
Icon
CSC 372, Spring 2023

The University of Arizona
William H. Mitchell

whm@cs
CSC 372 Spring 2023, Icon Slide 1



SL5 (SNOBOL Language 5) was developed at UA in the early 1970s.
• "SL5 had everything"
• An example of the second-system effect
• Never released
• Ralph thought, "There must be something simpler."

The Icon programming language
• That "simpler" thing
• Designed in mid/late 1970s by a team led by Ralph
• An example of expansion followed by contraction
• Two research focuses with Icon:

• High level programming language facilities
• Portable software

Icon implementation:
• First implemented in Ratfor (rational Fortran), to facilitate "porting"
• Later reimplemented in C, but with hundreds of lines of assembler

A little history

CSC 372 Spring 2023, Icon Slide 2



The development of Icon was supported by about a decade of funding by the 
National Science Foundation.
• Your grandparents paid for Icon.  

(Thanks!)
• Icon was placed in the public domain.

(Open source before it was cool!)
• Ralph himself mailed thousands of Icon tapes ("download"?)

Today:
• Classic Icon is alive and well.

• Unicon (Unified Extended Icon) has support for object-oriented 
programming, systems programming, and programming-in-the-large.  
Clint Jeffery leads Unicon development.

• Todd Proebsting and Gregg Townsend developed Goaldi ("goal-
directed") in 2015.

History, continued

CSC 372 Spring 2023, Icon Slide 3



Ralph wrote the following about SNOBOL4, but I see the same view 
manifested in Icon (perhaps minus the second point).

"A main philosophical view emerged in the early design efforts: ease of use.  
To us, this implied several design criteria:

1. Conciseness: the language should have a small vocabulary and express 
high-level operations with a minimum of verbiage.

2. Simplicity: the language should be easy to learn and use

3. Problem orientation: the language facilities should be phrased in terms 
of the operations needed to solve the problem, not the idiosyncrasies of 
computers.

4. Flexibility: users should be able to specify desired operations even if 
these operations are difficult to implement. [...]"

Design philosophy

CSC 372 Spring 2023, Icon Slide 4



Continuing...
"These objectives had several consequences, most of which can be 
characterized as a disregard for implementation problems and 
efficiency.  This was a conscious decision and was justified by our 
contention that human resources were more precious than machine 
resources, especially in research applications where SNOBOL was 
expected to be used."

How much more expensive were machine resources then (the 1960s) vs. 
now?

Design philosophy, continued

CSC 372 Spring 2023, Icon Slide 5



Compared to today, computing resources were very limited when Icon was 
developed.

The Ratfor implementation of Icon was developed on PDP-10 mainframe:
• About 1.5 MIPS
• Maybe a megabyte or two of virtual address space
• Campus-wide timesharing system

The C implementation of Icon was developed on a PDP-11/70 owned by 
the CS department:
• Perhaps 1 MIP
• 64 kbytes for program code / 64 kbytes for data ("split I/D")

Icon's implementation was small and efficient by nature due to these limits.

Efficiency by virtue of limited resources

CSC 372 Spring 2023, Icon Slide 6



% /cs/www/classes/cs372/spring23/bin/ie -nn
Icon Evaluator, Version 1.1, ? for help
][ 3 + 4

][ 3 + "4.5"

][ 3 || "4.5"

A little Icon by observation

CSC 372 Spring 2023, Icon Slide 7

> (optab icon + IRS)
+ | I  R  S
---+---------
I | I  R  I
R | R  R  R
S | I  R  I

> (optab icon "||" IRS)
|| | I  R  S
---+---------
I | S  S  S
R | S  S  S
S | S  S  S



][ &pi
r := 3.141592654  (real)

][ &dateline
r := "Friday, April 28, 2023  12:32 pm"  (string)

][ type(r)
r := "string"  (string)

][ type(type)
r := "procedure"  (string)

Icon by observation, continued

CSC 372 Spring 2023, Icon Slide 8



][ s := "testing"
r := "testing"  (string)

][ *s

][ s[-1]

][ s[1]

Icon by observation, continued

CSC 372 Spring 2023, Icon Slide 9



What should the index of the first element of a string/array/list be?

