
Racket
CSC 372, Spring 2023

The University of Arizona
William H. Mitchell

whm@cs
CSC 372 Spring 2023, Racket Slide 1

"Far better is it to dare mighty things, to win glorious
triumphs, even though checkered by failure, than to
take rank with those poor spirits who neither enjoy
much nor suffer much because they live in the gray
twilight that knows neither victory nor defeat."

—Theodore Roosevelt

CSC 372 Spring 2023, Racket Slide 2

Note: Racket is a dialect of Scheme. Scheme is a dialect of Lisp.

"Lisp is worth learning for a different reason—the profound enlightenment experience you
will have when you finally get it. That experience will make you a better programmer for
the rest of your days, even if you never actually use Lisp itself a lot." —Eric Raymond.

"Most people who graduate with CS degrees don't understand the significance of
Lisp. Lisp is the most important idea in computer science." —Alan Kay

"the greatest single programming language ever designed"—Alan Kay, on Lisp

"SQL, Lisp, and Haskell are the only programming languages that I've seen where one
spends more time thinking than typing."—Philip Greenspun

paulgraham.com/quotes.html has an interesting collection of quotes about Lisp.

What they say about Lisp...

CSC 372 Spring 2023, Racket Slide 3

http://www.paulgraham.com/quotes.html

"A programming system called LISP (for LISt Processor) has been developed for the
IBM 704 computer by the Artificial Intelligence group at M.I.T. The system was
designed to facilitate experiments with a proposed system called the Advice Taker,
whereby a machine could be instructed to handle declarative as well as imperative
sentences and could exhibit “common sense” in carrying out its instructions."

Recursive Functions of Symbolic Expressions and Their Computation by Machine, Part I
John McCarthy, April 1960

Initial ideas for Lisp were formulated in 1956-1958 and some were implemented in
FLPL (FORTRAN-based List Processing Language).

Lisp is the second-oldest surviving language, after Fortran.

Origins of Lisp

CSC 372 Spring 2023, Racket Slide 4

http://jmc.stanford.edu/articles/recursive/recursive.pdf

For many years Lisp was the language for artificial intelligence research.

"Lisp machines commercially pioneered many now-commonplace technologies,
including effective garbage collection, laser printing, windowing systems, computer
mice, high-resolution bit-mapped raster graphics, computer graphic rendering, ..."—W

Two of many historically prominent Lisp systems:
"MYCIN was an early backward chaining expert system that used artificial
intelligence to identify bacteria causing severe infections, such as bacteremia and
meningitis, and to recommend antibiotics, ..."—W

'Macsyma "Project MAC's SYmbolic MAnipulator") is one of the oldest general-
purpose computer algebra systems still in wide use. It was originally developed from
1968 to 1982 at MIT's Project MAC.'—W

There have been two "AI Winters": 1974–1980 and 1987–1993

Assorted history

CSC 372 Spring 2023, Racket Slide 5

The Wikipedia page on Lisp lists twenty "significant" dialects of Lisp. Jon Pearce's
Scheme book has this diagram of ancestry:

The Wikipedia page on GNU Guile has a timeline of Lisp dialects.

Lots of Lisps!

CSC 372 Spring 2023, Racket Slide 6

https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/GNU_Guile

"Scheme was created during the 1970s at the MIT AI Lab and released by its developers,
Guy L. Steele and Gerald Jay Sussman via a series of memos now known as the Lambda
Papers."—W

The first Lambda Paper, December 1975:
Scheme: An Interpreter For Extended Lambda Calculus.

Inspired by ACTORS, we have implemented an interpreter for a LISP-like
language, SCHEME, based on the lambda calculus, but extended for side effects,
multiprocessing, and process synchronization.

Allegedly, they first called it "Schemer", but the ITS operating system limited file names
to six-letter components.

Scheme

CSC 372 Spring 2023, Racket Slide 7

The Revised6 Report on the Algorithmic Language Scheme [R6RS] says,
Programming languages should be designed not by piling feature on top of feature,
but by removing the weaknesses and restrictions that make additional features
appear necessary. Scheme demonstrates that a very small number of rules for
forming expressions, with no restrictions on how they are composed, suffice to form
a practical and efficient programming language that is flexible enough to support
most of the major programming paradigms in use today.

"The primary Lisp dialects are Common Lisp and Scheme. Scheme and Clojure
are from the same family of dialects called lisp-1, and Common Lisp is a lisp-2
dialect." [7L7W]

"Scheme is the UnCommon Lisp."

scheme.org is the Scheme home page

Scheme, continued

CSC 372 Spring 2023, Racket Slide 8

https://www.scheme.org/

The Racket Guide says,
Depending on how you look at it, Racket is
• a programming language—a dialect of Lisp and a descendant of Scheme;
• a family of programming languages—variants of Racket, and more; or
• a set of tools—for using a family of programming languages.

Racket was originally called PLT Scheme

"The Racket programming language is the descendant of a long line of languages from
the Scheme dialect of Lisp. It’s probably the purest contemporary representation of the
Lisp family and has amazing community support. Like Haskell, Racket has a relatively
small commercial community compared to those who use the language to explore
programming language theory."—Get Programming with Haskell

racket-lang.org is the Racket home page

Racket

CSC 372 Spring 2023, Racket Slide 9

https://racket-lang.org/

docs.racket-lang.org is Racket documentation and has two primary documents:
• The Racket Guide, docs.racket-lang.org/guide/index.html [RG]
• The Racket Reference, https://docs.racket-lang.org/reference/index.html [RR]

I've learned a lot from these:
The Scheme Programming Language, 4th ed. by R. Kent Dybvig [TSPL]
An Introduction to Scheme by Jerry D. Smith (archive.org)
Teach Yourself Scheme in Fixnum Days by Dorai Sitaram (github.com)
Realm of Racket by Barski, Horn, et al. (learning.orielly.com)
Beautiful Racket by Matthew Butterick [BR]

Good "explainers", like beautifulracket.com/explainer/lang-line.html
Structure and Interpretation of Computer Programs 2nd ed. by Abelson and Sussman

Used in intro CS class at MIT for years. Many study groups of professional
programmers have formed to study this book. [SICP]

Dr. Collberg really likes The Little Schemer by Daniel P. Friedman.
I like it less than he does, but some enjoy its dialog-based approach.

Racket Resources

CSC 372 Spring 2023, Racket Slide 10

https://docs.racket-lang.org/
https://docs.racket-lang.org/guide/index.html
https://docs.racket-lang.org/reference/index.html
https://www.scheme.com/tspl4/
https://archive.org/details/introductiontosc0000smit
https://ds26gte.github.io/tyscheme
https://learning.oreilly.com/library/view/realm-of-racket/9781457185120/
https://beautifulracket.com/
https://beautifulracket.com/explainer/lang-line.html
https://en.wikipedia.org/wiki/Structure_and_Interpretation_of_Computer_Programs

Running Racket

CSC 372 Spring 2023, Racket Slide 11

One way to bring up a REPL for Racket is to install Racket on your machine and use
Dr. Racket there. (download.racket-lang.org)

• Simple IDE with a good editor for Racket code
• Allows use of some graphics procedures
• Be sure to have "#lang racket" in the definitions window.
• control-R (cmd-R) to bring up the REPL window
• ESC-p/n to recall previous/next expression

Racket REPLs

CSC 372 Spring 2023, Racket Slide 12

https://download.racket-lang.org/

Alternatively, you can run racket on the command-line, either on lectura or on your
machine, after installing Racket.

• Much like working with ghci
• A better REPL (XREPL) than Dr. Racket
• Mostly what I use
• An alias for the Mac: alias rk="/Applications/Racket\ v8.5/bin/racket"
• "it" is ^

Here's lectura:
% racket
Welcome to Racket v8.5 [cs].
> "hello"
"hello"
> 3.4
3.4
>

Racket REPLs, continued

CSC 372 Spring 2023, Racket Slide 13

Working with Racket with VS Code was, and
still is, on my TODO list!

