'..'z']
> length asciiLets
> reverse (drop 26 asciiLets)
\(>\) :type elem
elem :: Eq a => a -> [a] -> Bool
\(>\) isAsciiLet \(\mathbf{c}=\mathbf{c}\) `elem` asciiLets

\section*{Strings, continued}

The Prelude defines String as [Char] (a type synonym).
\(>\) :info String
type String = [Char]
A number of functions operate on Strings. Here are two:
\(>\) :type words
words :: String -> [String]
> :type unwords
unwords :: [String] -> String
What's the following doing?
> unwords (tail (words "Just some words!"))

\section*{"cons" lists}

Like most functional languages, Haskell's lists are "cons" lists.
A "cons" list has two parts:
head: a value
tail: a list of values (possibly empty)
The : ("cons") operator creates a list from a value and a list of values of that same type (or an empty list).
\(>5:[10,20,30]\)
[5,10,20,30]
What's the type of the cons operator?
\(>\) :type (:)

\section*{"cons" lists, continued}

The cons (:) operation forms a new list from a value and a list.
\(>a=5\)
\(>\mathrm{b}=[10,20,30]\)
\(>\mathrm{c}=\mathrm{a}: \mathrm{b}\)

5
[10,20,30]
\(>\mathrm{d}=\) tail (tail c )
[20,30]


\section*{"cons" lists, continued}

A cons node can be referenced by multiple cons nodes.
\(>\mathrm{a}=5\)
\(>\mathrm{b}=[10,20,30]\)
\(>\mathrm{c}=\mathrm{a}: \mathrm{b}\)
\(>\mathrm{d}=\) tail (tail c\()\)
\(>e=2: d\)
\(>\mathrm{f}=\mathrm{l}: \mathrm{c}\)


CSC 372 Spring 2023, Haskell Slide 158

\section*{"cons" lists, continued}

What are the values of the following expressions?
> l:[2,3]
> 1:2
> chr 97:chr 98:chr 99:[]
cons is right associative
\(>\) []:[]
\(>[1,2]:[]\)
> []:[1]

It's important to understand that tail does not create a new list. Instead it simply returns an existing cons node.
\(>\mathrm{a}=[5,10,20,30]\)
\(>\mathrm{h}=\) head a
\(>h\)
5
\(>\mathrm{t}=\) tail a
\(>\mathrm{t}\)
[10,20,30]
\(>\mathrm{t} 2=\) tail (tail t\()\)
\(>\) t2
[30]


\section*{A little on performance}

Some things that are fast \((O(1))\) with cons lists:
- Get the head of a list
- Get the tail of a list
- Make a new list from a head and tail ("cons up a list")

Some things that are slow \((O(n))\) with cons lists:
- Get the Nth element of a list
- Get the length of a list
- Concatenate two lists
\[
[1,2,3]++[4,5] \text { turns into } 1: 2: 3:[4,5]
\]

\section*{True or false?}

The head of a list is a one-element list.

The tail of a list is a list.
The tail of an empty list is an empty list.
length \((\) tail \((\) tail x\())=(\) length x\()-2\)
A cons list is essentially a singly-linked list.
A doubly-linked list might help performance in some cases.
Changing an element in a list might affect the value of many lists.

\section*{fromTo}

Here's a function that produces a list with a range of integers:
\(>\) fromTo first last = [first..last]
> fromTo 1015
[10,11,12,13,14,15]
Problem:
Write a recursive version of fromTo that uses the cons operator to build up its result.

\section*{fromTo, continued}

One solution:

Evaluation of fromTo 13 via substitution and rewriting:

\section*{fromTo 13}

1 : fromTo ( \(1+1\) ) 3
1 : fromTo 23
\(1: \overline{2}\) : fromTo \((2+1) 3\)
\(1: 2\) : fromTo 3
\(1: 2: 3\) : fromTo (3+1) 3
\(1: 2: 3\) : fromTo 43
1:2:3:[]

The Enum type class has enumFromTo and more.

\section*{fromTo, continued}

Do :set +s to get timing and memory information, and make some lists. Try these:
fromTo 110
\(\mathrm{f}=\mathrm{fromTo} \quad--\) So we can type f instead of fromTo
fl 1000
\(\mathrm{f}=\) fromTo l -- Note partial application
f 1000
\(x=f 1000000\)
length \(x\)
take 5 (f 1000000)

\section*{List comprehensions}

Here's a simple example of a list comprehension:
\[
\begin{aligned}
& >\left[x^{\wedge} 2 \mid x<-[1 . .10]\right] \\
& {[1,4,9,16,25,36,49,64,81,100]}
\end{aligned}
\]

In English:
Make a list of the squares of \(\mathbf{x}\) where x takes on each of the values from 1 through 10 .

List comprehensions are very powerful but in the interest of time and staying focused on the core concepts of functional programming, we're not going to cover them.

Chapter 5 in Hutton has some very interesting examples of practical computations with list comprehensions.

\section*{A little output}

\section*{Handy: the show function}

What can you tell me about show? show :: Show a => a -> String
show produces a string representation of a value.
\(>\) show 10
\(>\) show \([10,20]\)
> show show

Important: show does not produce output!
What's the Python analog for show?
Is there a Java analog for show?

The putStr function outputs a string:

\section*{A little output}
> putStr "just\ntesting\n"
just
testing
Type:
putStr :: String -> IO ()
- IO (), the type returned by putStr, is an action.
- An action is an interaction with the outside world.
- An interaction with the outside world is a side effect.
- An action can hold/produce a value. (simplistic)
- The construct () is read as "unit".
- The unit type has a single value, unit.
- Both the type and the value are written as ().
- Contrast: getChar :: IO Char

\section*{Our approach}

For the time being, we'll use this approach for functions that produce output:
- A helper function produces a ready-to-print string that represents all the output to be produced by the function.
- We'll often use show to create pieces of the string.
- The string will often have embedded newlines.
- The top-level function calls the helper function to get a string.
- The top-level function uses putStr to print the string returned by the helper.

\section*{Our approach, continued}

Here's Java analog for our approach for functions that produce output:
public class output \{
public static void main(String args[]) \{ System.out.print(computeOutput(args)); \}
public String computeOutput(String args[]) \{
...builds a string that is the entire output for this run... \} \}

We use print instead of println so that computeOutput has control over whether the output should include a newline.

Let's write a function to print the integers from 1 to N :
\(>\) printN 3
1
2
3
First, write a helper, printN':
\(>\) printN' 3
" 1 \n2\n3\n"
Solution for printN':

\section*{printN, continued}

At hand:
printN' \(n\)
\[
\begin{aligned}
& \mid \mathrm{n}==0=\text { "" } \\
& \text { | otherwise }=\text { printN' }(\mathrm{n}-\mathrm{l})++ \text { show } \mathrm{n}++ \text { "\n" }
\end{aligned}
\]

Usage:
\(>\) printN' 10
" \(1 \backslash \mathrm{n} 2 \backslash \mathrm{n} 3 \backslash n 4 \backslash n 5 \backslash n 6 \backslash n 7 \backslash n 8 \backslash n 9 \backslash n 10 \backslash n "\)

Let's now write the top-level function:
\(>\operatorname{printN} \mathrm{n}=\) putStr \(\left(\operatorname{printN}^{\prime} \mathrm{n}\right)\)
\(>\) :t printN
printN :: (Eq a, Num a, Show a) => a -> IO ()

\section*{printN, continued}

All together in a file:
\% cat printN.hs
printN \(n=\) putStr \(\left(\operatorname{printN} N^{\prime} n\right)\)
printN' \(n\)
| \(\mathrm{n}=\mathrm{=} 0=\) " "
| otherwise = printN' (n-l) ++ show n ++ "\n"
\% ghci printN
\(>\) printN' 3
" \(1 \backslash n 2 \backslash n 3 \backslash n "\)
\(>\) printN 3
1
2
3

\title{
Let's write charbox:
}
> charbox 53 ' \({ }^{\prime}\) '
*****
*****
*****
> :t charbox
charbox :: Int -> Int -> Char -> IO ()

How can we approach it?

\section*{charbox, continued}

Let's work out a sequence of computations with ghci:
\(>\) replicate \(5{ }^{\prime}{ }^{\prime \prime}\)
> it ++ " n "
\(>\) replicate 2 it
\(>\) :t concat
concat :: [[a]] -> [a]
\(>\) concat it
\(>\) putStr it
*****
*****

\title{
charbox, continued
}

Let's write charbox':
charbox'::Int -> Int -> Char -> String

Test:
> charbox' \(32^{\prime \prime *}\)
"***\n***\n"

Now we're ready for the top-level function: charbox::Int -> Int -> Char -> IO ()
- Should we have used a helper function charrow rowLen char?
- How does this approach contrast with how we'd write it in Java?

\section*{Patterns}

\section*{Motivation: Summing list elements}

Imagine a function that computes the sum of a list's elements.
> sumElems [1..10]
55
> :type sumElems
sumElems :: Num a => [a] -> a
Implementation:
sumElems list
| list == [] = 0
| otherwise = head list + sumElems (tail list)
- It works but it's not idiomatic Haskell.
- We should use patterns instead!

In Haskell we can use patterns to bind names to elements of data structures.
\[
\begin{aligned}
& >[\mathrm{x}, \mathrm{y}]=[10,20] \\
& >\mathrm{x}
\end{aligned}
\]
\[
>y
\]
\[
>\text { [inner }]=[[2,3]]
\]
> inner

Speculate: Given a list like \([10,20,30]\) how could we use a pattern to bind names to the head and tail of the list?

\section*{Patterns, continued}

We can use the cons operator in a pattern.
\(>h: t=[10,20,30]\)
\(>h\)
\(>t\)

What values get bound by the following pattern?
\(>\mathrm{a}: \mathrm{b}: c: d=[10,20,30]\)
\(>[c, b, a]\)
-- Why in a list?
\(>d\)
-- Why did I do [c,b, a] instead of \([\mathbf{d}, \mathbf{c}, \mathbf{b}, \mathbf{a}]\) ? CSC 372 Spring 2023, Haskell Slide 181

\section*{Patterns, continued}

If some part of a structure is not of interest, we indicate that with an underscore, known as the wildcard pattern.
\[
\begin{aligned}
& >_{-}:(a:[b]): c=[[1],[2,3],[4]] \\
& >a
\end{aligned}
\]
\(>b\)
\(>C\)

No binding is done for the wildcard pattern.
The pattern mechanism is completely general-patterns can be arbitrarily complex.

A name can only appear once in a pattern.
\(>\mathrm{a}: \mathrm{a}:[]=[3,3]\)
<interactive>: error: Multiple declarations of ' \(a\) '
A failed pattern isn't manifested until we try to see what's bound to a name.
\(>\mathrm{a}: \mathrm{b}:[]=[1]\)
\(>a\)
*** Non-exhaustive patterns in a:b:[]

\section*{Practice}

Describe in English what must be on the right hand side for a successful match.
\(a: b: c=\ldots\)

Does [[10,20]] match?
[20,30] ?
"abc" ?
[x:xs] = ...
Does words "a test" match?
[words "a test"] ?
[[]]?
[[]]] ?

\section*{Patterns in function definitions}

Recall our non-idiomatic sumElems:
sumElems list
| list == [] = 0
| otherwise = head list + sumElems (tail list)
Idiomatic:
\[
\begin{aligned}
& \text { sumElems }[]=0 \\
& \text { sumElems (h:t) }=h+\text { sumElems } t
\end{aligned}
\]

Note that sumElems appears on both lines and that there are no guards. sumElems has two clauses. (H10 4.4.3.1)

The parentheses in (h:t) are required!!
Do the types of the two versions differ?