Let's vote!
Zero?
One?
Based on its declaration? (Pascal: var a: array[low..high] of int)

Ralph said something like, "People count from one."

In a linear algebra text, what's the upper-leftmost element in a matrix a?

FORTRAN, COBOL, APL, PL/I, SNOBOL4, Algol 68, Smalltalk and many 
other early languages used one-based indexing.

How did we end up with this zero-based madness, including abominations 
like "zeroth"? (Don't peek!)

CSC 372 Spring 2023, Icon Slide 10

Sidebar: Zero- vs. one-based indexing 



"Array subscripts start at zero in C (rather than at 1 as in Fortran or PL/I), ..."
—First edition of The C Programming Language" by K&R, p. 20

Why does zero-based indexing make sense in C?

When you first learned to program, did you think zero-based indexing was 
odd?

CSC 372 Spring 2023, Icon Slide 11

Sidebar, continued



In Icon, positions in a string are between characters and run in both directions.
1   2   3   4   5   6   7   8
|   |   |   |   |   |   |   |

t   o   o   l   k   i   t
|   |   |   |   |   |   |   |

-7  -6  -5  -4  -3  -2  -1   0

Several forms of subscripting are provided.
][ s[3:-1]

][ s[1+:4]

s[i] is a shorthand for s[i:i+1]
][ s[5]

What problem does between-based positioning avoid?
It avoids the trouble with "to" vs. "through", "inclusive" vs. "exclusive", etc.

String subscripting 

CSC 372 Spring 2023, Icon Slide 12

What's the Python analog for this?
][ s[5:0]

Observations?

(s := "toolkit")



Any substring can be the target of an assignment.
][ s := "mudge"

][ s[1] := "gr"

][ s

][ s[1:1] := "be"

][ s

CSC 372 Spring 2023, Icon Slide 13

Strings are mutable!

][ s[-1] := "ingly"

][ s

][ s[4:0] := ""

][ s



Assignment of string values does not cause sharing of data:
][ x := "test"

r := "test"  (string)

][ y := x

][ x[1] := "p"

][ x
r := "pest"  (string)

][ y
r := "test"  (string)

Strings have "value semantics"

CSC 372 Spring 2023, Icon Slide 14



][ x := [10, [20], "thirty"]
r := L1:[10,L2:[20],"thirty"]  (list)

][ push(x, 5)

][ x[2:4]
r := L1:[10,L2:[20]]  (list)

][ *(x ||| x)

][ put(x, x)
r := L1:[5,10,L2:[20],"thirty",L1]  (list)

In contrast to strings, lists have reference semantics.

Lists, by observation

CSC 372 Spring 2023, Icon Slide 15



][ 'tim korb'

][ &lcase -- 'aeiou'

][ split("(520) 621-4632", '- ()')

][ split("Friday, 04/28/23", ~&digits)

][ *(&letters ++ &digits)

Character sets, by observation

CSC 372 Spring 2023, Icon Slide 16



][ t := table("Go fish!")
r := T1:[]  (table)

][ t["one"] := 1

][ t['two'] := 2

][ t
r := T1:["one"->1,'otw'->2]  (table)

][ t["three"]
r := "Go fish!"  (string)

][ t[t] := t
r := T1:["one"->1,'otw'->2,T1->T1]  (table)

Tables, by observation

CSC 372 Spring 2023, Icon Slide 17



A cornerstone of Icon:
An expression can fail to produce a result.

A simple example is an out of bounds string subscript:
][ s := "testing"

][ s[50]
Failure

We say, "s[50] fails"—it produces no value.

If an expression produces a value it is said to have succeeded. 

When an expression is evaluated it either succeeds or fails.