Please share what you know/learn about VS Code
and Racket on Piazza!

Let's explore Racket with some expressions that are literals. Here are some numbers:
> 7
7

> 3.400
3.4

> 3e3
3000.0

> 25/100 ; No spaces!
1/4

> 3.4-2i
3.4-2.0i ; Complex number

Literals

CSC 372 Spring 2023, Racket Slide 14

More:
> "abc"
"abc" ; string

> #\R
#\R ; character

> 'abc
'abc ; symbol

Literals are considered to be expressions.

Literals, continued

CSC 372 Spring 2023, Racket Slide 15

More:
> #t
#t ; boolean

> #F
#f

Here's an interesting REPL behavior:
> 7 "testing" #\$
7
"testing"
#\$

Literals

CSC 372 Spring 2023, Racket Slide 16

Racket has thousands of built-in procedures that are bound to identifiers.
> string-length
#<procedure:string-length>

> +
#<procedure:+>

> integer->char
#<procedure:integer->char>

More:
string-append
zero?
vector-set!
system-language+country
internal-definition-context-splice-binding-identifier

Procedures

CSC 372 Spring 2023, Racket Slide 17

A curio:
> - 3
#<procedure:->
3

> -3
-3

A procedure can be applied to arguments with a prefix notation:
> (+ 3 4)
7

> (< 3 7)
#t

> (string-length "testing")
7

> (integer->char 65)
#\A

> (string-ci=? "AbC" "aBc")
#t

The procedure applications above are expressions, too.

Procedure applications

CSC 372 Spring 2023, Racket Slide 18

Many Racket procedures are variadic―they can accept any number of arguments:
> (+ 3 1 5 7 2)
18

> (= 3 3 5)
#f

> (*)
1

> (> 1/2 1/4 1/8 1/16)
#t

> (string-append "a" "bc" "def")
"abcdef"

Procedure applications, continued

CSC 372 Spring 2023, Racket Slide 19

Procedure applications can nest:
> (+ (* 3 2 4) (/ 5 4.0))
25.25

> (> (+ (* 3 2 4) (/ 5 4.0)) 10)
#t

> (sqrt (+ (* 3 3) (* 4 4)))
5

We haven't seen variables yet, but...
(play (vector-ref alarm-sounds

(random (min (vector-length alarm-sounds)
(add1 (quotient n 120)))))) ; barzilay.org/misc/alarm

A little fun: https://docs.racket-lang.org/oops

Procedure applications, continued

CSC 372 Spring 2023, Racket Slide 20

https://docs.racket-lang.org/oops

Effectively, Racket does not have operators in any conventional sense.

Identifiers, some with symbolic names (e.g., + and >=) are bound to procedure values.

Operator precedence and associativity are simply not concepts in Racket's world!

The order of operations is entirely determined by how we nest expressions.

Python:
x*y**3 - 1 / (1.3 * (x - y**z))

Racket:
(- (* x (expt y 3)) (/ 1 (* 1.3 (- x (expt y z)))))

Is there a gain to compensate for operators being lost?

No operators!

CSC 372 Spring 2023, Racket Slide 21

In addition to white space, what characters do most languages let us use superfluously?
Parentheses!

Not so in Racket!
> (+ 3 (4))
application: not a procedure;
expected a procedure that can be applied to arguments
given: 4

> ((+ 3 4))
application: not a procedure;
expected a procedure that can be applied to arguments
given: 7

No superfluousity!

CSC 372 Spring 2023, Racket Slide 22

For two assignment points of extra credit:

1. Using either Dr. Racket on your machine, or racket on lectura, try ten Racket
expressions with some degree of variety, not simply the ones here in the slides.

2. Capture the interaction (both expressions and results) and put it in a plain text file,
eca3.txt. No need for your name, NetID, etc. in the file. No need to edit out errors.

3. On lectura, turn in eca3.txt with the following command:
% turnin 372-eca3 eca3.txt

Due: At the start of the next lecture after the lecture in which this slide is presented.

Extra Credit!

CSC 372 Spring 2023, Racket Slide 23

What patterns do we see in Racket procedure names?
*
<=
char->integer
equal?
hash-clear!
length
let*
procedure?
read-char
string->bytes/utf-8
string->list
string-ref
string?
vector-set!
zero?

Naming conventions for procedures

CSC 372 Spring 2023, Racket Slide 24

Some search results via docs.racket-lang.org/search/index.html:
Searches of Racket docs

CSC 372 Spring 2023, Racket Slide 25

https://docs.racket-lang.org/search/index.html

Procedure documentation

CSC 372 Spring 2023, Racket Slide 26

In XREPL on your machine, you can
show this page with:
> ,doc string-length

You can see a few things with:
> ,desc string-length

docs.racket-lang.org/reference/strings.html

https://docs.racket-lang.org/reference/strings.html

The directory spring23/rk has Racket code and also some Bash scripts.

In your 372 Racket directories (like csc372/assn7) make a symlink to rk:
ln -s /cs/www/classes/cs372/spring23/rk . # "dot" is optional

Once that's done, you can use rk/fp ("findproc") to search for procedures whose names
contain a specified string:

% rk/fp "->list"
...
dict->list
file->list
hash->list
...

LHtLaL: rk/fp is a Racket program I wrote to help myself explore Racket.

There's also ,ap (apropos) in XREPL.

The rk/fp script

CSC 372 Spring 2023, Racket Slide 27

More:
% rk/fp | wc –l
2566

% rk/fp | grep "[A-Z]"
%

More on simple types

CSC 372 Spring 2023, Racket Slide 28

Numbers in Racket are highly refined. Let's see what 3 is:
> (number? 3)
#t
> (integer? 3)
#t
> (rational? 3)
#t
> (real? 3)
#t
> (complex? 3)
#t
> (exact? 3)
#t

Numbers

CSC 372 Spring 2023, Racket Slide 29

Racket is said to have a numerical tower:
integer?
rational?
real?
complex?
number?

Example: Any value for which real? produces
#t will also get #t from complex? and number?

> (integer? 1/3)
#f
> (real? 1/3)
#t
> (exact? 1/3)
#t
> (real? 3.4)
#t
> (exact? 3.4)
#f
> (inexact? 3.4)
#t

Numbers, continued

CSC 372 Spring 2023, Racket Slide 30

More...
> (exact? (+ 4 1/5))
#t
> (exact? (+ 4 0.2))
#f
> (exact->inexact 7/3)
2.3333333333333335

> (inexact->exact 0.5)
1/2

> (inexact->exact 0.6)
5404319552844595/9007199254740992

> (< 1/10 0.1)
#t

Numbers, continued

CSC 372 Spring 2023, Racket Slide 31

A little division:
> (/ 3 4)
3/4

> (/ 3 4.0)
0.75

> (quotient 17 5)
3

> (remainder 17 5)
2

> (quotient/remainder 17 5)
3
2
(Racket procedures can return multiple values!)