\section*{Patterns in functions, continued}

Here's a buggy version of sumElems: buggySum \([\mathrm{x}]=\mathrm{x}\) buggySum (h:t) \(=\mathrm{h}+\) buggySum t

What's the bug?
> buggySum [1..100] 5050

\section*{Patterns in functions, continued}

At hand:
buggySum \([\mathrm{x}]=\mathrm{x}\) buggySum (h:t) \(=\mathrm{h}+\) buggySum t

If we use the -fwarn-incomplete-patterns option of ghci, we'll get a warning when loading:
\% ghci -fwarn-incomplete-patterns buggySum.hs
buggySum.hs:l:l:Warning:
Pattern match(es) are non-exhaustive
In an equation for 'buggySum': Patterns not matched: [] >

Suggestion: add a Bash alias! (See us if you don't know how to.) alias ghci="ghci -fwarn-incomplete-patterns"

\section*{Patterns in functions, continued}

What's a little silly about the following list-summing function?
```

sillySum [] = 0
sillySum [x] = x
sillySum (h:t) = h + sillySum t

```

Consider a function that duplicates the head of a list:
> duphead [10,20,30]
[10,10,20,30]

Here's one way to write it, but it's repetitious: duphead (x:xs) = x:x:xs

We can use an "as pattern" to bind a name to the list as a whole: duphead all@(x:xs) = x:all

Can it be improved?

The term "as pattern" perhaps comes from Standard ML, which uses an "as" keyword for the same purpose.

\section*{Patterns, then guards, then if-else}

Good coding style in Haskell:
Prefer patterns over guards
Prefer guards over if-else
Patterns-first choice!
sumElems [] = 0
sumElems (h:t) \(=\mathrm{h}+\) sumElems t


\section*{Students wrote...}
"Throughout the assignment I tried to keep in mind that I should use patterns first then guards if patterns didn't work.
"However, as I was doing the assignment, I realized that sometimes I couldn't see the patterns until I had written them as guards, so I would go back and change them.
"As I continued with the assignment, this happened less because the more code I wrote the more I was able to see patterns before I had them written as guards."
—Kelsey McCabe, Spring 2016, a3/observations.txt
"...there were multiple cases where I solved a problem with guards and failed multiple test cases, only to replace the logic with patterns and have it work."
—Ryan Smith, Fall 2022, a3/observations.txt

\section*{Patterns, then guards, then if-else}

Recall this example of guards: weather temp | temp >= \(80=\) "Hot!" temp >= 70 = "Nice" otherwise = "Cold!"

Can we rewrite weather to have three clauses with patterns?

Design question: should patterns and guards be unified?

\section*{Revision: the general form of a function}

An earlier general form of a function definition: name param 1 param \(2 \ldots\) param \(N=\) expression

Revision: A function may have one or more clauses, of this form:
function-name pattern 1 pattern2 ...pattern \(N\)
\[
\begin{aligned}
& \{\mid \text { guard-expression } 1\}=\text { result-expression } 1 \\
& \cdots \\
& \{\mid \text { guard-expression } N=\text { result-expression } N\}
\end{aligned}
\]

The set of clauses for name is the function binding for name. (See 4.4.3 in H10.)

If values in a call match the pattern(s) for a clause and a guard is true, the corresponding expression is evaluated.

\section*{Revision, continued}

At hand, a more general form for functions: function-name pattern1 pattern2 ... patternN
\(\{\mid\) guard-expression 1\(\}=\) result-expression 1
\(\{\mid\) guard-expression \(N=\) result-expression \(N\}\)

How does
add \(\mathrm{x} y=\mathrm{x}+\mathrm{y}\)
conform to the above specification?

\section*{Pattern/guard interaction}

If the patterns of a clause match but all guards fail, the next clause is tried. Here's a contrived example:
f (h:_) | h < \(0=\) "negative head"
f list | length list > 3 = "too long"
f (_:_) = "ok"
f [] = "empty"
Usage:
\[
>\mathrm{f}[-1,2,3]
\]
\(>\mathrm{f}[]\)
\(>\mathrm{f}[1 . .10]\)

How many clauses does \(f\) have?

What if \(2^{\text {nd }}\) and \(3^{\text {rd }}\) clauses swapped?

What if \(4^{\text {th }}\) clause is removed?

\title{
Recursive functions on lists
}

\section*{Simple recursive list processing functions}

Problem: Write len \(\boldsymbol{x}\), which returns the length of list \(\boldsymbol{x}\).
\(>\) len \(\square\)
0
> len 'testing"
7
Solution:

\section*{Simple list functions, continued}

Problem: Write odds \(\mathbf{x}\), which returns a list having only the odd numbers from the list x .
> odds [1..10]
[1,3,5,7,9]
\(>\) take 10 (odds [1,4..100])
[1,7,13,19,25,31,37,43,49,55]
Handy: odd :: Integral a => a -> Bool
Solution:

\section*{Simple list functions, continued}

Problem: write isElem x vals, like elem in the Prelude.
\(>\) isElem 5 [4,3,7]
False
> isElem 'n' "Bingo!"
True
> "quiz" `isElem` words "No quiz today!" True

Solution:

\section*{Simple list functions, continued}

Problem: Write a function that returns a list's maximum value.
\(>\) maxVal "maximum"
'x'
\(>\operatorname{maxVal}[3,7,2]\)
7
> maxVal (words "i luv this stuff")
"this"

Recall that the Prelude has max :: Ord a => a -> a -> a

One solution:

\section*{Sidebar: C and Python challenges}

C programmers:
- Write strlen in C in a functional style. (No loops or assignments.)
- Do strcmp and strchr, too!
- Could you do strcpy, too?
- Mail us!

Python programmers:
- In a functional style write size(x), which returns the number of elements in the string, list, or range \(\mathbf{x}\). Restriction: You may not use type() or len().
- Mail us!

\section*{Tuples}

A Haskell tuple is an ordered aggregation of two or more values of possibly differing types.
```

> (l, "two", 3.0)
(l,"two",3.0)
it :: (Num a, Fractional c) => (a, [Char], c)
$>(3<4, \mathrm{it})$
(True,(l,"two",3.0))
it :: (Num a, Fractional c) => (Bool, (a, [Char], c))
> (head, tail, [words], putStr)

```

Of course, we can't create analogous lists for the above tuples, due to the mix of types. Lists must be homogeneous.

A function can return a tuple: pair \(\mathrm{x} y=(\mathrm{x}, \mathrm{y})\)

What's the type of pair?

Usage:
> pair 34
\(>\) pair \((3,4)\)
\(>\) it 5

\section*{Tuples, continued}

The Prelude has two functions that operate on 2-tuples.
> p = pair 30 "forty"
\(>p\)
(30,"forty")
\(>\) fst \(p\)
\(>\) snd p

\section*{Tuples, continued}

Recall: patterns used to bind names to list elements have the same syntax as expressions to create lists.

Patterns for tuples have the same syntax as expressions to create tuples.

Problem: Write middle, to extract a 3-tuple's second element. > middle ("372", "GS 906", "Mitchell") "GS 906"
> middle (1, [2], True)
[2]
(Solution on next slide. Don't peek! This means you!)

\section*{Tuples, continued}

At hand:
\(>\) middle (1, [2], True)
[2]
Solution: middle \((-, m,-)=m\)

What's the type of middle?

Will the following call work?
\(>\) middle( \(1,[(2,3)], 4)\)

\section*{Tuples, continued}

Problem: Write a function swap that behaves like this:
> swap ('a',False)
(False,'a')
\(>\operatorname{swap}(1,(2,3))\) ( 2,3 ), 1)

Solution:

What is the type of swap?

\section*{Tuples, continued}

Here's the type of zip from the Prelude:
zip :: [a] -> [b] -> [(a, b)]

Speculate: What does zip do?
```

> zip ["one","two","three"] [10,20,30]
[("one",10),("two",20),("three",30)]
> zip ['a'..'z'] [l..]

```

What's especially interesting about the second example?

\section*{Tuples, continued}

Problem: Write elemPos, which returns the zero-based position of a value in a list, or -1 if not found.
> elemPos 'm' ['a'..'z']
12

Hint: Have a helper function do most of the work.
Solution:
[('a',0), ('b', l), ('c', 2), ('d', 3), ('e', 4), ...]

\section*{The Eq type class and tuples}
:info Eq shows many lines like this:
```

instance (Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e)
instance (Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d)
instance (Eq a, Eq b, Eq c) => Eq (a, b, c)
instance (Eq a, Eq b) => Eq (a, b)

```

Here's one of them. What does it mean?
instance (Eq a, Eq b, Eq c) => Eq (a, b, c)

The Ord and Bounded type classes have similar instance declarations.

\section*{Lists vs. tuples}

Type-wise, lists are homogeneous; tuples are heterogeneous.
Using a tuple lets type-checking ensure that an exact number of values is being aggregated, even if all values have the same type.

Example: A 3D point could be represented with a 3-element list but using a 3 -tuple guarantees points have three coordinates.

In our Haskell we can't write functions that operate on tuples of arbitrary arity.

If there were Head First Haskell, it would no doubt have an interview with List and Tuple, each arguing their own merit.

\section*{Sidebar: To curry or not to curry?}

Consider these two functions:
\(>\) add_c \(\mathrm{x} y=\mathrm{x}+\mathrm{y} \quad--\) _c for curried arguments add_c :: Num a => a -> a -> a
\(>\) add_t \((x, y)=x+y \quad--\quad t\) for tuple argument add_t :: Num \(\mathrm{a}=>(\mathrm{a}, \mathrm{a})->\mathrm{a}\)

Usage:
\[
\begin{aligned}
& >\text { add_c } 34 \\
& 7 \\
& >\text { add_t }(3,4) \\
& 7
\end{aligned}
\]

Which is better, add_c or add_t?

\section*{The where clause}

\section*{The where clause}

Intermediate values and/or helper functions can be defined using an optional where clause for a function.

Here's a declaration that shows the syntax; the computation is not meaningful.
f x
\[
\begin{aligned}
& \mid x<0=g a+g b \\
& \mid a>b=g b \\
& \mid \text { otherwise }=c+10 \\
& \text { where }\{ \\
& a=x * 5 ; \\
& b=a * 2+x ; \\
& g t=\log t+a ; \\
& c=a * 3 ; \\
& \}
\end{aligned}
\]

The where clause specifies bindings that may be needed when evaluating the guards and their associated expressions.

Like variables defined in a method or block in Java, a, b, c and g are not visible outside the the function \(f\).

\section*{The where clause, continued}

A Computer Science Tapestry by Owen Astrachan shows an interesting way to raise a number to a power:
```

power base expo
| $\operatorname{expo}==0=1.0$
| even expo = semi * semi
| otherwise = base * semi * semi
where \{
semi $=$ power base (expo `div` 2$)$
\}

```

Binding semi in the where clause avoids lots of repetition.
Exercise for the mathematically inclined: Figure out how it works.

\section*{Problem: halves}

Recall:
> halves ['a'..'z']
("abcdefghijklm","nopqrstuvwxyz")
```

halves lst =
[take (length lst `div` 2) lst, drop (length lst `div` 2) lst]

```

Problem: Rewrite halves to be less repetitious. Also, have it return a tuple instead of a list.

Solution:

\section*{The layout rule}

\section*{The layout rule for where (and more)}

This is a valid declaration with a where clause:
\[
f x=a+b+g a \text { where }\{a=1 ; b=2 ; g x=-x\}
\]

The where clause has three declarations enclosed in braces and separated by semicolons.

We can take advantage of Haskell's layout rule and write it like this instead:
\[
\begin{gathered}
\mathrm{f} x=\mathrm{a}+\mathrm{b}+\mathrm{ga} \\
\text { where } \\
\mathrm{a}=1 \\
\mathrm{~b}=2 \\
\mathrm{~g} x= \\
-\mathrm{x}
\end{gathered}
\]

Look Mom, no braces! (No semicolons, either.)

\section*{The layout rule, continued}

At hand:
\[
\begin{gathered}
\mathrm{fx}=\mathrm{a}+\mathrm{b}+\mathrm{ga} \\
\text { where } \\
\mathrm{a}=1 \\
\mathrm{~b}=2 \\
\mathrm{~g} \mathrm{x}= \\
-\mathrm{x}
\end{gathered}
\]

The absence of a brace after where activates the layout rule.
The column position of the first token after where establishes the column in which declarations in the where must start.

Note that the declaration of g is continued onto a second line; if the minus sign were at or left of the line, it would be an error.

\section*{The layout rule, continued}

Don't confuse the layout rule with indentation-based continuation of declarations! (See slides 123-124.)

The layout rule allows omission of braces and semicolons in where, do, let, and of blocks. (We'll see do and let later.)