Failure

CSC 372 Spring 2023, Icon Slide 18



An important rule:
An operation is performed only if a value is present for all operands.  If due 
to failure a value is not present for all operands, the operation fails.

Another way to say it:
If evaluation of an operand fails, the operation fails.  And, failure propagates.

][ s := "testing"

][ "x" || s[50]
Failure

][ reverse("x" || s[50])
Failure

][ s := reverse("x" || s[50])  # s is unchanged
Failure

Failure, continued

When working in Icon, 
unexpected failure is the 

root of madness.

CSC 372 Spring 2023, Icon Slide 19



Here's a string that represents a hierarchical data structure:
"/a:b/apple:orange/10:2:4/xyz/"

Major elements are delimited by slashes; minor elements are delimited by colons.

Imagine an Icon procedure to get an element given a major and minor:
][ extract("/a:b/apple:orange/10:2:4/xyz/", 2, 1)

][ extract("/a:b/apple:orange/10:2:4/xyz/", 3, 4)

Implementation:
procedure extract(s, m, n)

return split(split(s, '/')[m], ':')[n]
end

How does extract make use of failure?

Failure, continued

CSC 372 Spring 2023, Icon Slide 20



Icon has several traditionally-named control structures, but they are driven 
by success and failure.  Here's a loop that reads lines and prints them:

while line := read() do
write(line)

Here's a more concise version:
while write(read())

What causes termination of the loop?
1. read() fails at end of file.  
2. That failure propagates outward, causing the write() to fail.
3. The while terminates because its control expression, write(...), 

failed.

The while expression

CSC 372 Spring 2023, Icon Slide 21



In most languages, evaluation of an expression produces either a result or 
an exception.

We've seen that Icon expressions can fail, producing no result.

Some expressions in Icon are generators, and can produce many results.

Here's a generator:
1 to 3

1 to 3 has the result sequence {1, 2, 3}.

Here are two more generators.  What are their result sequences?
!"abc"

10 | 2 | 4

Generators

CSC 372 Spring 2023, Icon Slide 22



The every control structure drives a generator to failure, making it 
produce all its results.  Example:

every i := 1 to 5 do
write(repl("*", i))

Output:
*
**
***
****
*****

Can you make it more concise?

Generator basics, continued

CSC 372 Spring 2023, Icon Slide 23



Speculate: What does the following program do?

procedure main()
lines := []
every push(lines, !&input)
every write(!lines)

end

Execution:

% seq 3 | icon tac.icn
3
2
1
%

"bang", continued

CSC 372 Spring 2023, Icon Slide 24



An expression may contain any number of generators:
][ a := !"cat" & b := !"toc" & a ~== b & write(a, "-", b) & 1 = 0
c-t
c-o
a-t
a-o
a-c
t-o
t-c
Failure

Generators are resumed in a LIFO manner: the generator that most 
recently produced a result is the first one resumed.

Does the example above remind you of anything?

Multiple generators

CSC 372 Spring 2023, Icon Slide 25



Here's a program that counts vowels on standard input:
$ echo just testing | icon vowcount.icn
3 vowels

Implementation, with multiple generators:
procedure main()

vowels := 0
every !!&input == !"aeiou" do

vowels +:= 1
write(vowels, " vowels")

end

Key point:
In Icon, any expression in any context can be a generator.

Ralph would say, "completely and perfectly general"
Contrast:

Some languages provide "generators" but they can be only be used in 
certain contexts, such as a "for" statement.

Multiple generators, continued

CSC 372 Spring 2023, Icon Slide 26



Problem: In chess, how can N queens be placed on an NxN board such 
that no queen is attacking any other?