Numbers, continued

CSC 372 Spring 2023, Racket Slide 32

Racket has a type for individual characters.
> (char? #\R)
#t

> #\U1F642
#\! ; character specified with Unicode code point

> (integer->char 38)
#\&

> (char->integer #\)
32

More characters: #\\ #\" #\space #\tab #\newline #\n

Characters

CSC 372 Spring 2023, Racket Slide 33

Some representative tests and conversions:
> (char-upper-case? #\A)
#t

> (char<? #\return #\+ #\7 #\A #\a)
#t

> (char-general-category #\$)
'sc ; Unicode general category (symbol, currency)

> (char-downcase #\A)
#\a

Characters, continued

CSC 372 Spring 2023, Racket Slide 34

"A string is a fixed-length array of characters." [RR]
> (string? "testing")
#t

> (string #\A #\- #\U5A)
"A-Z"

> (string->number "1101" 3)
37

> (make-string 5)
"\u0000\u0000\u0000\u0000\u0000"

> (make-string 5 (string-ref (string-append "just" "testing") 5))
"eeeee"

Strings

CSC 372 Spring 2023, Racket Slide 35

A few more procedures:
> (substring "abcdefg" 2 5)
"cde"

> (string-contains? "tint" "in")
#t

> (string-suffix? "testing" "ing")
#t

> (string-replace "tethered" "e" "<e>")
"t<e>th<e>r<e>d"

Strings, continued

CSC 372 Spring 2023, Racket Slide 36

A string can be either mutable or immutable. Various rules and procedures are involved.
> (immutable? "abc")
#t

> (immutable? (make-string 7 #\x))
#f

> (immutable? (substring (make-string 7) 3))
#f

Speculate: Is there a mutable? procedure?
Nope!

Strings, continued

CSC 372 Spring 2023, Racket Slide 37

Racket does not provide an analog for Python's type() or ghci's :type.

Effectively, Racket provides no way to ask "What is X?"
Instead, we are limited to asking "Is X a whatever?"

As we've seen...
> (string? "testing")
#t
> (number? "23")
#f
> (exact? 10.0)
#f

R6RS 11.1 says "No object satisfies more than one of the following predicates:
boolean?, pair?, symbol?, number?, char?, string?, vector?, procedure?, null?"
(Those predicates partition the value/object space.)

Types in Racket

CSC 372 Spring 2023, Racket Slide 38

Section 4, Datatypes, in the Racket Reference describes Racket's types and procedures
associated with them.

Types in Racket, continued

CSC 372 Spring 2023, Racket Slide 39

Browse around, especially in
Numbers, Strings, Characters.

Soon: Symbols, Pairs and Lists.

https://docs.racket-lang.org/reference/data.html

Racket has a complex notion of equality. In general:
• Use = for comparison of numbers. Do not mix exact and inexact numbers!
• Use equal? to compare everything else.
• There are more, like eq?, eqv?, and lots of TYPE=? procedures.

Examples with numbers:
> (= (+ 3 4) 7 (sub1 8))
#t

> (= 1/4 0.25)
#t

> (= 1/10 0.1)
#f

Equality in Racket

CSC 372 Spring 2023, Racket Slide 40

equal? on a few things:
> (equal? "upper" (string-append "up" "per"))
#t

> (equal? (string-ref "abc" 1) #\b)
#t

> (equal? "a" #\a 'a)
equal?: arity mismatch;...

equal? does deep comparison of lists and more, like == in Haskell and Python.

Lots more equalities:
$ echo $(rk/fp | grep "[a-z]=?")
arity=? boolean=? bound-identifier=? bytes=? char-ci=? char=? free-identifier=?
free-label-identifier=? free-template-identifier=? free-transformer-identifier=?
member-name-key=? object-or-false=? object=? parameter-procedure=? set=?
string-ci=? string-locale-ci=? string-locale=? string=? symbol=?

Equality in Racket, continued

CSC 372 Spring 2023, Racket Slide 41

A little i/o

CSC 372 Spring 2023, Racket Slide 42

The procedure displayln prints a value followed by a newline:
> (displayln "testing")
testing
>

display prints without adding a newline:
> (display 3) (display 4) (display 5)
345
>

newline outputs a newline
> (display "hello") (newline) (display "world")
hello
world
>

A little output

CSC 372 Spring 2023, Racket Slide 43

The printf procedure interpolates its arguments into a format string:
> (printf "~a + ~a is ~a\n" 3 4 (+ 3 4))
3 + 4 is 7

The ~a escape directs that the corresponding value be output using display.

What's the difference between Racket's printf and format?
> (format "~a + ~a is ~a\n" 3 4 (+ 3 4))
"3 + 4 is 7\n"

There are many other escapes (see fprintf) but ~a is mostly all that we'll need.

docs.racket-lang.org/srfi/srfi-std/srfi-48.html provides for more elaborate formatting,
including field widths, fixed point precision, and more.

There's also a family of procedures (~a, ~v, and more) for converting values to strings.
[RR 4.4.7]

A little output, continued

CSC 372 Spring 2023, Racket Slide 44

https://docs.racket-lang.org/srfi/srfi-std/srfi-48.html

read-line and read-char read from standard input

> (read-line)
testing
"testing"

> (read-char) (read-char) (read-line)
mudge
#\m
#\u
"dge"

Input

CSC 372 Spring 2023, Racket Slide 45

The name eof is bound to "a value (distinct from all other values) that represents
an end-of-file." [RR]

> eof
#<eof>

> (read-line)
^D (control-D, not echoed)
#<eof>

> (define line (read-line))
^D
> line
#<eof>
> (equal? line eof)
#t

Input, continued

CSC 372 Spring 2023, Racket Slide 46

Variables

CSC 372 Spring 2023, Racket Slide 47

Most generally we'll say that the following are all forms:
7
"abc"
#\c
+
length

The syntax of a procedure application is simply this:
(form1 form2 ... formN)

It, too, is a form. Forms that produce a value are considered to be expressions.

Forms inside a form are often called subforms. The following form has three subforms,
each of which has subforms itself:

((identity +) (* 3 (- 5 a)) (string->number "20"))

Forms

CSC 372 Spring 2023, Racket Slide 48

One way to create a variable is with define:
> (define i 3)
> (define s "Racket")
> (string-ref s i)
#\k

What's a little odd about define?
Above, the forms i and s are not evaluated by define!

define is not an identifier with a procedure as its value!

define is a syntactic keyword. (define ...) is said to be a special form.

Special forms can handle/treat their subforms in any way they want.

The defines above treat i and s not as expressions but as variable names.

define

CSC 372 Spring 2023, Racket Slide 49

At the REPL prompt, (define x ...) creates a top-level variable.

We can change the value of a variable with the set! special form:

> (define x 5)
> (set! x (* x 3))
> x
15

Speculate: Can we create a variable with set! ?
> (set! y (+ x 1))
set!: assignment disallowed;
cannot set variable before its definition
variable: y

define, continued

CSC 372 Spring 2023, Racket Slide 50

It's simplest to say what's not valid for Racket identifiers:
• The characters () [] { } " , ' ` ; # | \ can't appear in an identifier.
• A sequence of characters that's a valid numeric literal can't be an identifier.

All other sequences of non-whitespace characters are valid identifiers! Examples:
a-b+c*d
3..
2.3.4
3.4e5.3
>10&&<x
is-D>C++?
!+ ->"

We've traded away operators but we have gained in identifier naming.
How do we feel about that transaction?

Sidebar: identifiers

CSC 372 Spring 2023, Racket Slide 51

Here's a file that contains a whole program:
% cat rk/howmany.rkt # assumes rk symlink made on slide 27
#lang racket ; must be first non-comment line

(displayln "How many? ")
(define count (string->number (read-line)))
(displayln "What character? ")
(define char (string-ref (read-line) 0))
(displayln (make-string count char))

Let's run it on lectura:
% racket rk/howmany.rkt
How many? 7
What character? x
xxxxxxx

A simple program

CSC 372 Spring 2023, Racket Slide 52

After copying rk/howmany.rkt from lectura to a file on my machine, I can open it with Dr.
Racket (File>Open... or click...) and run it with ctrl-R or cmd-R:

Notice the eof button!

Dr. Racket shows lots of "informative" arrows by default. You can turn them off with
(File>Edit>)Preferences>Background Expansion tab, deselect "Show binding and tail-position
arrows..." and then close/open any source files to make it take effect.