Indentation-based continuation applies
1. outside of where/do/let/of blocks
2. inside where/do/let/of blocks when the layout rule is triggered by the absence of an opening brace.

The layout rule is also called the "off-side rule".
TAB characters are assumed to have a width of 8 .

\section*{Literals in patterns}

CSC 372 Spring 2023, Haskell Slide 222

\section*{Literals in patterns}

Literal values can be part or all of a pattern. Here's a 3-clause binding for f :
\[
\begin{aligned}
& \mathrm{f} \mathrm{l}=10 \\
& \mathrm{f} 2=20 \\
& \mathrm{f} \mathrm{n}=\mathrm{n}
\end{aligned}
\]

Usage:

> For contrast, with guards: \[ \begin{array}{c}\mathrm{f} \mathrm{n} \\ \mid \mathrm{n}==1=10 \\ \mathrm{n}==2=20 \\ \mid \text { otherwise }=\mathrm{n}\end{array} \]
\(>\mathrm{f}\) l
10
\(>\) f 3
3

Remember: Patterns are tried in the order specified.

\section*{Literals in patterns, continued}

Here's a function that classifies characters as parentheses (or not): parens c
\[
\begin{aligned}
& \text { | c == '(' = "left" } \\
& \text { | c == ')' = "right" } \\
& \text { | otherwise = "neither" }
\end{aligned}
\]

Could we improve it by using patterns instead of guards?

Which is better?
Remember: Patterns, then guards, then if-else.

\section*{Literals in patterns, continued}
not is a function:
\(>\) :type not
not :: Bool -> Bool
> not True
False
Problem: Using literals in patterns, define not.
Solution:

\section*{Pattern construction}

A pattern can be:
- A literal value such as 1 , ' \(x\) ', or True
- An identifier (bound to a value if there's a match)
- An underscore (the wildcard pattern)
- A tuple composed of patterns
- A list of patterns in square brackets (fixed size list)
- A list of patterns constructed with : operators
- Other things we haven't seen yet

What's an important quality of the definition above?
Patterns can be arbitrarily complex.
3.17.1 in H10 shows the full syntax for patterns.

\section*{Errors}

What syntax errors do you see in the following file?
\% cat -n haskell/synerrors.hs
\(1 \mathrm{Fx}=\)
\(2 \mid x<0==y+10\)
\(3 \quad \mid x!=0=y+20\)
\(4 \quad\) otherwise \(=y+30\)
5 where
\(\begin{array}{ll}6 & g \mathrm{x}: \mathrm{xs}=\mathrm{x} \\ 7 & \mathrm{y}= \\ 8 & \mathrm{~g}[\mathrm{x}]+5 \\ 9 & \mathrm{~g} 2 \mathrm{x}=10\end{array}\)

\section*{Syntax errors, continued}

What syntax errors do you see in the following file?


\section*{Type errors}

In my opinion, producing understandable messages for type errors is what ghci is worst at.

If no polymorphic functions are involved, type errors are typically easy to understand.
\(>\) :type chr
chr :: Int -> Char
> chr 'x'
Couldn't match expected type 'Int' with actual type `Char'
In the first argument of 'chr', namely 'x' In the expression: chr 'x' In an equation for 'it': it = chr ' \(x\) '

\section*{Type errors, continued}

Code:
countEO (x:xs)
| odd \(\mathrm{x}=\) (evens, odds+1)
| otherwise = (evens +1 , odds)
where (evens,odds) \(=\) countEO
Error:
Couldn't match expected type '(al, b)' with actual type '[a] -> (al, b)'
Probable cause: countEO is applied to too few arguments In the expression: countEO

What's the problem?
It's expecting a tuple, (al,b) but it's getting a function, [a] -> (al, b)
Typically, instead of errors about too few (or too many) function arguments, you get function types popping up in unexpected places.

\section*{Type errors, continued}

Here's an example of omitting an operator:
\(>\operatorname{add} 3 \mathrm{xy}=\mathrm{x}+\mathrm{yz}\)
> add3 456
<interactive>:9:1: error:
Non type variable argument in the constraint: Num ( \(\mathrm{t}-\mathrm{>}\) a) (Use FlexibleContexts to permit this)

Looking at the type of add3 sheds some light on the problem:
\(>\) :t add3
add3 :: Num a => a -> ( \(\mathrm{t}-\mathrm{P}\) a) -> t-> a
A function type unexpectedly being inferred for y suggests we should look at how y is being used.

Try it: See if a type declaration for add3 leads to a better error.

Is there an error in the following?
f[]\(=[]\)
\(\mathrm{f}[\mathrm{x}]=\mathrm{x}\)
\(f(x: x s)=x: f x s\)

\section*{Type errors, continued}
```

A simple way to produce an
infinite type:
x = head x

```

Occurs check: cannot construct the infinite type: a ~ [a]
Expected type: [a]
Actual type: [[a]] ("a is a list of as"--whm)
In the expression: \(\mathrm{x}: \mathrm{fxs}\)
In an equation for \(\mathrm{f}: \mathrm{f}(\mathrm{x}: \mathrm{xs})=\mathrm{x}: \mathrm{fxs}\)
The second and third clauses are fine by themselves but together they create a contradiction.

Technique: Comment out clauses (and/or guards) to find the troublemaker, or incompatibilities between them.

\section*{Type errors, continued}

Recall ord :: Char -> Int.

Note this error:
\(>\) ord 5
No instance for (Num Char) arising from the literal \({ }^{\prime} 5\) '
The error "No instance for (TypeClass Type)" means that Type
(Char, in this case) is not an instance of TypeClass (Num).
\(>\) :info Num
instance Num Word
instance Num Integer instance Num Int
instance Num Char doesn't appear instance Num Float instance Num Double」
\(>(\bmod 173) / 2 \quad--\) Thanks to Freya Barber for this one!
<interactive>:1l:1: error:
- Ambiguous type variable 'a0' arising from a use of 'print' prevents the constraint '(Show a0)' from being solved. Probable fix: use a type annotation to specify what 'a0' should be. These potential instances exist: instance Show Ordering -- Defined in 'GHC.Show’ instance Show Integer -- Defined in 'GHC.Show' instance Show a => Show (Maybe a) -- Defined in 'GHC.Show' ...plus 23 others
...plus 13 instances involving out-of-scope types (use -fprint-potential-instances to see them all)
- In a stmt of an interactive GHCi command: print it
\(>(\bmod 173)\)
2
> :type it
it :: Integral a => a
\(>\) it / 2 -- produces the error
Works: (mod 172\()^{`}\) `div` 2

\section*{Sidebar: LHtLaL—Start an error collection!}

If a language [implementation] has obscure error messages, collect examples of errors and the message(s) produced.

You might also intentionally create error cases and catalog the errors produced.

Where could we keep our error collection?
"For this invention will produce forgetfulness in the minds of those who learn to use it, because they will not practice their memory. ..."-Socrates on writing

\section*{LHtLaL, continued}

How can the following Python errors be produced?
KeyError: 3

TypeError: 'int' object is not callable

If you see the following, what does it mean?

\section*{Debugging}

\section*{Debugging in general}

My general strategy for debugging Haskell code: AVOID THE NEED TO DO ANY DEBUGGING IN HASKELL!

A good process for Haskell beginners when writing a function:
1. Work out expressions at the ghci prompt as shown on 176.
2. Write a single clause for the function using those expressions and put it in a file.
3. Load the file with ghci and test that one clause.
4. Repeat with the next clause for function. Etc.

With conventional languages I might write dozens of lines of code before running them.

With Haskell I might write a half-dozen lines of code before running them.

\section*{The trace function}

The Debug.Trace module has a trace function.
Observe:
\(>\) import Debug.Trace -- put it in your ghci config file
\(>\) :t trace
trace :: String -> a -> a
> trace "a tuple" (True, 'x')
a tuple (True,'x')

What's happening?
trace string expr returns expr but also outputs string as a sideeffect. (!)
- Great for debugging!
- Completely subverts Haskell's isolation of the side-effects of output.

\section*{trace, continued}

Here's a trivial function:
\(\mathrm{f} 1=10\)
\(\mathrm{f} n=\mathrm{n} * 5+7\)

Let's augment it with tracing:
import Debug.Trace
f 1 =trace "f: first case" 10
\(\mathrm{f} n=\) trace "f: default case" n * \(5+7\)

Execution:
\(>\mathrm{fl}\)
f: first case
10
\(>\) f 3
f: default case
22

Let's add trace calls to sumElems:

Execution:
\(>\) sumElems [5, 1,4,2,3]
sumElems []
sumElems [3]
sumElems [2,3]
sumElems [4,2,3]
sumElems [1,4,2,3]
sumElems [5, 1,4,2,3]
15

Unfortunately, due to Haskell's lazy evaluation, the output's order is the opposite of what we'd expect. But it does show "progression".

\section*{trace, continued}

Code for buildingAtHeight in street.hs, an old 372 problem:
buildingAtHeight (width, height, ch) \(\mathrm{n}=\) replicate width (if \(n>\) height then ' ' else ch)

Outputting width, height, and ch with labels is tedious:
buildingAtHeight (width, height, ch) \(\mathrm{n}=\)
trace ("width " ++ show width ++ ", height: " ++ show height ++ ", ch: " ++ show ch)
replicate width (if \(n>\) height then ' ' else ch)
Example of trace output: width: 3, height: 2, ch: 'x'
Use a tuple to simplify the trace call:
buildingAtHeight (width, height, ch) \(\mathrm{n}=\)
trace (show ("width:", width, "height", height, "ch", ch))
replicate width (if \(n>\) height then ' ' else ch)
Example of trace output: ("width:",3,"height",2,"ch:",'x')

\section*{Sidebar: Tracing in Icon}

Icon has a built-in tracing mechanism.
Here's sumElems in Icon:
\% cat -n sumElems.icn
```

 1 procedure main()
 2 sumElems ([5, 1, 4, 2, 3])
 3 end
 4
 5 procedure sumElems(L)
 if *L \(=0\) then
 return 0
 else
 return L[1] + sumElems(L[1:-1])
 10 end

```

\section*{Sidebar, continued}

Execution:
\% TRACE=-1 icont sumElems.icn -x
\begin{tabular}{|c|c|c|}
\hline & & main() \\
\hline sumElems.icn & 2 & | sumElems(list_1 \(=[5,1,4,2,3])\) \\
\hline sumElems.icn & 9 & | sumElems(list_2 \(=[5,1,4,2])\) \\
\hline sumElems.icn & 9 & | | sumElems (list_3 \(=[5,1,4]\) ) \\
\hline sumElems.icn & 9 & | | | | sumElems (list \(4=[5,1])\) \\
\hline sumElems.icn & 9 & | | | | | sumElems(list_5 = [5]) \\
\hline sumElems.icn & 9 & | | | | | sumElems(list \(6=\) []) \\
\hline sumElems.icn & 7 & | | sumElems returned 0 \\
\hline sumElems.icn & 9 & | | | sumElems returned 5 \\
\hline sumElems.icn & 9 & | | | sumElems returned 10 \\
\hline sumElems.icn & 9 & | | | sumElems returned 15 \\
\hline sumElems.icn & 9 & | | sumElems returned 20 \\
\hline sumElems.icn & 9 & | sumElems returned 25 \\
\hline sumElems.icn & & main failed \\
\hline
\end{tabular}

I know of no better out-of-the-box tracing facility in any language.