Here's a 5x5 solution:

CSC 372 Spring 2023, Icon Slide 27

The N queens problem

---------------------
|   |   |   |   | Q |
---------------------
|   |   | Q |   |   |
---------------------
| Q |   |   |   |   |
---------------------
|   |   |   | Q |   |
---------------------
|   | Q |   |   |   |
---------------------



An Icon solution by Steve Wampler is in spring23/icon/queens.icn. 
This is the placement procedure, called with q(1) initially.

procedure q(c)
static up, down, rows
initial {

up := list(2*n-1, 0)
down := list(2*n-1, 0)
rows := list(n, 0)
}

every 0 = rows[r := 1 to n] = up[n+r-c] = down[r+c-1] &
rows[r] <- up[n+r-c] <- down[r+c-1] <- 1 do {

solution[c] := r # record placement.
if c = n then show()
else q(c + 1) # try to place next queen.
}

end

CSC 372 Spring 2023, Icon Slide 28

N queens, continued

Try it: icon queens.icn -n 10



SNOBOL4 is really two languages in one:
• A general purpose programming language
• A pattern matching language

Languages with support for regular expressions are similarly divided:
• A general purpose programming language
• A regular expression facility

A design goal for Icon was to integrate string pattern matching with regular 
computation:
• Match a little, compute a little, match a little, compute a little, etc.

The end result:
• A handful of string scanning procedures that can be used in conjunction 

with Icon's other facilities to achieve a seamless interleaving of string 
pattern matching with regular computation.

• Unrestricted languages ("type(0)") can be recognized with scanning.

String scanning

CSC 372 Spring 2023, Icon Slide 29



Imagine an Icon procedure that parses a time and returns a list of the pieces:
][ parse_time("4:24pm")

r := ["4","24","pm"]  (list)

Invalid or omitted elements result in failure:
][ parse_time("4:24")
Failure

][ parse_time("12:60pm")
Failure

][ parse_time("1o:45xm")
Failure

][ parse_time("3:45pm.")
Failure

CSC 372 Spring 2023, Icon Slide 30

parse_time



Wanted:
][ parse_time("12:34pm")

r := L1:["12","34","pm"]  (list)

Here's a solution with string scanning:
procedure parse_time(s)

s ? {
hours := tab(many(&digits)) &
1 <= hours <= 12 &
=":" &
mins := tab(many(&digits)) &
0 <= mins < 60  &
ampm := =("am"|"pm") &
pos(0)
} &

return [hours, mins, ampm]
end

CSC 372 Spring 2023, Icon Slide 31



Imagine a procedure that sums the integers it finds in a string:
][ sumnums("values: 10, 20 and 30")

r := 60  (integer)

Solution:
procedure sumnums(s)

sum := 0
s ? while tab(upto(&digits)) do

sum +:= tab(many(&digits))
return sum

end

A goal of string scanning was to be able to interleave scanning operations 
with ordinary computation.  Does sumnums exemplify that?

sumnums.icn

CSC 372 Spring 2023, Icon Slide 32



There is a set of procedures that produce positions to be used in 
conjunction with tab(n):

many(cs) produces position after run of characters in cs
upto(cs) generates positions of characters in cs
find(s) generates positions of s
match(s) produces position after s, if s is next
any(cs) produces position after a character in cs
bal(s, cs1, cs2, cs3)

similar to upto(cs), but used with "balanced" strings.

There is one other string scanning procedure:
pos(n) tests if &pos is equivalent to n

The string scanning facility consists of only the above procedures, 
move(n), the ? scanning operator, and the &pos and &subject keywords.  
Nothing more.

Summary of string scanning in Icon

CSC 372 Spring 2023, Icon Slide 33



Ultimately, Icon's string scanning facility was a disappointment.
• Small and powerful
• Implementation of scanning itself is nearly trivial
• Did achieve interleaving of matching and computation
• But non-trivial techniques and idioms must be learned
• Some pitfalls
• For me, first version often not correct

Is there a sweet spot with primitives and techniques?
Regular expressions:
• Lots of primitives
• Relatively few techniques

Icon's string scanning:
• Very few primitives
• Many techniques

SNOBOL4 patterns:
• A few primitives
• A few techniques

Disappointment

CSC 372 Spring 2023, Icon Slide 34



Facilities for graphical programming in Icon evolved in the period 1990-
1994.