A simple program, continued

CSC 372 Spring 2023, Racket Slide 53

At hand:
% cat rk/howmany.rkt
#lang racket

(display "How many? ")
(define count (string->number (read-line)))
...

If we forget the "hash-lang" line (#lang racket), we'll see something like this:
% racket rk/howmany.rkt
default-load-handler: expected a `module' declaration, but found
something else

Don't forget #lang racket

CSC 372 Spring 2023, Racket Slide 54

What does the following experiment tell us?
% cat rk/topexprs.rkt
#lang racket
3
"testing"
(displayln "Here's a sum...")
(+ 5 1 3)

% racket rk/topexprs.rkt
3
"testing"
Here's a sum...
9

Experiment!

CSC 372 Spring 2023, Racket Slide 55

Defining procedures

CSC 372 Spring 2023, Racket Slide 56

We can also use define to create procedures:
> (define (double x)

(printf "doubling ~a\n" x)
(* x 2))

> double
#<procedure:double>

> (double 7)
doubling 7
14

> (double (double 7))
doubling 7
doubling 14
28

Defining procedures

CSC 372 Spring 2023, Racket Slide 57

Here's the syntax of define for creating a procedure:

(define (name param1 ... paramN)
form1
...
formN)

Each form is evaluated in turn. The return value is the value of the last form.

Is the following valid?
(define (f) 1 2 3)

How does procedure definition in Racket compare to Haskell? Python?

What aspect of the imperative paradigm do Racket procedure definitions embody?

Defining procedures, continued

CSC 372 Spring 2023, Racket Slide 58

At hand:
(define (double x) (printf "doubling ~a\n" x) (* x 2))
(define (f) 1 2 3)

> f
#<procedure:f>

> double
#<procedure:double>

> ,desc double
; `double' is a bound identifier,
; defined in /Users/whm/372/rw/define1.rkt
...

Does Racket appear to be statically or dynamically typed?

Which?

CSC 372 Spring 2023, Racket Slide 59

Problem:
Write a procedure first-last-same? that tests whether the first and last characters of
a string are the same. Assume the string is not empty.

> (first-last-same? "testing")
#f

> (first-last-same? "giggling")
#t

Handy:
(string-ref s index)
(string-length s)
(equal? a b)

Practice!

CSC 372 Spring 2023, Racket Slide 60

Desired:
> (first-last-same? "testing")
#f
> (first-last-same? "giggling")
#t

Solution:
(define (first-last-same? s)

(equal? (string-ref s 0)
(string-ref s (sub1 (string-length s)))))

Python:
def first_last_same(s):

return s[0] == s[-1]

Practice, continued

CSC 372 Spring 2023, Racket Slide 61

Java:
static boolean firstLastSame(String s)
{

return s.charAt(0) == s.charAt(s.length()-1);
}

You can (often) find code from the slides
by doing, for example,

% grep first-last rk/*.rkt

Problem: Write a procedure dollars that returns how many dollars some number of
pennies, nickels, and dimes represents.

Usage:
> (dollars 1 2 3)
0.41

> (dollars 7 20 0)
1.07

Solution:
(define (dollars pennies nickels dimes)

(/ (+ pennies (* 5 nickels) (* 10 dimes)) 100.0))

More practice

CSC 372 Spring 2023, Racket Slide 62

My first version of dollars:
(define (dollars pennies nickels dimes)

(/ (+ pennies (* 5 nickels) (* 10 dimes))) 100.0)

Results:
> (dollars 1 2 3)
100.0

> (dollars 5 10 20)
100.0

What's wrong?
Misplaced parentheses!
The body has only two forms: (/ (+ ...)) and 100.0

First version of dollars

CSC 372 Spring 2023, Racket Slide 63

% cat rk/define2.rkt
#lang racket
(define (f xval str)

(+ (* xval 3) (string-len s)))

(displayln "hi!")

% racket rk/define2.rkt
rk/define2.rkt:3:19: string-len: unbound
identifier
in: string-len
location...:
rk/define2.rkt:3:19

What's different?

CSC 372 Spring 2023, Racket Slide 64

% cat rk/define2.py
def f(xval, str):

return xval * 3 + length(s)

print("hi!")

% python define2.py
hi!

Imagine a procedure that puts a box of asterisks around a string:
> (boxstr "Testing!")

* Testing! *

Here's an almost-fine version:
(define (boxstr s)

(define bar (make-string (+ 4 (string-length s)) #*))
(displayln bar)
(displayln (string-append "* " s " *"))
(displayln bar))

The let special form

CSC 372 Spring 2023, Racket Slide 65

A better practice is to use let, another special form, to creating a binding for bar:
(define (boxstr s)

(let ((bar (make-string (+ 4 (string-length s)) #*)))
(displayln bar)
(displayln (string-append "* " s " *"))
(displayln bar)))

Here's the syntax of let:
(let ((var1 init-expr1) (var2 init-expr2) ... (varN init-exprN))

(body-expr1)
...
(body-exprN))

• Each varN is created and assigned the value of init-exprN.
• Each body-expr is evaluated in turn.
• The scope of the variables is the body-exprs.

let, continued

CSC 372 Spring 2023, Racket Slide 66

A simple example:
> (let ((x 2) (y 3) (z (+ 4 5))) (+ x (* y z)))
29

What does the above demonstrate about let?
The value of a let is the value of the last expression.

What's the shortest valid let?

A let example from SICP, p.64:
(define (f x y)

(let ((a (+ 1 (* x y)))
(b (- 1 y)))
(+ (* x (* a a))

(* y b)
(* a b))))

let, continued

CSC 372 Spring 2023, Racket Slide 67

What's wrong here?
> (let ((a 5) (b (* a a)) (c (+ a b))) (+ a b c))
a: undefined;
cannot reference an identifier before its definition

The scope of variables in a let is only the body forms!

let* is a slight variant of let that allows use of earlier bindings in later bindings:
> (let* ((a 5) (b (* a a)) (c (+ a b))) (+ a b c))
60

Challenge: Rewrite the above using nested lets instead of let*.

In general, an asterisk suffix indicates a variant of a procedure or special form.

let, continued

CSC 372 Spring 2023, Racket Slide 68

Racket allows both [...] and { ... } to be used in place of (...):
> {+ [* 3 4] 5}
17

Which of the following two do you like better?
(let [(x 2) (y 3) (z (+ 4 5))] (+ x (* y z)))

or
(let ([x 2] [y 3] [z (+ 4 5)]) (+ x (* y z)))

My understanding is that the latter is preferred because it accentuates that [x 2] et al. are
not expressions.

You are free to use whatever style you want for code in this class!

Sidebar: A readability aid

CSC 372 Spring 2023, Racket Slide 69

In Racket, a semicolon is comment to end of line, like // in Java and # in Python:
(define max-delta 0.001) ; whatever max-delta represents

#| and |# are block comments, just like /* ... */ in Java

There's also a datum comment. What does it seem to do?
> (+ 1 2 #; 3 4)
7

> (define max #; 10000 10)
> max
10

> (+ 1 2 #; (* 3 4) 5)
8

It comments the next form, whatever it is, no matter how long/how many lines.

Comments

CSC 372 Spring 2023, Racket Slide 70

if and more

CSC 372 Spring 2023, Racket Slide 71

Here's the syntax of if:
(if test-expr true-expr false-expr)

Example:
> (if (< 3 4) "less" "greater")
"less"

What does the above tell us about if?
It produces a value that we can use in an enclosing expression.

Note the error that this common mistake produces:
> (if (3 < 4) "less" "greater")
application: not a procedure;
expected a procedure that can be applied to arguments
given: 3

The if special form

CSC 372 Spring 2023, Racket Slide 72

Java's if statement requires the control expression to have type boolean.
if (i > 4) ...
if (checkStr(s)) ...
if (verboseMode) ...