\section*{ghci's debugger}
ghci does have some debugging support but debugging is expressionbased. Here's some simple interaction with it on countEO:
\(>\) :step countEO [3,2,4]
Stopped at countEO.hs:(1,1)-(6,29)
_result :: (t, tl) = _
\(>\) :step
Stopped at countEO.hs:3:7-11
_result :: Bool = _
x :: Integer = 3
> :step
Stopped at countEO.hs:3:15-29
_result :: (t, tl) = _
evens:: \(\mathrm{t}=\)
odds:: tl = _
> :step
(Stopped at countEO.hs:6:20-29
_result shows type of current expression

Arbitrary expressions can be evaluated at the \(>\) prompt (as always).
```

countEO [] = (0,0)

```
countEO [] = (0,0)
countEO (x:xs)
countEO (x:xs)
    |odd x = (evens, odds+1)
    |odd x = (evens, odds+1)
    | otherwise = (evens+l, odds)
    | otherwise = (evens+l, odds)
where
where
    (evens,odds) = countEO xs
```

 (evens,odds) = countEO xs
    ```
    result shows type of current
expression
Arbitrary expressions can be
evaluated at the \(>\) prompt (as
always).

\section*{Larger examples}

Imagine a function that counts occurrences of even and odd numbers in a list.
\(>\) countEO [3,4,5]
\((1,2)\)
-- one even, two odds

Code:
countEO [] \(=(0,0) \quad--\) no odds or evens in [] countEO ( \(x: x s\) )
| odd \(x=\) (evens, odds+1)
| otherwise = (evens+l, odds)
where
(evens, odds) \(=\) countEO xs -- do counts for tail first!

\section*{countEO, continued}

At hand:
\[
\begin{aligned}
& \text { countEO }[]=(0,0) \\
& \text { countEO (x:xs) } \\
& \quad \mid \text { odd } x=(\text { evens, odds }+1) \\
& \text { | otherwise }=(1+\text { evens, odds }) \\
& \text { where (evens, odds) = countEO xs }
\end{aligned}
\]

Here's one way to picture this recursion:
countEO [10,20,25] returns \((2,1)\) (result of \((1+1,1)\) )
countEO \([20,25] \quad\) returns \((1,1)\) (result of \((1+0,1)\)


CSC 372 Spring 2023, Haskell Slide 249

Here's countEO with tracing: import Debug.Trace countEO [] = \((0,0)\) countEO list@(x:xs)
| odd \(\mathrm{x}=\) (evens, odds+1)
| otherwise = (evens+l, odds)
where
result = countEO xs
(evens,odds) \(=\)
trace ("countEO " ++ show xs ++ " --> " ++ show result) result
Execution:
\(>\) countEO [3,2,4]
countEO [] --> \((0,0)\)
countEO [4] --> \((1,0)\)
countEO [2,4] --> \((2,0)\)
\((2,1)\)

Before tracing the where was: (evens,odds) \(=\) countEO xs

Imagine a robot that travels on an infinite grid of cells. Movement is directed by a series of one character commands: \(n, e, s\), and \(w\).

Let's write a function travel that moves the robot about the grid and determines if the robot ends up where it started (i.e., it got home) or elsewhere (it got lost).


If the robot starts in square \(R\) the command string nnnn leaves the robot in the square marked 1.

The string nenene leaves the robot in the square marked 2.
nnessw and news move the robot in a round-trip that returns it to square \(R\).

\section*{travel, continued}

Usage:
> travel "nnnn" -- ends at 1 "Got lost; 4 from home"
> travel "nenene" -- ends at 2 "Got lost; 6 from home"
\(>\) travel "nnessw"
"Got home"


How can we approach this problem?

\section*{travel, continued}

One approach:
1. Map letters into integer 2-tuples representing \(X\) and \(Y\) displacements on a Cartesian plane.
2. Sum the \(X\) and \(Y\) displacements to yield a net displacement.

Example:
Argument value: "nnee"
Mapped to tuples: \((0,1)(0,1)(1,0)(1,0)\)
Sum of tuples: \((2,2)\)

Another:
Argument value: "nnessw"
Mapped to tuples: \((0,1)(0,1)(1,0)(0,-1)(0,-1)(-1,0)\)
Sum of tuples: \((0,0)\)

\section*{travel, continued}

First, let's write a helper function to turn a direction into an ( \(\mathrm{x}, \mathrm{y}\) ) displacement:
mapMove :: Char -> (Int, Int)
mapMove ' n ' \(=(0,1)\)
mapMove 's' \(=(0,-1)\)
mapMove 'e' = ( 1,0 )
mapMove 'w' = (-1,0)
mapMove c = error ("Unknown direction: " ++ [c])
Usage:
> mapMove ' n '
\((0,1)\)
> mapMove 'w'
\((-1,0)\)

\section*{travel, continued}

Next, a function to sum x and y displacements in a list of tuples:
\(>\) sumTuples [(0,1),(1,0)]
(1,1)
> sumTuples [mapMove ' \(n\) ', mapMove ' \(w\) ']
\((-1,1)\)
Implementation:
sumTuples :: [(Int,Int)] -> (Int,Int)
sumTuples [] \(=(0,0)\)
sumTuples ( \((\mathrm{x}, \mathrm{y}):\) :ts \()=(\mathrm{x}+\operatorname{sumX}, \mathrm{y}+\operatorname{sum} \mathrm{Y})\) where
(sumX, sumY) = sumTuples ts
travel itself, with makeTuples in a where

\section*{travel, continued}
```

travel :: [Char] -> [Char]
travel s
| disp == (0,0) = "Got home"
otherwise = "Got lost;" ++ show (abs x + abs y) ++
" from home"
where
tuples = makeTuples s
disp@(x,y) = sumTuples tuples -- note "as pattern"
makeTuples :: [Char] -> [(Int, Int)]
makeTuples [] = []
makeTuples (c:cs) = mapMove c : makeTuples cs

```

As is, mapMove and sumTuples are at the top level but makeTuples is hidden inside travel. How should they be arranged?

\section*{Sidebar: top-level vs. hidden functions}
disp \(==(0,0)=\) "Got home" otherwise = "Got lost; " ...
where
tuples = makeTuples s
disp = sumTuples tuples
```

makeTuples [] = []
makeTuples (c:cs) $=$ mapMove c:makeTuples cs

```
mapMove 'n' \(=(0,1)\)
mapMove 's' \(=(0,-1)\)
mapMove ' e ' \(=(1,0)\)
mapMove 'w' = (-1,0)
mapMove c = error ...

Top-level functions can be tested after code is loaded but functions inside a where block are not visible.

The functions at left are hidden in the where block but they can easily be changed to top-level using a shift or two with an editor.
```

Note: Types are not shown, to
save space.

```
sumTuples [] \(=(0,0)\)
sumTuples ( \((\mathrm{x}, \mathrm{y}):\) ts \()=(\mathrm{x}+\operatorname{sumX}, \mathrm{y}+\operatorname{sum} \mathrm{Y})\)
where
(sumX, sumY) = sumTuples ts

Consider a function tally that counts character occurrences in a string:
```

> tally "a bean bag"
a 3
b 2
2
g 1
n 1
e 1

```

Note that the characters are shown in order of decreasing frequency.

How can this problem be approached?
In a nutshell: [('a',3),('b',2),(' ',2),('g',1),('n',1),('e',1)]

\section*{tally, continued}

Let's start by writing incEntry c tuples, which takes a list of (character, count) tuples and produces a new list of tuples that reflects the addition of the character \(\mathbf{c}\). incEntry :: Char -> [(Char, Int)] -> [(Char, Int)]

Calls to incEntry with 't', 'o', 'o':
> incEntry ' t ' [] [('t', 1)]
\(>\) incEntry 'o' it
[('t', l),('o',l)]
\(>\) incEntry 'o' it
[('t', 1),('o',2)]
\(\{-\) incEntry c tups
tups is a list of (Char, Int) tuples that indicate how many times a character has been seen. A possible value for tups:
[('b',l),('a',2)]
incEntry produces a copy of tups with the count in the tuple containing the character cincremented by one.

If no tuple with cexists, one is created with a count of 1.
-\}
incEntry::Char -> [(Char,Int)] -> [(Char,Int)]
incEntry c [ ] = [(c, l)]
incEntry c ((char, count):entries)
\(\mid \mathrm{c}==\) char \(=\) (char, count +1 ) : entries
| otherwise = (char, count) : incEntry c entries

Next, let's write mkentries s. It calls incEntry for each character in the string \(\mathbf{s}\) in turn and produces a list of (char, count) tuples.
mkentries :: [Char] -> [(Char, Int)]
Usage:
> mkentries "tupple"
[('t', l),('u', l),('p',2),('l', l),('e',l)]
> mkentries "cocoon"
[('c',2),('o',3),('n',1)]
Code:
mkentries :: [Char] -> [(Char, Int)]
mkentries s = mkentries' s []
where
mkentries' [] entries = entries
mkentries' (c:cs) entries = mkentries' cs (incEntry c entries)
\{- insert, isOrdered, and sort provide an insertion sort -\} insert v [] = [v] insert v (x:xs)
| isOrdered ( \(\mathrm{v}, \mathrm{x}\) ) = v:x:xs
| otherwise = x:insert vxs
isOrdered ((_, vl), (_, v2)) = vl > v2
sort [] = []
sort ( \(\mathrm{x}: \mathrm{xs}\) ) \(=\) insert x (sort xs )
> mkentries "cocoon"
[('c',2),('o',3),('n',1)]
\(>\) sort it
[('o',3),('c',2),('n', 1)]

\section*{tally, continued}
\(\{-\) fmtEntries prints (char,count) tuples one per line -\(\}\) fmtEntries [] = ""
fmtEntries ((c, count):es) \(=\)
\([\mathrm{c}]++\) " " ++ show count ++ "\n" ++ fmtEntries es
\{- top-level function -\}
tally \(\mathrm{s}=\) putStr (fmtEntries (sort (mkentries s)))
\(>\) tally "cocoon"
- 3
c 2
n 1
- How does this solution exemplify functional programming?

\section*{Running tally from the command line}

Let's run it on lectura...
\% code=/cs/www/classes/cs372/spring23/haskell
\% cat \$code/tally.hs
... everything we've seen before and now a main:
main \(=\) do
bytes <- getContents -- reads all of standard input tally bytes
\% echo -n cocoon | runghc \$code/tally.hs
- 3
c 2
n 1
\$code/genchars N generates N random letters:
\% \$code/genchars 20
KVQaVPEmClHRbgdkmMsQ
Lets tally a million letters:
\% \$code/genchars 1000000 |
time runghc \$code/tally.hs >out
21.79user 0.24system 0:22.06elapsed
\% head -3 out
s 19553
V 19448
J 19437

Let's try a compiled executable.
\% cd \$code
\% ghc --make -rtsopts tally.hs
\(\%\) ls -l tally
-rwxrwx--- l whm whm 940968 Sep 13 12:09 tally
\% ./genchars \(1000000>\operatorname{lm}\)
\% time ./tally < lm > out
real 0 m 5.554 s
user 0m5.393s
sys \(0 \mathrm{m0.100s}\)

\section*{tally performance in other languages}

Here are user CPU times for implementations of tally in several languages. The same ten million letter file was used for all timings.
\begin{tabular}{|l|l|}
\hline Language & Time in seconds; mean of two or more runs \\
\hline Haskell & 57.284 \\
\hline Ruby & \(18.589 \quad\) (v2.7.0; much slower than 2.2.4 (or 1.9.3?)) \\
\hline Icon & 8.248 \\
\hline Python 3 & 1.131 \\
\hline Python 2 & 0.824 \\
\hline C w/ gcc -03 & 0.031 (2.97 for one billion letters) \\
\hline
\end{tabular}

Our tally implementation is very simplistic. An implementation of tally by an expert Haskell programmer, Chris van Horne, ran in 1.71 seconds for one billion letters. (See spring23/haskell/tally-cwvh[12].hs.)

Then I revisited the C version (tally2.c) and processed one billion letters in 0.59 seconds.

\section*{Real world problem: "How many lectures?"}

Here's an early question when planning a course for a particular semester:
"How many lectures will there be, and on what dates?"
How should we answer that question?

One approach:
> classdays ...arguments...
\#l H l/l5 (for 2015...)
\#2 T l/20
\#3 H l/22
\#4 T l/27
\#5 H l/29

What information do the arguments need to specify?
First and last day
Pattern, like M-W-F or T-H
How about holidays?

\section*{Arguments for classdays}

Let's start with something simple:
> classdays (1,15) (5,6) [('H',5),(" \(\left.\left.{ }^{\prime}{ }^{\prime}, 2\right)\right]\)
\#l H l/l5
\#2 T l/20
\#3 H l/22
\#4 T l/27
\#32 T 5/5
>

The first and last days are represented with (month,day) tuples.
The third argument shows the pattern of class days: the first is a Thursday, and it's five days to the next class. The next is a Tuesday, and it's two days to the next class. Repeat!

\section*{Date handling}

There's a Data.Time.Calendar module but writing two minimal date handling functions provides good practice.
\(>\) toOrdinal \((12,31)\)
\(365-\) - 12/31 is the last day of the year
\(>\) fromOrdinal 32
\((2,1)--\) The \(32^{\text {nd }}\) day of the year is February 1.
What's a minimal data structure that could help us?
\([(0,0),(1,31),(2,59),(3,90),(4,120),(5,151),(6,181),(7,212\) ),(8,243),(9,273),(10,304),(11,334),(12,365)]
\((1,31)\) The last day in January is the \(31^{\text {st }}\) day of the year
\((7,212)\) The last day in July is the \(212^{\text {th }}\) day of the year

\section*{toOrdinal and fromOrdinal}
offsets \(=\)
\([(0,0),(1,31),(2,59),(3,90),(4,120),(5,151),(6,181),(7,212),(8,2\) 43),(9,273),(10,304),(11,334),(12,365)]
toOrdinal (month, day) = days + day where
(_,days) \(=\) offsets!!(month-1)
\(>\) toOrdinal \((12,31)\) 365
> fromOrdinal 32
\((2,1)\)
fromOrdinal ordDay = fromOrdinal' (reverse offsets) ordDay where
fromOrdinal' ((month,lastDay):t) ordDay
\(\mid\) ordDay > lastDay \(=\) (month +1 , ordDay - lastDay)
| otherwise = fromOrdinal' t ordDay
fromOrdinal' [] _ = error "invalid month?"

Recall:
> classdays (1,15) (5,6) [('H',5),("T',2)]
\#1 H l/l5
\#2 T l/20

Ordinal dates for \((1,15)\) and \((5,6)\) are 15 and 126 , respectively.
With the Thursday-Tuesday pattern we'd see the ordinal dates progressing like this:
\(15,20,22,27,29,34,36,41, \ldots\)


Imagine this series of calls to a helper, showLecture:
```