A philosophy of Icon is to insulate the programmer from details and place 
the burden on the language implementation.  The graphics facilities were 
designed with same philosophy.

Icon's graphical facilities are built on the X Window System on UNIX 
machines.  On Microsoft Windows platforms the facilities are built on the 
Windows API.

Graphics in Icon

CSC 372 Spring 2023, Icon Slide 35



Here is a program that randomly draws points: (blackout.icn)

link graphics

$define Height 500  # symbolic constants
$define Width 500 #  via preprocessor

procedure main() # blackout.icn
WOpen("size=" || Width ||","||Height)

repeat {
DrawPoint(?Width-1, ?Height-1)
}

end

Speculate: How long will it take it to black out every single point?

Graphics, continued

CSC 372 Spring 2023, Icon Slide 36



$define Width 500
$define Height 500
procedure main() # g3.icn

WOpen("size="||Width||","||Height, "drawop=reverse")

x := ?Width; y := ?Height; r := 50
repeat {

DrawCircle(x, y, r)
hit := &null
every 1 to 80 do {

WDelay(10)
while *Pending() > 0 do {

if Event()=== &lpress then {
if sqrt((x - &x)^2 + (y - &y)^2) < r then {

FillCircle(x, y, r)
WDelay(500)
FillCircle(x, y, r)
hit := 1
break break
}}}}

DrawCircle(x,y,r)
if \hit then r *:= .9 else r *:= 1.10
x := ?Width; y := ?Height
}

end # targetgame.icn

Simple game

This program draws a circular target at  
random location  If the player clicks inside 
the target within 800ms, the radius shrinks 
by 10%.  If not, the radius grows by 10%.

CSC 372 Spring 2023, Icon Slide 37



Steve Kobes wrote this very elegant curve editor in 2003:
procedure main()

WOpen("height=500", "width=700", "label=Curve Editor")
pts := []
repeat case Event() of {

&lpress: if not(i := nearpt(&x, &y, pts)) then
{ pts |||:= [&x, &y]; draw(pts)}

&ldrag: if \i then { pts[i] := &x; pts[i + 1] := &y; draw(pts) }
!"Qq": break

}
end

procedure draw(pts)
EraseArea()
DrawCurve!(pts ||| [pts[1], pts[2]])
every i := 1 to *pts by 2 do

FillCircle(pts[i], pts[i + 1], 3)
end

procedure nearpt(x, y, pts)
every i := 1 to *pts by 2 do

if abs(x - pts[i]) < 4 & abs(y - pts[i + 1]) < 4 then return i
end

Kobes' Curve Editor

CSC 372 Spring 2023, Icon Slide 38



I'd like you to know:

• A three-word description of Icon: "Python meets Prolog"

• Icon strings are mutable, but references aren't shared.
I say that this is The Right Way to do strings.

• An Icon expression can fail, and produce no result.  Failure propagates.

• Icon has generators, which can produce more than one result.

• A generator can appear anywhere, not just in particular constructs.

• Icon's string scanning facility interleaves string analysis operations 
with regular computation.

Icon takeaways

CSC 372 Spring 2023, Icon Slide 39



cs.arizona.edu/icon is the Icon home page.

cs.arizona.edu/~whm/451 has the materials from a full-semester course I taught on 
Icon in 2003.

On the Icon home page, under "Books About Icon", I recommend three:
The Icon Programming Language, 3rd edition

A comprehensive treatment of the language, with numerous examples of 
non-numerical applications.

The Implementation of the Icon Programming Language
For a time, Ralph taught a course that covered the implementation of Icon's 
run-time system.  This book rose out of that course.  If you're interested in 
the implementation of dynamic languages, this book is definitely worth a 
look.

Graphics Programming in Icon
Some parts are dated but lots of interesting stuff, like Lindenmayer systems 
and a caricature algorithm.

unicon.org is the home page for Unicon.

Icon resources

CSC 372 Spring 2023, Icon Slide 40