Racket's if allows an expression of any type to be used as the control expression. Any
value is that is not #f is considered to be true.

Examples:
> (if 0 "true" "false")
"true"
> (if "false" "true" "false")
"true"
> (if 5 > 3)
#<procedure:>>

Everything except #f is true

CSC 372 Spring 2023, Racket Slide 73

Racket doesn't seem to have any counterpart to Python's bool(x).

Problem: Using if, write ->boolean. Examples:
> (->boolean 5)
#t

> (->boolean "")
#t

> (->boolean #f)
#f

Solution:
(define (->boolean x)

(if x #t #f))

Problem: ->boolean

CSC 372 Spring 2023, Racket Slide 74

Does if have to be a special form?

Consider this procedure:
(define (print-average sum n)

(if (> n 0)
(printf "average: ~a\n" (/ sum n))
(printf "No items\n")))

For any case, we only want one of those printfs to be evaluated!

The implementation of if must first evaluate the test (> n 0) to decide which of the two
clauses to evaluate.

if, continued

CSC 372 Spring 2023, Racket Slide 75

Problem: Make the following a little less repetitive:
(if (< a b)

(+ a b)
(- a b))

Solution:
((if (< a b) + -) a b)

Questions:
Which do you like better?
What does this tell us about Racket?

Credit: Aaron Christianson on Quora

if, continued

CSC 372 Spring 2023, Racket Slide 76

https://www.quora.com/What-kind-of-language-is-Lisp-Is-Lisp-easy-to-learn/answer/Aaron-Christianson-2

Let's use much of what we've seen to write this procedure:
> (print-pattern 4 #*)

*

Note the pattern for the line lengths: 12, 9, 6, 3, 1, 3, 6, 9, 12

It will be recursive! Don't peek at the next slide!

Example

CSC 372 Spring 2023, Racket Slide 77

Solution:
(define (print-pattern n c)

(let ([line (make-string (* n 3) c)])
(displayln line)
(if (> n 1)

(print-pattern (sub1 n) c)
(displayln c))

(displayln line)))

Example, continued

CSC 372 Spring 2023, Racket Slide 78

What does the following if do?
(if (< a b) 7 (displayln "calling f") (f a b))

if: bad syntax
(f a b) is not expected! if expects exactly three forms.

We can use (begin form1 ... formN) to group forms:
(if (< a b)

7
(begin

(displayln "calling f")
(f a b)))

The value of the last form is the value of the begin form.

if, continued

CSC 372 Spring 2023, Racket Slide 79

and and or in Racket are variadic:
> (and (< 3 4) (zero? (- 3 3)) (string-ci=? "ok" "OK"))
#t

> (or (> 1 2) (= 3 4) (zero? 1) (zero? 0))
#t

> (or (< 3 4))
#t

> (and 1 2 3 4)
4

> (or 1 2 3 4)
1

and and or

CSC 372 Spring 2023, Racket Slide 80

Two more examples:
> (and (= 2 3) (= 4 (/ 1 0)))
#f

> (or (= 3 3) (= 0 (/ 1 0)))
#t

What's interesting about those examples?
Neither produced a division by zero error!
and and or are special forms, and use short-circuit evaluation.

and and or, continued

CSC 372 Spring 2023, Racket Slide 81

Here's not:
> (not #t)
#f

> (not (= 3 3))
#f

> (not (not 1))
#t

Is not a special form?

Can we write a simpler version of ->boolean using not?
(define (->boolean x)

(not (not x)))

not

CSC 372 Spring 2023, Racket Slide 82

A year is a leap year if it is divisible by 4 and not by 100, or if it is divisible by 400.

Here's my first version of a leap year predicate:
(define (leap-year? year)

(or
(and (= (modulo year 4) 0)

(not (= (modulo year 100))))
(= (modulo year 400) 0)))

Execution:
> (leap-year? 2020)
#f
> (leap-year? 2021)
#f
> (leap-year? 2000)
#t

What's the bug?

leap-year?

CSC 372 Spring 2023, Racket Slide 83

Here are two interesting examples from Realm of Racket. What does each do?

(or (odd? x) (set! is-it-even #t))

(and file-modified (ask-user-about-saving) (save-file))

Curiosities

CSC 372 Spring 2023, Racket Slide 84

Here's some slightly simplified Scheme code from a structure editor by Dybvig. (edit.ss)
(define (f p i b)

(let ([e (list-ref p i)])
(if (atom? e)

(let next ([p p] [i i] [b b]) ; this is a "named let"
(let ([n (maxref p)])

(if (or (not n) (< i n))
(check p (+ i 1) b)
(if (null? b)

(search-failed s0 p0 i0 b0)
(apply next b)))))

(check e 0 (list p i b))))))

Note the multiple lets, and their nesting. Can any lets be combined?

Racket doesn't have atom?, which tests for a non-null pair. We'll learn about pairs and
null? later.

Some "real" code

CSC 372 Spring 2023, Racket Slide 85

The original, and more general, conditional special form is cond.

Syntax:
(cond

[test-form1 form ...]
[test-form2 form...]
...
[else form ...]) ; Literally "else"

Each test-formN is evaluated in turn until one is true.
• The form(s) that follow that test-form are then evaluated.
• The value of the cond is the value of the last form.

There can be as little as one clause.

cond

CSC 372 Spring 2023, Racket Slide 86

Example:
(define (f x)

(cond
[(number? x) (displayln "number") (* x 3)]
[(string? x) (displayln "string") (string-length x)]
[else #f]))

Usage:
> (f "test")
string
4
> (f 5)
number
15
> (f f)
#f

cond, continued

CSC 372 Spring 2023, Racket Slide 87

Problem: Write a procedure to determine the sign of a number.
> (sign 7)
1
> (sign -3/4)
-1
> (sign (+))
0

Solution:
(define (sign n)

(cond
[(< n 0) -1]
[(zero? n) 0]
[else 1]))

Practice

CSC 372 Spring 2023, Racket Slide 88

What is else?
> else
else: not allowed as an expression

How about these?
> (cond [0 1])
1

> (cond [0])
0

> (cond 0)
cond: bad syntax (clause is not a test-value pair)

Exploration

CSC 372 Spring 2023, Racket Slide 89

Intentionally blank...

CSC 372 Spring 2023, Racket Slide 90

The for special form

CSC 372 Spring 2023, Racket Slide 91

Racket's for special form can be used to iterate through a sequence. A string is one of
many things considered to be a sequence.

> (for ([c "abc"])
(printf "~a is ~a" c (char->integer c))
(newline))

a is 97
b is 98
c is 99

What can we observe about for?

The for special form

CSC 372 Spring 2023, Racket Slide 92

in-range is much like Python's range, and produces a sequence. Let's use it in an
imperative factorial computation:

(define (f n)
(let ([product 1])

(for ([i (in-range 2 n)])
(set! product (* product i)))

(string-length (number->string product))))

Experimentation:
> (f 6)
3
> (f 1000)
2565
> (time (f 50000))
cpu time: 982 real time: 1007 gc time: 89
213232

for, continued

CSC 372 Spring 2023, Racket Slide 93

What's interesting about the following example?
> (for ([1s (in-range 1 30)]

[3s (in-range 1 30 2)]
[7s (in-range 1 30 7)])

(printf "~a ~a ~a\n" 1s 3s 7s))
1 1 1
2 3 8
3 5 15
4 7 22
5 9 29

for can iterate through multiple sequences in parallel, stopping when one runs out!

for, continued

CSC 372 Spring 2023, Racket Slide 94

in-lines returns a sequence of the lines on standard input.