Desired output:
\#l H l/l5
\#2 T l/20
\#3 H l/22
\#4 T l/27
\#32 T 5/5

```

What computations do we need to transform showLecture l 15 'H'
into
"\#l H l/l5\n"?

We have: showLecture 115 ' H '
We want: "\#l H l/l5"

Let's write showOrdinal :: Integer -> [Char]
> showOrdinal 15
"l/15"
showOrdinal ordDay = show month ++ "/" ++ show day where
(month,day) \(=\) fromOrdinal ordDay
Now we can write showLecture: showLecture lecNum ordDay dayOfWeek =
"\#" ++ show lecNum ++ " " ++ [dayOfWeek] ++
" " ++ showOrdinal ordDay ++ "\n"

Recall:
showLecture l 15 'H' showLecture 220 " T showLecture 32125 "T"

Desired output: \#l H l/l5
\#2 T l/20
\#32 T 5/5

Let's "cons up" a list out of the results of those calls...
> showLecture l 15 'H' : showLecture 220 "T":
"...more..." : -- I literally typed "...more..." showLecture 32125 "T" : []
["\#l H l/l5\n","\#2 T l/20\n", "...more...","\#32 T 5/5\n"]

How close are the contents of that list to what we need?

Now lets imagine a recursive function showLectures that builds up a list of results from showLecture calls:
showLectures 115126 [('H',5),("T",2)] "\#l H l/l5\n" showLectures 220 l26 [(T",2),('H',5)] "\#2 T l/20\n" showLectures 32125126 [("T",2),('H',5)] "\#32 T 5/5\n" showLectures 33127126 [('H',5),('T",2)]
Result:
["\#1 H l/l5\n","\#2 T l/20\n", ... ,"\#33 H 5/5\n"]
Now let's write showLectures:
showLectures lecNum thisDay lastDay
(pair@(dayOfWeek, daysToNext):pairs)
thisDay > lastDay = []
| otherwise = showLecture lecNum thisDay dayOfWeek
: showLectures (lecNum+1) (thisDay + daysToNext)
lastDay (pairs ++ [pair])

\section*{classdays-top-level}

Finally, a top-level function to get the ball rolling: classdays first last pattern = putStr (concat result) where
result = showLectures 1 (toOrdinal first) (toOrdinal last) pattern

Usage:
\(>\) classdays (1,15) (5,6) [('H',5),('T',2)]
\#l H l/l5
\#2 T l/20
\#3 H l/22
\#31 H 4/30
\#32 T 5/5

Full source is in spring23/haskell/classdays.hs

\section*{Higher-order functions}

\section*{Remember: Functions are values}

Recall this fundamental characteristic of a functional language: Functions are values that can be used as flexibly as values of other types.

Here are some more examples of that. What do the following do? \(>\) (if \(3<4\) then head else last) "abc"
\(>\) funcs \(=(\) tail, (:) 100)
\(>\) nums \(=[1 . .10]\)
\(>\) fst funcs nums
> snd funcs nums

\title{
Lists of functions
}

Is the following valid? \(>\) [take, tail, init]

What's the problem?

Puzzle: Make [take, tail, init] valid by adding two different characters.

\section*{Comparing functions}

Can functions be compared?

\section*{\(>\) add \(==(+)\)}
- No instance for (Eq (Integer -> Integer -> Integer)) arising from a use of '==’

You might see a proof based on this in CSC 473:
If we could determine if two arbitrary functions perform the same computation, we could solve the halting problem, which is considered to be unsolvable.

Because functions can't be compared, this version of length won't work for lists of functions: (len's type: (Num a, Eq t) => [t] -> a)
len list@(_:t)
| list == [] = 0
| otherwise \(=1+\) len \(t\)

\section*{A simple higher-order function}

Definition: A higher-order function is a function that (and/or)
- Has one or more arguments that are functions
- Returns a function
twice is a higher-order function with two arguments: \(f\) and \(x\)
twice \(\mathrm{f} x=\mathrm{f}(\mathrm{f} \mathrm{x})\)
What does it dof?
\(>\) twice tail \([1,2,3,4,5]\)
\(>\) tail (tail [1,2,3,4,5])

\section*{twice, continued}

At hand:
\(>\) twice \(\mathrm{f} x=\mathrm{f}(\mathrm{fx})\)
\(>\) twice tail [ \(1,2,3,4,5]\)
[3,4,5]
Let's make the left-associativity explicit:
\(>\) (twice tail) [1,2,3,4,5]
[3,4,5]
Consider a partial application...
\(>\mathrm{t} 2=\) twice tail \(\quad-\) like \(\mathrm{t} 2 \mathrm{x}=\) tail (tail x\()\)
\(>\) t2
<function>
it :: [a] -> [a]

\section*{twice, continued}

At hand:
\(>\) twice \(\mathrm{fx}=\mathrm{f}(\mathrm{fx})\)
\(>\) twice tail [ \(1,2,3,4,5]\)
[3,4,5]
Let's give twice a partial application!
\(>\) twice (drop 2) [1..5]

Let's make a partial application with a partial application!
\(>\) twice (drop 5)
<function>
> it ['a'..'z']

Try these!
twice (twice (drop 3)) [1..20] twice (twice (take 3)) [1..20]

\section*{twice, continued}

At hand:
\[
\text { twice } \mathrm{fx}=\mathrm{f}(\mathrm{f} \mathrm{x})
\]

What's the the type of twice?
\(>\) :t twice twice :: ( \(\mathrm{t}->\mathrm{t}\) ) -> t -> t

A higher-order function is... a function that (1) has one or more arguments that are functions and/or (2) returns a function.

Parentheses added to show precedence:


What's the correspondence between the elements of the clause and the elements of the type?

\section*{The map function}

\section*{The Prelude's map function}

\section*{Recall double \(\mathrm{x}=\mathrm{x} * 2\)}
map is a Prelude function that applies a function to each element of a list, producing a new list:
> map double [1..5]
> map length (words "a few words")
> map head (words "a few words")

Is map a higher order function?

At hand:
\(>\) map double [1..5]
[2,4,6,8,10]
Problem: Write map!

What is its type?

What's the relationship between the length of map's input and output lists?

\section*{map, continued}

More mapping:
\(>\) map chr \([97,32,98,105,103,32,99,97,116]\)
\(>\) map isLetter it
\(>\) map not it
\(>\) map head (map show it) -- Note: show True is "True"

Problem: Write a function f such that map f values "removes" the odd numbers from the list values.

\section*{Sidebar: map can go parallel}

Another mapping:
> map windSpeed [locl, loc2, loc3, ...]
[8.7,12.3,10.2,...]
Equivalent:
[windSpeed locl, windSpeed loc2, windSpeed loc3, ...]
- Because functions have no side effects we can immediately turn a mapping into a parallel computation.
- If a machine has 64 CPUs we might process a thousand-element list with sixteen(+/-) batches of 64-element maps.

See Parallel and Concurrent Programming in Haskell by Marlow
Google for MapReduce

\section*{map and partial applications}

What's the result of these?
\(>\) map (add 5) [l..10]
> map (drop l) (words "the knot was cold")
> map (replicate 5) "abc"

What's going on here?
\(>\mathrm{f}=\) map double
\(>\mathrm{f}\) [1..5]
\(>\operatorname{map} f[[1 . .3],[10 . .15]]\)

Here's the above in one step:
\(>\operatorname{map}\) (map double) [[1..3],[10..15]]
[[2,4,6],[20,22,24,26,28,30]]
Here's one way to think about it:
[(map double) [1..3], (map double) [10..15]]

\section*{Sections}

Instead of using map (add 5) to add 5 to the values in a list, we should use a section instead: (it's the idiomatic way!)
\(>\operatorname{map}(5+)[1,2,3]\)
\([6,7,8]-5+15+5+3]\)
More sections:
\(>\operatorname{map}(10 *)[1,2,3]\)
> map (++"*") (words "a few words")
> map ("*"++) (words "a few words")

\section*{Sections, continued}

Sections have one of two forms:
\[
\begin{array}{ll}
\text { (infix-operator value) } & \text { Examples: (+5), (/10) } \\
\text { (value infix-operator) } & \text { Examples: (5*), ("x"++) }
\end{array}
\]

Iff the operator is commutative, the two forms are equivalent.
\[
\begin{array}{ll}
>\operatorname{map}(3<=)[1 . .4] & {[3<=1,3<=2,3<=3,3<=4]} \\
>\operatorname{map}(<=3)[1 . .4] & {[1<=3,2<=3,3<=3,4<=4]}
\end{array}
\]

Sections aren't just for map; they're a general mechanism.
\(>\) twice (+5) 3

Python 2:
>>> map(len,"map in Python".split())
[3, 2, 6]
>>> map
<built-in function map>
Python 3:
>>> map(len,"map in Python".split()) <map object at 0xl1418d240>
>>> list(map(len,"map in Python".split()))
[3, 2, 6]
>>> map
<class 'map'>

\title{
map in Python, continued
}
>>> map(print, range( 1,6 ))
>>> list(_) \# _ in the Python REPL is like it in ghci
>>> map(print, range(1,10000000000000000000000))

More: docs.python.org/3/library/functools.html

\section*{Bird's-eye view of higher order functions}
"[Higher-order functions] allow common programming patterns to be encapsulated as functions." -Hutton, 2e
"..we can think of higher-order functions as control structures which we can define ourselves. "-Thompson, 3e

Contrast:
- Design Patterns, by the "Gang of Four", provides a textual recipe for approaching common programming problems.
"Making C++ Suck Less"-_Vlissides
- Higher-order functions provide encapsulated units for common programming problems.
(Instead of "write it this way...", it's "call this function".)

\section*{travel, revisited}

\section*{Now that we're good at recursion...}

Some of the problems on assignment 4 will encourage working with higher-order functions by prohibiting you from writing any recursive functions!

Think of it as isolating muscle groups when weight training.
Here's a simple way to avoid what's prohibited:
Pretend that you don't understand recursion!
What's a base case? Is it related to baseball?
Why would a function call itself? How's it stop?
Is a recursive plunge refreshing?
If you were UNIX systems, I'd do chmod 0 on an appropriate section of your brains.

Recall our traveling robot: (slide \(251+\) )
> travel "nnee"
"Got lost"
> travel "nnss"
"Got home"

Recall our approach:
Argument value: "nnee"
Mapped to tuples: \((0,1)(0,1)(1,0)(1,0)\)
Sum of tuples: \((2,2)\)

How can we solve it without writing any recursive functions?

\title{
travel, continued
}

Recall:
> :t mapMove
mapMove :: Char -> (Int, Int)
\(>\) mapMove ' n '
\((0,1)\)
Now what?

\section*{travel, continued}

We have:
\(>\) disps = map mapMove "nneen"
[(0,1),(0,1),(1,0),(1,0),(0,1)]
We want: \((2,3)\)
Any ideas?

We have:
> disps= map mapMove "nneen"
[(0,1),(0,1),(1,0),(1,0),(0,1)]
\(>\) map fst disps
[0,0,1,1,0]
\(>\) map snd disps
[1,1,0,0,1]
We want: \((2,3)\)

Ideas?

\section*{travel-Final answer}
```