Here's a Racket program that numbers lines on standard input:
% cat numlines.rkt
#lang racket
(for ([line-num (in-naturals 1)] [line (in-lines)])

(printf "~a: ~a\n" line-num line))

Let's feed numlines.rkt to itself, using the command line:
% racket numlines.rkt < numlines.rkt
1: #lang racket
2: (for ([line-num (in-naturals 1)] [line (in-lines)])
3: (printf "~a: ~a\n" line-num line))

docs.racket-lang.org/reference/sequences.html talks about sequences.

for, continued

CSC 372 Spring 2023, Racket Slide 95

https://docs.racket-lang.org/reference/sequences.html

Of course, fors can nest:
> (for ([row "abcd"])

(for ([seat (in-range 1 7)])
(printf "~a-~a " row seat))

(newline))
a-1 a-2 a-3 a-4 a-5 a-6
b-1 b-2 b-3 b-4 b-5 b-6
c-1 c-2 c-3 c-4 c-5 c-6
d-1 d-2 d-3 d-4 d-5 d-6

Racket has 50+ variants of for. Some of them:
for, for/first, for/foldr, for/foldr/derived, for/hash, for/last, for/list, for/lists,
for/or, for/product, for/sum, for/vector, for/weak-set, for*,
(and for*/... counterparts).

See them in Bash: rk/fp | grep -w ^for, or with ,ap for in XREPL

for, continued

CSC 372 Spring 2023, Racket Slide 96

wc(1) reports the number of lines, "words", and characters on standard input:
% wc < rk/numlines.rkt
3 13 104

Let's write a simple, imperative wc in Racket!
(define (wc)

(let ([lines 0] [words 0] [chars 0])
(for ([line (in-lines)])

(set! lines (add1 lines))
(set! words (+ words (length (string-split line))))
(set! chars (+ 1 chars (string-length line))))

(printf "~a ~a ~a\n" lines words chars)))
(wc)

Usage:
% racket rk/wc.rkt < rk/numlines.rkt
3 13 104

wc.rkt

CSC 372 Spring 2023, Racket Slide 97

Will wc.rkt work in Dr. Racket?

There's also a "do", slide 154+/-.

Symbols

CSC 372 Spring 2023, Racket Slide 98

We can create a symbol by putting an apostrophe immediately before any valid identifier.
> 'abc
'abc

> (symbol? 'abc)
#t

> (define x '<==oOo!)
> x
'<==oOo!

> (symbol? x)
#t

We pronounce 'x as "quote x".

Just like the double-quotes in "abc" are not part of the string, the apostrophe in 'abc is
not part of the symbol!

Symbols

CSC 372 Spring 2023, Racket Slide 99

A string is not a symbol; a symbol is not a string!
> (symbol? "abc")
#f

> (string? 'abc)
#f

But we can convert between symbols and strings:
> (string->symbol "abc")
'abc

> (symbol->string 'green)
"green"

Symbols, continued

CSC 372 Spring 2023, Racket Slide 100

Various procedures use symbols a bit like Enums in Java:
> (system-type 'os)
'macosx
> (system-type 'arch)
'x86_64

open-output-file recognizes 'append, 'replace, and 'error and others.

find-system-path recognizes 'pref-file, 'init-dir, 'host-config-dir and others.

Symbols are often used to represent members of small sets:
'red 'green 'blue
'up 'down 'left 'right
'A 'K 'Q 'J

Unlike Enums in Java, symbols are subject to misspellings.

Symbols, continued

CSC 372 Spring 2023, Racket Slide 101

"The symbols are atomic in the sense that any substructure they may have as sequences
of characters is ignored." [JMC1]

"A symbol is like an immutable string, but symbols are normally interned so that two
symbols with the same character content are normally eq?." [RR]

> (eq? 'test (string->symbol "test"))
#t

> (eq? "upper" (string-append "up" "per"))
#f

> (eq? "test" (symbol->string 'test))
#f

An essential quality is that comparing two symbols is an O(1) operation.

Symbols, continued

CSC 372 Spring 2023, Racket Slide 102

In the early days of Lisp, symbols were created with the quote special form.

It still exists:
> (quote abc)
'abc

> (symbol? (quote abc))
#t

> (quote quote)
'quote

> (quote 3)
3

> (quote "x")
"x"

Sidebar: quote

CSC 372 Spring 2023, Racket Slide 103

Lists

CSC 372 Spring 2023, Racket Slide 104

Here's one way to make a list in Racket:
> (define L (cons 10 (cons 20 (cons 30 empty))))
> L
'(10 20 30) ; shown as a "quoted list"

car and cdr ("could-er"), respectively, get the head and tail of a list:
> (car L)
10
> (cdr L)
'(20 30)

There are a number of list accessor shorthands:
> (cadr L) ; (car (cdr L))
20
> (caddr L) ; (car (cdr (cdr L)))
30

List basics

CSC 372 Spring 2023, Racket Slide 105

More:
> (define L (cons 10 (cons 20 (cons 30 empty))))
> L
'(10 20 30)

> (list? L)
#t

> (length L)
3

> (last L)
30

> (empty? L)
#f

List basics, continued

CSC 372 Spring 2023, Racket Slide 106

> empty
'()

> (empty? empty)
#t

> (cdddr L)
'()

> (empty? (cdddr L))
#t

> (empty? (cdr (cons 5 empty)))
#t

A quoted list is commonly used to make a list from literals:
> (define L '(10 a "b" 30 more...))
> L
'(10 a "b" 30 more...)

> (cadr L)
'a ; symbol!

> (third L) ; for the caddr-challenged
"b"

> (last L)
'more...

> (symbol->string ^) ; caret is last value, like "it" in ghci. (Only in XREPL.)
"more..."

List basics, continued

CSC 372 Spring 2023, Racket Slide 107

We'll frequently use quoted lists to make
a list to experiment with:

> (define words '(just a test here))
> words
'(just a test here)

> (define nums '(3 1 5 7 2))
> nums
'(3 1 5 7 2)

The names car and cdr are said to have originated with the initial Lisp implementation, on
an IBM 7090.

• "CAR" stood for Contents of Address part of Register.

• "CDR" stood for Contents of Decrement part of Register.

• There's more to the story...

Sidebar: car and cdr

CSC 372 Spring 2023, Racket Slide 108

Intentionally blank

CSC 372 Spring 2023, Racket Slide 109

Let's write our own version of the length procedure:
> (len '(3 1 5 7))
4

> (len empty)
0

Solution:
(define (len L)

(if (empty? L)
0
(add1 (len (cdr L)))))

Problem: len

CSC 372 Spring 2023, Racket Slide 110

Problem: Write a procedure (from-through first last) that returns a list of the integers
from first through last.

> (from-through -5 5)
'(-5 -4 -3 -2 -1 0 1 2 3 4 5)

> (from-through 5 1)
'()

Solution, in rk/lists.rkt:
(define (from-through first last)

(if (> first last)
empty
(cons first (from-through (add1 first) last))))

Problem: from-through

CSC 372 Spring 2023, Racket Slide 111

Let's write a char-from-through:
> (char-from-through #\a #\e)
'(#\a #\b #\c #\d #\e)

Sadly, we haven't seen map yet, so ...
(define (char-from-through first last)

(define (ints-to-chars ints) ; visible only inside char-from-through
(if (empty? ints)

empty
(cons (integer->char (car ints))

(ints-to-chars (cdr ints)))))

(ints-to-chars
(from-through (char->integer first)

(char->integer last))))

from-through, continued

CSC 372 Spring 2023, Racket Slide 112

Problem: Write a procedure sum-nums that returns the sum of the numbers in a list,
ignoring non-numbers. Example:

> (sum-nums '(5 x y 3 z 10 a b 3.4 1/16))
21.4625

Solution:
(define (sum-nums L)

(cond
[(empty? L) 0]
[(number? (car L)) (+ (car L) (sum-nums (cdr L)))]
[else (sum-nums (cdr L))]))

How could we make it skip the 3.4, too?
[(and (number? (car L)) (exact? (car L))) ...]

Problem: sum-nums

CSC 372 Spring 2023, Racket Slide 113

Racket has an excellent procedure-call tracing facility. To use it:
1. Add (require racket/trace) after the #lang line.
2. Add (trace procedure) after your definition for procedure.

Example:
#lang racket
(require racket/trace)
(define (sum-nums L)

(cond ...lots...))
(trace sum-nums)

Sidebar: Tracing

CSC 372 Spring 2023, Racket Slide 114

Usage:
> (sum-nums '(7 9 2 1))
>(sum-nums '(7 9 2 1))
> (sum-nums '(9 2 1))
> >(sum-nums '(2 1))
> > (sum-nums '(1))
> > >(sum-nums '())
< < <0
< < 1
< <3
< 12
<19
19

It seems that in Dr. Racket, you can't use trace at the REPL prompt:
> (trace sum-nums)
.../racket/trace.rkt:294:41: sum-nums: cannot modify a constant

(Ok with racket from the command line.)

It seems that built-in procedures can't be traced:
> (trace string-split)
... set!: cannot mutate module-required identifier

A bit from the documentation for (trace id ...)
Each id is set!ed to a new procedure that traces procedure calls and returns by
printing the arguments and results of the call ...

Sidebar, continued

CSC 372 Spring 2023, Racket Slide 115

define-values provides an easy way to create and initialize variables for
experimentation:

> (define-values (a b c) (values 10 20 30))
(But why not just use let?)

The procedure list evaluates its arguments and makes a list from the values:
> (list 3 a (+ b c) 'test (* a b c) 'the 'end)
'(3 10 50 test 6000 the end)

What's the difference between list and list*, below?
> (list* 3 a (+ b c) 'test (* a b c) '(the end))
'(3 10 50 test 6000 the end)

More list procedures

CSC 372 Spring 2023, Racket Slide 116

More procedures:
> (append (range 3) (make-list 3 'a) (string->list "xyz"))
'(0 1 2 a a a #\x #\y #\z)

> (equal? '(1 2 3) (cdr (range 4)))
#t

> (list-ref '(a b c d e) 3)
'd

> (range 10 20 3.3)
'(10 13.3 16.6 19.900000000000002)

> (range 1 10 (+ 1 1/3))
'(1 7/3 11/3 5 19/3 23/3 9)

List procedures, continued

CSC 372 Spring 2023, Racket Slide 117

> (member 7 '(3 1 7 5 3))
'(7 5 3)

> (remove 'be '(to be or not to be))
'(to or not to be)

> (remove* '(3 8) '(8 6 3 4 2 3 9 7 8))
'(6 4 2 9 7)

> (take (drop (range 10) 5) 3)
'(5 6 7)

> (drop-right '(a b c d e) 2)
'(a b c)

> (list-tail (string->list "abcdef") 3)
'(#\d #\e #\f)

Even more list procedures

CSC 372 Spring 2023, Racket Slide 118

> (define L '(we will go up the stairs!))

> (list-set L (index-of L 'up) 'down)
'(we will go down the stairs!)

> L
'(we will go up the stairs!)

> (shuffle '(a b c d e))
'(a c e d b)

> (list->string (take-common-prefix
(string->list "testing")
(string->list "tester")))

"test"

And still more...

CSC 372 Spring 2023, Racket Slide 119

A number of list-related procedures are higher order. Here two simple ones:

sort requires a comparison predicate for its third argument:
> (sort '(3 1 9 7 5) <)
'(1 3 5 7 9)

> (sort (string-split "how will they sort?") string>?)
'("will" "they" "sort?" "how")

What's the following doing?
> (indexes-where '(9 0 2 1 0) zero?)
'(1 4)

Some higher-order procedures for lists

CSC 372 Spring 2023, Racket Slide 120

Lots more: docs.racket-lang.org/reference/pairs.html (~135 procedures)

Unlike other types, list-oriented procedures tend to not have "list" in their names,
especially "classic" procedures like length and append.

Source code on lectura: /usr/local/racket/collects/racket/list.rkt
• See if you think Racket library source code is more readable than Haskell's Prelude

code.

Lots more list procedures

CSC 372 Spring 2023, Racket Slide 121

https://docs.racket-lang.org/reference/pairs.html

As you'd hope, lists can be nested.
> (define L '((1 a 2 b) (+ 3 4) (a < b)))
> L
'((1 a 2 b) (+ 3 4) (a < b))

> (first L)
'(1 a 2 b)

> (second L)
'(+ 3 4)

> (third L)
'(a < b)

> (second (third L))
'<

Lists of lists of lists...

CSC 372 Spring 2023, Racket Slide 122

Given L...
> L
'((a b) c ((d e) f))

How can we get the...
'a ?
(caar L)

'b ?
(cadar L)

'(d e) ?
> (caaddr L)

'f ?
(last (last L))

car and cdr, continued

CSC 372 Spring 2023, Racket Slide 123

The sdraw package draws cons-cell diagrams. After installing it with File>Install in
Dr. Racket, you can do this:

docs.racket-lang.org/sdraw/index.html

Sidebar: sdraw

CSC 372 Spring 2023, Racket Slide 124

https://docs.racket-lang.org/sdraw/index.html

Let's extend sum-nums so that it can handle nested lists, summing all the
numbers found within any of the lists:

> (sum-nums2 '(3 4 (7 3) (5 (6 (7)))))
35

Here's a copy of sum-nums renamed to sum-nums2:
(define (sum-nums2 L)

(cond
[(empty? L) 0]
[(number? (car L)) (+ (car L) (sum-nums2 (cdr L)))]
[else (sum-nums2 (cdr L))]))

As-is, what happens with a list like '(3 (4 5) 6)?

sum-nums2

CSC 372 Spring 2023, Racket Slide 125

Revised:
(define (sum-nums2 L)

(cond
[(empty? L) 0]
[(number? (car L)) (+ (car L) (sum-nums2 (cdr L)))]
[(list? (car L)) ; if the head is a list, recurse on both head and tail

(+ (sum-nums2 (car L))
(sum-nums2 (cdr L)))]

[else (sum-nums2 (cdr L))]))

Could/should we introduce a let?

sum-nums2, continued

CSC 372 Spring 2023, Racket Slide 126

Here's a version with a let:
(define (sum-nums3 L)

(if (empty? L)
0
(let ([head (car L)] [tail (cdr L)])

(cond
[(number? head) (+ head (sum-nums3 tail))]
[(list? head) (+ (sum-nums3 head) (sum-nums3 tail))]
[else (sum-nums3 tail)]))))

Why was the if introduced?

Could we improve it further?

sum-nums3

CSC 372 Spring 2023, Racket Slide 127

The built-in flatten procedure "flattens" a possibly-nested list:
> (flatten '(1 (2 (3 4) 5)))
'(1 2 3 4 5)

> (flatten '((1 (2 3)) (4 (5 (6)))))
'(1 2 3 4 5 6)

Let's write our own version! How can we approach it?
> (define L '((1 (2 3)) (4 (5 (6)))))

> (car L)
'(1 (2 3))

> (cdr L)
'((4 (5 (6))))

flatten

CSC 372 Spring 2023, Racket Slide 128

Here's a simple solution, with a shortcut:
(define (my-flatten L)

(cond
[(empty? L) empty]
[(list? L) (append

(my-flatten (car L))
(my-flatten (cdr L)))]

[else (list L)]))

What's the shortcut?
We're flattening non-lists into lists!