travel :: [Char] -> [Char]
travel s
totalDisp == (0,0) = "Got home"
otherwise = "Got lost"
where
disps = map mapMove s
totalDisp = (sum (map fst disps),
sum (map snd disps))

```

Did we have to know of recursion to write this version of travel? No.

Did we write any recursive functions?
No.

Did we use any recursive functions?
Maybe. But using recursive functions doesn't violate the prohibition at hand.

\section*{Filtering}

Another higher order function in the Prelude is filter:
> filter odd [1..10]
> filter isDigit "(800) 555-1212"

What's filter f list doing?

Note: Think of filter as filtering in, not filtering out.
What is the type of filter?

\section*{filter uses a predicate}
filter's first argument (a function) is called a predicate because inclusion of each value is predicated on the result of calling that function with that value.

More...
\(>\) filter (<= 5) (filter odd [l..10])
> map (filter isDigit) ["br549", "24/7"]

For following, note that ('elem` ...) is a section.
> filter (`elem` "aeiou") "some words here"
"oeoee" @a

\section*{filter, continued}

At hand:
> filter odd [1..10]
[1,3,5,7,9]
\(>\) :t filter
filter :: (a -> Bool) -> [a] -> [a]

Problem: Write filter!

\section*{Prelude functions that use predicates}

Several Prelude functions use predicates. Here are two:
all :: (a -> Bool) -> [a] -> Bool
\(>\) all even [2,4,6,8]
True
> all even [2,4,6,7]
False
dropWhile :: (a -> Bool) -> [a] -> [a]
> dropWhile isSpace " testing "
> dropWhile isLetter it

How could we find other Prelude functions that use predicates?

\section*{map vs. filter}

For reference:
\(>\) map double [1..10]
[2,4,6,8,10,12,14,16,18,20]
> filter odd [1..10]
[1,3,5,7,9]
map:
transforms a list of values
length input \(==\) length output
filter:
selects values from a list
\(0<=\) length output <= length input
Python has filter, too. Ditto for JavaScript and many other languages. And, most higher-order functions are easy to write; a language simply needs to treat functions as values.

Here is filter in Python, along with two predicates:
\% cat haskell/filter.py
def filter ( \(\mathrm{p}, \mathrm{L}\) ):
result \(=[]\)
for e in \(L\) :
if \(p(e)\) :
result.append(e)
return result
def odd(n): return n \(\% 2==1\)
def \(\operatorname{short}(x):\) return len(x) \(<4\)
def filter2( \(p, L\) ): return [e for e in \(L\) if \(p(e)\) ]

\section*{filter in Python, continued}

Usage:
\% python -i haskell/filter.py
\# -i loads the source file \# and starts the REPL
>>> filterl(odd, [3, 1,4,6,9])
[3, 1, 9]
>>> filterl(short, "here are the words".split())
['are', 'the']
>>> filterl(bool, ["abc", "", l, 0, [False], 2 < 3])
['abc', l, [False], True]
There's a built-in filter, too!

\section*{Anonymous functions}

\section*{Anonymous functions}

Imagine that for every number in a list we'd like to double it and then subtract five.

Here's one way to do it:
\(>\mathrm{f} n=\mathrm{n} * 2-5\)
\(>\operatorname{map} \mathrm{f}\) [1..5]
[-3,-1, \(1,3,5\) ]
We could instead use an anonymous function to do the same thing:
\(>\operatorname{map}(\backslash n->n * 2-5)[1 . .5]\)
\[
[-3,-1,1,3,5]
\]

What benefits does the anonymous function provide?

\section*{Anonymous functions, continued}

At hand:


The most common use case for an anonymous function: (my speculation)
Supply a simple "one-off" function to a higher-order function.

Anonymous functions...
- Directly associate a function's definition with its only use.
- Let us avoid the need to think up a good name for a function! :)
- Can be likened to not using an intermediate variable:
\[
\text { int } t=a * 3+g(a+b) ; \quad / / J a v a
\] return \(f(t)\);
VS.
\[
\text { return } f(a * 3+g(a+b)) ;
\]

\section*{Anonymous functions, continued}

The general form of an anonymous function:
\pattern \(1 . .\). pattern \(N\)-> expression
Simple syntax suggestion: enclose the whole works in parentheses. \(\operatorname{map}(\backslash n->n * 2-5)[1 . .5]\)

These terms are synonymous with "anonymous function":
Lambda abstraction (H10)
Lambda expression
Just lambda (LYAH).
The \(\backslash\) character was chosen due to its similarity to \(\lambda\) (Greek lambda), used in the lambda calculus, another system for expressing computation.

\section*{Anonymous functions, continued}

What will ghci say?
\[
>\backslash x y->x+y * 2
\]
\(\backslash x y->x+y * 2\) is an expression whose value is a function.
Here are three ways to bind the name double to a function that doubles a number:
double \(\mathrm{x}=\mathrm{x} * 2\)
double \(=\backslash x->x * 2\)
double \(=(* 2)\)

\section*{Anonymous functions, continued}

Anonymous functions are commonly used with higher order functions such as map and filter.
\(>\) map (\w -> (length w, w)) (words "a test now")
> map (\c -> "\{" ++ [c] ++ "\}") "anon."
> filter ( \(\backslash \mathrm{x}->\) head \(\mathrm{x}==\) last x ) (words "pop top suds")

\section*{Sidebar: Three languages}

A simple anonymous function in Haskell...
> \s -> s ++ "-" ++ show (length s)
<function>
> it "abc"
"abc-3"

Python...
>>> lambda s: s + '-' + str(len(s))
<function <lambda> at 0xl0138af28>
>>> _('abc')
'abc-3'
and JavaScript...
\(>\mathrm{f}=\) function (s) \(\left\{\right.\) return \(\mathrm{s}+\mathrm{I}^{-1}+\mathrm{s}\).length \(\}\)
> f("abc")
"abc-3"

\section*{Larger example: longest}

\section*{Example: longest line(s) in a file}

Imagine a program to print the longest line(s) in a file, along with their line numbers:

> \% runghc longest.hs \$s23/web2 \(72632:\) formaldehydesulphoxylate 140339:pathologicopsychological 175108:scientificophilosophical 200796:tetraiodophenolphthalein
> 203042 :thyroparathyroidectomize
\begin{tabular}{|l|}
\hline \% head .../web2 \\
A \\
a \\
aa \\
aal \\
aalii \\
aam \\
Aani \\
aardvark \\
\hline.. \\
\hline
\end{tabular}

Imagining that we don't understand recursion, how can we approach it in Haskell?

\section*{longest, continued}

Let's work with a small file for development purposes:
\% cat longest. 1
data
to
test
readFile in the Prelude lazily returns the full contents of a file as a string:
> readFile "longest.1"
"data\nto\ntest\n"
Let's have a longest function that operates on a single string that represents the contents of a file:
> longest "data\nto\ntest \(\backslash n\) "
"1:data\n3:test\n"

\section*{longest, continued}

Let's work through a series of transformations of the data:
> bytes = "data \(\backslash\) nto \(\backslash\) ntest \(\backslash n\) "
\(>\operatorname{lns}=\) lines bytes
\(2 \ln \mathrm{C}\)
["data","to","test"]
Note: To save space in this example, we'll show the value bound immediately after each binding.

Let's use zip3 and map length to create (length, line-number, line) triples:
\(>\) triples \(=\) zip3 \((\) map length \(\operatorname{lns})\) [l..] lns
[(4,l,"data"),(2,2,"to"),(4,3,"test")]

\section*{longest, continued}

We have (length, line-number, line) triples at hand:
\(>\) triples
[(4,l,"data"),(2,2,"to"),(4,3,"test")]

Let's use Data.List.sort :: Ord a => [a] -> [a] on them:
\(>\) sortedTriples \(=\) reverse (Data.List.sort triples)
[(4,3,"test"),(4,1,"data"),(2,2,"to")]a

Tuples are sorted based on their first value, with the second value resolving any ties, etc. (Just like Python.)

Why do we reverse the list?
"The sort function [...] is a special case of sortBy, which allows the programmer to supply their own comparison function."

\section*{longest, continued}

At hand:
> sortedTriples
[(4,3,"test"),(4,l,"data"),(2,2,"to")]

Let's make a helper function to get the first element of a 3-tuple:
\(>\) first (len, _, _) \(=\) len

Let's get the length of the longest word:
\(>\) maxLength \(=\) first (head sortedTriples)
4

We have a tie for the longest word! What to do?

The Prelude's takeWhile has this type: (a -> Bool) -> [a] -> [a]

Speculate: What does takeWhile do?
Let's experiment!
\(>\) :t odd
odd :: Integral a => a -> Bool
\(>\) takeWhile odd \([9,13,5,12,7]\)
\(>\) takeWhile (>5) \([9,13,5,12,7]\)

\section*{longest, continued}

At hand:
> sortedTriples
[(4,3,"test"),(4,l,"data"),(2,2,"to")]
> maxLength
4
\(>\) maxTriples \(=\) takeWhile
(\triple -> first triple == maxLength) sortedTriples
[(4,3,"test"),(4,l,"data")]
anonymous function for takeWhile
Should we have just used filter instead?
maxTriples = filter
( triple -> first triple \(==\) maxLength) sortedTriples

\section*{longest, continued}

At hand:
\(>\) maxTriples
[(4,3,"test"),(4,1,"data")]

Let's map an anonymous function to turn the triples into lines prefixed with their line number:
> linesWithNums = map (\\(_,num,line) -> show num ++ ":" ++ line) maxTriples
["3:test","1:data"]

We can now produce a ready-to-print result:
> result = unlines (reverse linesWithNums)
"l:data\n3:test\n"

\section*{longest, continued}

Let's package up our work into a function:
longest bytes = result
where
lns = lines bytes
triples = zip3 (map length lns) [1..] lns
sortedTriples \(=\) reverse (Data.List.sort triples)
maxLength = first (head sortedTriples)
maxTriples \(=\) takeWhile
( triple -> first triple \(==\) maxLength) sortedTriples
linesWithNums =
map (\\(_,num,line) -> show num ++ ":" ++ line) maxTriples
result \(=\) unlines (reverse linesWithNums)
first \(\left(x,,_{-}\right)=x\)
Look! No conditional code!

\section*{longest, continued}
> longest "data \(\backslash n t o \backslash n t e s t \backslash n "\)
"l:data\n3:test\n"
Let's add a main that handles command-line args and does I/O:
\% cat longest.hs
import System.Environment (getArgs)
import Data.List (sort)
longest bytes = ...from previous slide...
main = do -- 'do' "sequences" its expressions args <- getArgs -- Get command line args as list bytes <- readFile (head args)
putStr (longest bytes)
Execution:
\% runghc longest /usr/share/dict/words
42702:electroencephalograph's

\section*{Larger example: printCoords}

\section*{printCoords}

Let's write a function to print one-based row and column coordinates for a grid with some number of rows and columns:
\(>\) printCoords 35
\((1,1)(1,2)(1,3)(1,4)(1,5)\)
\((2,1)(2,2)(2,3)(2,4)(2,5)\)
\((3,1)(3,2)(3,3)(3,4)(3,5)\)
How can we decompose this into functions?

\title{
printCoords, continued
}

Handy:
\(>\) :t repeat repeat :: a -> [a]
\(>\) take 5 (repeat 7 )
[7,7,7,7,7]
Next step?

\section*{printCoords, continued}

At hand:
\(>\) zip (repeat 3 ) [1..5]
\([(3,1),(3,2),(3,3),(3,4),(3,5)]\)
Let's use that zip as the core of a makeRow function:
makeRow numCols row = line -- NOTE order of arguments!
where
tuples = zip (repeat row) [1..numCols]
coordStrs = map show tuples
line = unwords coordStrs -- instead of concat, to get
-- blanks between coords.
Usage:
\(>\) makeRow 53
" \((3,1)(3,2)(3,3)(3,4)(3,5) "\)

\section*{printCoords, continued}

Let's use makeRow to write makeGrid:
makeGrid numRows numCols = map (makeRow numCols) [l..numRows]

Usage:
> makeGrid 35
\(["(1,1)(1,2)(1,3)(1,4)(1,5) ", "(2,1)(2,2)(2,3)(2,4)(2,5) "\),
" \((3,1)(3,2)(3,3)(3,4)(3,5)\) "]
Key technique:
The partial application makeRow numCols supplies the number of columns. The map applies that partial application to each row number in turn.

Ultimately, makeGrid 35 is equivalent to this:
[makeRow 5 1, makeRow 5 2, makeRow 5 3]

\section*{printCoords, continued}

Everything, including printCoords itself: (in printCoords.hs)
makeRow numCols row = line -- NOTE order of arguments! where
tuples = zip (repeat row) [1..numCols]
coordStrs = map show tuples
line = unwords coordStrs
makeGrid numRows numCols = map (makeRow numCols) [1..numRows]
printCoords numRows numCols =
putStr (unlines (makeGrid numRows numCols))
Usage:
> printCoords 35
\((1,1)(1,2)(1,3)(1,4)(1,5)\)
\((2,1)(2,2)(2,3)(2,4)(2,5)\)
\((3,1)(3,2)(3,3)(3,4)(3,5)\)

\section*{Composition}

\section*{Function composition}

Definition:
The composition of functions \(f\) and \(g\) is a function \(c\) such that ( \(\mathrm{c} x\) ) equals ( \(\mathrm{f}(\mathrm{g} \mathrm{x}\) ) )

Here is a function that applies two functions in turn: compose \(\mathrm{f} \mathrm{gx}=\mathrm{f}\) ( gx )

How many arguments does compose have?
Usage:
> compose init tail [1..5]
> compose (:[]) chr 42

\section*{Composition, continued}

The Prelude binds the symbolic variable dot to a "compose" function:
\(>\) :t (.)
(.) :: (b -> c) -> (a -> b) -> a -> c

Dot is an operator whose operands are functions. Its result is a function. \(>\) numwords \(=\) length. words
\(>\) numwords
<function>
> numwords "just testing this"
> map numwords ["a test", "up \& down", "done"]

\section*{Composition, continued}

At hand:
numwords \(=\) length. words
A model:

Usage:
> numwords "a b"
2

\section*{Composition, continued}

At hand:
numwords \(=\) length. words

What's the type of numwords?
\(>\) :t (.)
(.) :: (b->c) \(\quad->(\mathrm{a}->\mathrm{b}) \quad->\quad \mathrm{a} \quad->\quad \mathrm{c}\)
[t] -> Int String -> [String]
(length) (words)
> :t numwords

\section*{Composition, continued}

Problem: Using composition create a function that returns the next-to-last element in a list:
\(>\) ntl [1..5]
4
> ntl "abc"
'b'
Two solutions:

\section*{Composition, continued}

Problem: Using composition, create a function that reverses the words in a string:
> f "flip these words around"
"pilf eseht sdrow dnuora"
Hint: unwords is the inverse of words.
Solution:

\section*{Composition, continued}

Problem: Create a function to remove the digits from a string: > rmdigits "Thu Feb 6 19:13:34 MST 2014" "Thu Feb : : MST"

\author{
Solution:
}

\section*{Composition, continued}

Recalling the following, what's the type of f?
head :: [a] -> a
length :: [a] -> Int
words :: String -> [String]
show :: Show a => a -> String
f = head . show . length . words
Simple rule:
If a composition is valid, the type of the resulting function is based only on the input of the rightmost function and the output of the leftmost function.

What's the type of f ?

\section*{Composition, continued}

Consider the following:
\(>\mathrm{s}=\) "It's on!"
\(>\) map head (map show (map not (map isLetter s))) "FFTFTFFT"

Can we use composition to simplify it?

Question: Is \(\operatorname{map} \mathrm{f}(\operatorname{map} \mathrm{g} x\) )
always equivalent to the following?
map (f.g) x


CSC 372 Spring 2023, Haskell Slide 348

\section*{Point-free style}

Recall rmdigits:
> rmdigits "Thu Feb 6 19:13:34 MST 2014"
"Thu Feb :: MST"

What the difference between these two bindings for rmdigits? rmdigits \(s=\) filter (not . isDigit) \(s\)
rmdigits \(=\) filter (not. isDigit)
The latter version is said to be written in point-free style.
A point-free binding of a function f has NO parameters!

\section*{Point-free style, continued}

I think of point-free style as a natural result of fully grasping partial application and operations like composition.

Although it was nameless, we've already seen examples of point-free style, such as these:
```

nthOdd = (!!) [1,3..]
t2 = twice tail
numwords = length . words
ntl = head . tail . reverse

```

There's nothing too special about point-free style but it does save some visual clutter. It is commonly used.

The term "point-free" comes from topology, where a point-free function operates on points that are not specifically cited.

\section*{Point-free style, continued}

Problem: Using point-free style, bind len to a function that works like the Prelude's length.

Handy:
\(>\) :t const
const :: a -> b -> a
> const 1020
10
> const [l] "foo"
[1]
Solution:
len \(=\operatorname{sum} . \operatorname{map}(\) const 1\()\)
See also: Tacit programming on Wikipedia

\section*{Hocus-pocus with higher order functions}

What's this function doing?
f \(\mathrm{a}=\mathrm{g}\)
where
\[
g b=a+b
\]

Type?
f : : Num \(a=>a->a->a\)

Interaction:
\(>\mathrm{f}^{\prime}=\mathrm{f} 10\)
\(>\) f' 20
30
\(>\mathrm{f} 34\)
7

\section*{DIY Currying}

Fact:
Curried function definitions are really just syntactic sugar-they just save some clutter. They don't provide something we can't do without.

Compare these two completely equivalent declarations for add:
\[
\operatorname{add} \mathrm{x} y=x+y
\]


The result of the call add 5 is essentially this function:
\[
\text { add' } y=5+y
\]

The combination of the code for add' and the binding for \(\mathbf{x}\) is known as a closure. It contains what's needed for execution at a future time.

\section*{Sidebar: Syntactic sugar}

Peter Landin coined the term "syntactic sugar" in 1964.
"Syntactic sugar is syntax within a programming language that is designed to make things easier to read or to express. It makes the language 'sweeter' for human use: things can be expressed more clearly, more concisely, or in an alternative style that some may prefer."-Wikipedia, Feb '23

Some examples of syntactic sugar in Haskell:
- We can say | otherwise = ... instead of | True = ...
- We can say [1,3..10] instead of enumFromThenTo 1310
- We can say "A\#l" instead of ['A','\#','l']
- ...instead of 'A':'\#':'1':[]
"Syntactic sugar causes cancer of the semicolon." -Alan J. Perlis.

\section*{Sidebar, continued}

Is Java's for an example of syntactic sugar? for (int \(\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++\) )...

Three examples of syntactic sugar in C :
- "abc" is equivalent to the address of a char array initialized with \{'a', 'b', 'c', '\0'\}
- \(a[i]\) is equivalent to * \((a+i)\)
- \(\mathrm{p}->\mathrm{x}\) is equivalent to \((* \mathrm{p}) \cdot \mathrm{x}\)

Try Googling for "syntactic sugar in Python".

\section*{DIY currying in Python}
>>> def add(x): return lambda \(y\) : \(\mathrm{x}+\mathrm{y}\)
>>> add(3)(4)
7
\(\ggg \mathrm{f}=\operatorname{add}(5)\)
>>> type(f)
<type 'function'>
>>> list(map(f,[10,20,30]))
[15, 25, 35]
>>> list(map(add("*"),"a new test".split()))
['*a', '*new', '*test']

\section*{Another mystery function}

Here's another mystery function:
\(>\mathrm{mfxy}=\mathrm{fyx}\)
\(>\) :type m
m : : ( \(\mathrm{tl}->\mathrm{t} 2->\mathrm{t})->\mathrm{t} 2->\mathrm{tl}->\mathrm{t}\)
Can you devise a call to m ?

What is m doing?

At hand:
\[
m f x y=f y x
\]
\(m\) is actually a Prelude function named flip:
\(>\) :t flip
flip :: (a -> b -> c) -> b -> a -> c
Recall take :: Int -> [a] -> [a]
\(>\) flip take [1..10] 3
[1,2,3]
> ftake = flip take
\(>\) ftake [1..10] 3
[1,2,3]

\section*{flip, continued}

From assignment 3:
> splits "abcd"
[("a","bcd"),("ab","cd"),("abc","d")]
Some students have already noticed the Prelude's splitAt:
> splitAt 2 [10,20,30,40]
([10,20],[30,40])
Problem: Write a non-recursive version of splits.
Solution:

Spring '18 solution:

\section*{flip, continued}

At hand:
flip \(f x y=f y x\)
> map (flip take "Haskell") [1..7]
["H","Ha","Has","Hask","Haske","Haskel","Haskell"]

Problem: write a function that behaves like this:
\(>\mathrm{f}\) 'a'
["a","aa","aaa","aaaa","aaaaa",...infinitely...
Solution:

The \$ operator
\$ is the "application operator".
\(>\) :info (\$)
(\$) :: (a -> b) -> a -> b
infixr \(0 \$ \quad-\) right associative infix operator with lowest
-- possible precedence
The Prelude's source code for \(\$\) uses an infix syntax:
\(\mathrm{f} \$ \mathrm{x}=\mathrm{fx} \quad--\) Equivalent: (\$) \(\mathrm{f} x=\mathrm{f} \mathrm{x}\)
Usage:
> negate \(\$ 3+4\)
\(-7\)
What's this operator good for?

\section*{The \(\$\) operator, continued}

Because + has higher precedence than \$, the expression negate \(\$ 3+4\)
groups like this:
negate \$ (3+4)
Problem: Rewrite the following to take advantage of \$: filter (>3) (map length (words "up and down"))

Common mistake: Confusing \(\$\) with . (composition)!

\section*{Currying the uncurried}

Problem: We're given a function whose argument is a 2 -tuple but we wish it were curried so we could map a partial application of it.
```

$\mathrm{g}::$ (Int, Int) -> Int
$g(x, y)=x^{\wedge} 2+3 * x^{*} y+2 * y^{\wedge} 2$

```
\(>g(3,4)\)
77
Solution: Curry \(g\) with curry from the Prelude!
> map (curry g 3) [l..10]
[20,35,54,77,104,135,170,209,252,299]
Your problem: Write curry! (And don't peek ahead!)

At hand:

\section*{Currying the uncurried, continued}
\(>\mathrm{g}(3,4)\)
77
> map (curry g 3) [1..10]
[20,35,54,77,104,135,170,209,252,299]
Here's curry:

Usage:
\(>\mathrm{cg}=\) curry g
\(>\) :type cg
cg :: Int -> Int -> Int
\(>\operatorname{cg} 34\)
77

\section*{Currying the uncurried, continued}

At hand:
\[
\begin{aligned}
& \text { curry }::((a, b)->c)->a->b->c \\
& \text { curry f x } y=f(x, y)
\end{aligned}
\]
\(>\) map (curry g 3) [l..10]
[20,35,54,77,104,135,170,209,252,299]
The key: (curry g 3) is a partial application of curry!

\section*{Currying the uncurried, continued}

Let's get flip into the game!
> map (flip (curry g) 4) [1..5]
[45,60,77,96,117]

Note that
flip (curry g)
effectively turns
\[
g(x, y)=x^{\wedge} 2+3 * x^{*} y+2^{*} y^{\wedge} 2
\]
into
\[
g \mathrm{yx}=x^{\wedge} 2+3^{*} x^{*} y+2^{*} y^{\wedge} 2
\]

\section*{A curry for Python}

This Python function returns a curried version of its argument: def curry (f):
return lambda x : lambda y : \(\mathrm{f}(\mathrm{x}, \mathrm{y})\)
Usage:
>>> c_print = curry(print)
>>> pt = c_print("Testing") \# partial application of print \(\ggg \operatorname{pt}(7)\)
>>> pt("this")
>>> r2 = curry(pow)(2)
>>> r2(10)

\section*{uncurry}

There's an uncurry, too. Here's one way to write it: uncurry \(f(x, y)=f x y\)

Usage:
\(>\) uncurry add \((3,4)\)
7
> :t uncurry replicate
uncurry replicate :: (Int, a) -> [a]
> map (uncurry replicate) \$ zip [l..] "abcde" ["a","bb","ccc","dddd","eeeee"]

\section*{Folding}

\section*{Reduction}

We can reduce a list by a binary operator by inserting that operator between the elements in the list:
\[
\begin{aligned}
& {[1,2,3,4] \text { reduced by + is } 1+2+3+4} \\
& {[" \mathrm{a} ", " \mathrm{bc} ", \text { "def"] reduced by ++ is "a" ++ "bc" ++ "def" }}
\end{aligned}
\]

Imagine a function reduce that does reduction by an operator.
\(>\) reduce (+) [1,2,3,4]
> reduce (++) ["a","bc","def"]
\(>\) reduce max \([10,2,4]\)
-- think of 10 `max` 2 `max` 4

\section*{Reduction, continued}

At hand:
\(>\) reduce (+) [1,2,3,4]
10
An implementation of reduce:
reduce _ [] = error "emptyList"
reduce \([\mathrm{x}]=\mathrm{x}\)
reduce op (x:xs) = x `op` reduce op xs

\section*{foldl1 and foldr1}

In the Prelude there's no reduce but there is foldl1 and foldr1.
\(>\) foldl1 (+) [1..4]
> foldl1 max "maximum"
> foldl1 (/) [1,2,3]
0.16666666666666666 -- behaves like left associative: (1/2) / 3
> foldr1 (/) [1,2,3] -- behaves like right associative: 1 / (2 / 3)
1.5

The types of both foldl1 and foldr1 are (a -> a -> a) -> [a] -> a.

Another folding function is foldl (no 1). Let's compare the types of foldl1 and foldl:
foldl1 :: (a -> a -> a) -> [a] -> a
foldl :: (a -> b -> a) -> a -> [b] -> a
What's different between them? (No peeking-eyes on the screen!)
First difference: foldl requires one more argument:
\(>\) foldl (+) \(\underline{0}\) [1..10]
55
\(>\) foldl (+) 100 []
\(>\) foldl \(\underline{1}(+)[]\)
foldl1 vs. foldl, continued
Again, the types:
foldl1 :: (a -> a -> a) -> [a] -> a
foldl :: (a -> b -> a) -> a -> [b] -> a
Second difference:
foldl can fold a list of values into a different type! (This is BIG!)
Examples:
> foldl f1 0 ["just","a","test"]
3
-- folded strings into a number
> foldl f2 "stars: " [3,1,2]
"stars: \(\underbrace{* * * * * * " ~--~ f o l d e d ~ n u m b e r s ~ i n t o ~ a ~ s t r i n g ~}\)
> foldl f3 0 [(1,1),(2,3),(5,10)]
57

For reference:
foldl :: (a -> b -> a) -> a -> [b] -> a

Here's another view of the type: (acm_t stands for accumulator type) foldl :: (acm_t -> elem_t -> acm_t) -> acm_t -> [elem_t] -> acm_t
foldl takes three arguments:
1. A function that takes an accumulated value and an element value and produces a new accumulated value
2. An initial accumulated value
3. A list of elements

Recall:
> foldl f1 0 ["just","a","test"]
3
> foldl f2 "stars: " [3,1,2]
"stars: ******"

Recall:
> foldl f1 0 ["just","a","test"]
3

Here are the computations that foldl did to produce that result:
> f1 0 "just"
1
> f1 it "a"
2
> f1 it "test"
3

Let's do it in one expression, using backquotes to infix \(f 1\) :
> ((0 `f1` "just") `f1` "a") `f1` "test"
3

\section*{foldl, continued}

At hand:
> f1 0 "just"
1
> f1 it "a"
2
> f1 it "test"
3

Problem: Write a function \(f 1\) that behaves like above.
Starter:
f1 :: acm_t -> elem_t -> acm_t
f1 acm elem =

Congratulations! You just wrote a folding function!

Recall:
> foldl f2 "stars: " [3,1,2]
"stars: ******"

Here's what foldl does with f2 and the initial value, "stars: ":
> f2 "stars: " 3
"stars: ***"
\(>\) f2 it 1
"stars: ****"
\(>\) f2 it 2
"stars: ******"

Write f 2 , with this starter:
f2 :: acm_t -> elem_t -> acm_t
f2 acm elem \(=\)

Look! You wrote another folding function!

Folding abstracts a common pattern of computation:
A series of values contribute one-by-one to an accumulating result.
The challenge of folding is to envision a function that takes nothing but an accumulated value ( acm ) and a single list element (elem) and produces a result that reflects the contribution of elem to acm .
f2 acm elem \(=\) acm ++ replicate elem '*'
We then call foldl with (1) the folding function, (2) an appropriate initial value, and (3) a list of values.
foldl f2 "stars: " [3,1,2]
foldl orchestrates the computation by making a series of calls to the folding function.
> (("stars: " ‘£2` 3) `f2` 1) `f2` 2
"stars: ******"

SUPER IMPORTANT: A folding function NEVER sees the list!

Recall:
\(>\) foldl f3 \(0[(1,1),(2,3),(5,10)]\)
57

Here are the calls that foldl will make:
\(>\) f3 \(0(1,1)\)
1
\(>f 3\) it \((2,3)\)
7
\(>\) f3 it \((5,10)\)
57

Problem: write f3!

\section*{foldl, continued}

Remember that fold flo 0 [10,20,30]
is like
( \((0 \text { ‘f } 10)^{\prime} f\) ' 20\()^{\prime} \mathrm{f}\) ' 30

Here's an implementation of foldl:
foldl facm [] = acm
fold f acm (elem:elems) \(=\) foldl \(\mathrm{f}(\mathrm{acm}\) ` \(f\) ' elem) elems
We can implement foldl1 in terms of foldl: foldl1 f ( \(\mathrm{x} 1: \mathrm{xs}\) ) \(=\) foldl \(\mathrm{fx} 1 \times s\) foldl1 _ [] = error "emptyList"

\section*{A non-recursive countEO}

Let's use folding to implement our even/odd counter non-recursively.
\(>\) countEO [3,4,7,9]
\((1,3)\)
Often a good place to start on a folding is to figure out what the initial accumulator value should be. What should it be for countEO?

Given countEO \([3,4,7,9]\), what will be the calls to the folding function?
Problem: Finish the folding function f (evens, odds) elem

Problem: Write countEO as a foldl with \(f\)

\section*{Folds with anonymous functions}

Anonymous functions are often used for folds.
Here are three earlier folds with anonymous functions:
> foldl (\acm _ -> acm + 1) 0 ["just","a","test"]
3
> foldl (\acm elem -> acm ++ replicate elem '*') "stars: " [3,1,2]
"stars: ******"
> foldl (\acm (a,b) -> acm + a * b) 0 [(1,1),(2,3),(5,10)]
57

\section*{foldr}

The counterpart of foldl is foldr. Compare their meanings:

foldr f zero [e1, e2, ..., eN] == e1 `f (e2 `f ... (eN `f' zero)...)
"zero" represents the computation-specific initial accumulated value. Note that with foldl, zero is leftmost; but with foldr, zero is rightmost.

Their types, with long type variables:
foldl :: (acm -> val -> acm) -> acm -> [val] -> acm
foldr :: (val -> acm -> acm) -> acm -> [val] -> acm
Mnemonic aid:
foldII's folding function has the accumulator on the left.
foldr's folding function has the accumulator on the right.

\section*{foldr, continued}

Because cons (:) is right-associative, folds that produce lists are often done with foldr.

Imagine a function that keeps the odd numbers in a list:
> keepOdds [5,4,2,3]
[5,3]
Implementation, with foldr:
keepOdds list = foldr f [] list where
f elem acm
| odd elem = elem : acm
| otherwise = acm

What are the calls to the folding function?

\section*{filter and map with folds?}
keepOdds could have been defined using filter:
keepOdds = filter odd
Can we implement filter as a fold? filter predicate list = foldr f [] list where
f elem acm
| predicate elem = elem : acm
| otherwise = acm
Problem: Implement map as a fold

Is folding One Operation to Implement Them All?

\section*{paired with a fold}

Can a3's paired be done with a fold?
> paired "(())())"
True
Sure!
counter (-1)_=-1
counter total '(' = total + 1
counter total ')' = total - 1
counter total _ = total
paired \(\mathrm{s}=\) foldl counter \(0 \mathrm{~s}==0\)
paired is a fold with a simple wrapper, to test the result of the fold.

\section*{A progression of folds}

Let's do a progression of folds related to finding vowels in a string.
First, let's count vowels in a string with a fold:


Note: s/val/letter/g
> foldr (\letter acm@(n, vows) ->
if letter `elem` "aeiou" then ( \(\mathrm{n}+1\), letter:vows) else acm) (0,[]) "ate"
(2,"ae")

\section*{A progression of folds, continued}

Finally, let's write a function that produces a list of vowels and their positions:
> vowelPositions "Now for some Prolog!"
[('o', 1), ('o',5), ('o',9), ('e', ll), ('o', 15), ('o', 17)]
Solution:
vowelPositions s = reverse result
where (result, _) =
foldl (\acm@(vows, pos) letter -> if letter `elem` "aeiou" then ((letter,pos):vows,pos+l) else (vows, pos+1)) \(([], 0) \mathrm{s}\)

The foldl produces a 2-tuple whose first element is the result, a list, but in reverse order.

This is another function that's a fold with a wrapper, like paired.

\section*{map vs. filter vs. folding}
map:
transforms a list of values
length input \(==\) length output
filter:
selects values from a list
\(0<=\) length output <= length input
folding
Input: An initial accumulator value and a list of values
Output: A value of any type and complexity
True or false?
Any operation that processes a list can be expressed in a terms of a fold, perhaps with a simple wrapper.

\section*{We can fold a list of anythings into anything!}

Far-fetched foldings:
Refrigerators in Gould-Simpson to
((grams fat, grams protein, grams carbs), calories)
Keyboards in Gould-Simpson to
[("a", \# of "a" keys), ("b", \#), ..., ("\$", \#), ("CMD", \#)]
[Backpack] to
(\# pens, pounds of paper,
[(title, author, [page \#s with the word "computer")])
[Furniture]
to a structure of 3D vertices representing a convex hull that could hold any single piece of furniture.

\section*{In conclusion...}

\section*{If we had a whole semester...}

If we had a whole semester to study functional programming, here's what might be next:
- Algebraic types
- Exploration of lazy/non-strict evaluation
- Infinite data structures, such as \(\mathrm{x}=1: 2: \mathrm{x}\)
- Implications and benefits of referential transparency (which means that the value of a given expression is always the same).
- Monads (for representing sequential computations, including I/O)
- Functors (structures that can be mapped over)
- Monoids (a set of things with a binary operation over them)
- Zippers (a structure for traversing and updating another structure)
- And LOTS more!

\section*{Even if you never use Haskell again...}

Recursion and techniques with higher-order functions can be used in most languages. Some examples:

JavaScript, Python, PHP, all flavors of Lisp, and lots of others:
Functions are "first-class" values; anonymous functions are supported.
C
Pass a function pointer to a recursive function that traverses a tree and applies the function to each node.

C\#
Excellent support for functional programming with the language itself, and LINQ, too. There's F\#, too!

Java
Lambda expressions were added in Java 8, released in 2014.
OCaml
"an industrial strength programming language supporting functional, imperative and object-oriented styles" - OCaml.org http://www.ffconsultancy.com/languages/ray_tracer/comparison.html```