Could we write flatten in Haskell?
> flatten [1,2,[3,[4,5]]]

No—the list above isn't homogenous!

flatten, continued

CSC 372 Spring 2023, Racket Slide 129

A trace on a simple case:
> (my-flatten '(3 4 5))
>(my-flatten '(3 4 5))
> (my-flatten 3)
< '(3)
> (my-flatten '(4 5))
> >(my-flatten 4)
< <'(4)
> >(my-flatten '(5))
> > (my-flatten 5)
< < '(5)
> > (my-flatten '())
< < '()
< <'(5)
< '(4 5)
<'(3 4 5)
'(3 4 5)

Here's a revision:
(define (my-flatten2 L)

(if (empty? L)
empty
(let ([head (car L)] [tail (cdr L)])

(if (list? head)
(append (my-flatten2 head)

(my-flatten2 tail))
(cons head (my-flatten2 tail))))))

But...
> (flatten 3) ; built-in
'(3)
> (my-flatten2 3)
car: contract violation
expected: pair?

flatten, continued

CSC 372 Spring 2023, Racket Slide 130

A trace of the same call:
> (my-flatten2 '(3 4 5))
>(my-flatten2 '(3 4 5))
> (my-flatten2 '(4 5))
> >(my-flatten2 '(5))
> > (my-flatten2 '())
< < '()
< <'(5)
< '(4 5)
<'(3 4 5)
'(3 4 5)

Generally speaking, lists "work" as values:
> (member '(a b) '(a b (b a) (a b) (b c)))
'((a b) (b c))

> (indexes-of '(a b (b a) (a b) (b c) (a b c) (a b)) '(a b))
'(3 6)

Sometimes handy...
> (permutations '(a b c))
'((a b c) (b a c) (a c b) (c a b) (b c a) (c b a))

> (combinations '(a b c d) 2)
'((a b) (a c) (a d) (b c) (b d) (c d))

> (cartesian-product '(big little) '(x y z))
'((big x) (big y) (big z) (little x) (little y) (little z))

Procedures involving lists of lists

CSC 372 Spring 2023, Racket Slide 131

Originally, quoted lists were created with the quote special form. It still works:
> (quote (a b c 1 2 3))
'(a b c 1 2 3)

> (quote (a b c (d (e f) g) h))
'(a b c (d (e f) g) h)

Note that '(a (b c)) is not the same as '(a '(b c)). Flattening shows it a bit:
> (flatten '(a (b c)))
'(a b c)

> (flatten '(a '(b c)))
'(a quote b c)

Try (sdraw '(a (b c))), (sdraw '(a '(b c))), and (sdraw '(a '(b 'c))).

Sidebar: quote with lists

CSC 372 Spring 2023, Racket Slide 132

Intentionally blank

CSC 372 Spring 2023, Racket Slide 133

Pairs

CSC 372 Spring 2023, Racket Slide 134

What will this do?
> (define x (cons 3 4))
> x
'(3 . 4)
> (pair? x)
#t
> (car x)
3
> (cdr x)
4

"(cons a d) Returns a newly allocated pair whose first element is a and second element
is d." –RR

'(3 . 4) is commonly called a dotted pair. Dotted pairs are often used as 2-tuples.

How can a dotted pair be drawn with boxes and arrows?

Pairs

CSC 372 Spring 2023, Racket Slide 135

Problem: Write an expression that produces '(a b . c)
> (cons 'a (cons 'b 'c))
'(a b . c)

How about '((a . b) . c) ?
(cons (cons 'a 'b) 'c)

How about '((a . b) . (c . d)) ?
[and more...]

Formally, we say that a list is a pair whose second element is a list.

Proper lists end with an empty list. '(a . b) and '(a b . c) are improper lists.

Pairs, continued

CSC 372 Spring 2023, Racket Slide 136

Again, a list is a pair whose second element is a list.

Are pairs lists? Are lists pairs?
> (pair? '(1 2 3))
#t
> (pair? '(1))
#t
> (pair? empty)
#f
> (list? '(3 . 4)) ; (cons 3 4)
#f
> (list? '(3 4 . 5)) ; (cons 3 (cons 4 5))
#f
> (list? '(3 4 5 . 6)) ; (cons 3 (cons 4 (cons 5 6)))
#f

What's a performance implication of pair? vs. list?

Pairs, continued

CSC 372 Spring 2023, Racket Slide 137

> (define x (range 10000000))
> (time (pair? x))
cpu time: 0 real time: 0 gc time: 0
#t
> (time (list? x))
cpu time: 29 real time: 30 gc time: 0
> (time (list? x))
cpu time: 15 real time: 16 gc time: 0
> (time (list? x))
cpu time: 6 real time: 6 gc time: 0
> (time (list? x))
cpu time: 3 real time: 3 gc time: 0
> (time (list? x))
cpu time: 2 real time: 2 gc time: 0
> (time (list? x))
cpu time: 1 real time: 2 gc time: 0
> (time (list? x))
cpu time: 0 real time: 0 gc time: 0

A curiosity

CSC 372 Spring 2023, Racket Slide 138

Eli Barzilay wrote,
Re list?, you’re actually getting some very nice timings
that demonstrate what Racket is doing… This starts
with first second … rest which are a bit different than car
cadr … cdr. The latter just want the value to exist, so
they’re constant-time operations. But with first et al,
they require an input which is a proper list, and that
requires testing the value with list?, which in turn must
chase the pointers all the way to the tail of the list. (It
actually uses that hare/tortoise algorithm, since lists can
have pointer cycles.)

So the solution is that every time that you verify that
something is a list?, you mark the half-way point as a
pair which is known to start a proper list, and the second
test needs to reach only to that point, marking the half-
way to it, etc. This makes the time go down in half every
time you try it with the same input list, so the amortized
time is still constant.

With only symbols, integers, arithmetic, if, comparisons, and cons, car, and cdr, what
kinds of data structures can be we build and access?

Imagine a set of procedures that implement a string type that holds its length, too:
> (define s (str-make '(t e s t)))
> s
'(:s: 4 t e s t) ; Design decisions: (1) Lists that represent strings start with :s:

(2) Second element is the length of the string

> (str-length s)
4

> (str-concat s s)
'(:s: 8 t e s t t e s t)

Sidebar: A minimalist view

CSC 372 Spring 2023, Racket Slide 139

> (str-concat s (str-make '(- m e !)))
'(:s: 8 t e s t - m e !)

> (str-print (str-concat s (str-make '(- m e !))))
test-me!

> (str-length '(a b c))
not a str

Using only pairs for storage could we build...

• A binary tree?

• A two-dimensional array?

• A hash table?

• An address book entry?

"The single compound-data primitive pair, implemented by the procedures cons, car,
and cdr, is the only glue we need."—SICP

Sidebar, continued

CSC 372 Spring 2023, Racket Slide 140

Here's a start on a simple Lisp written in Java:
abstract class Value {}

class Symbol extends Value
{

String name;
}

class Int extends Value
{

int value;
}

class Pair extends Value
{

Value car, cdr;
}

Sidebar, continued

CSC 372 Spring 2023, Racket Slide 141

GOTO 156!

Some built-in procedures have keyword arguments. Here's an excerpt from the
string-join documentation:

(string-join strs
[sep #:before-first before-first #:before-last before-last

#:after-last after-last])
Let's experiment:

> (define parts (string-split "one two three four"))
> parts
'("one" "two" "three" "four")
> (string-join parts)
"one two three four"
> (string-join parts "-")
"one-two-three-four"
> (string-join parts "," #:before-first ">" #:after-last "<")
">one,two,three,four<"
> (string-join parts ", " #:before-first "Parts: " #:before-last " and " #:after-last ".")
"Parts: one, two, three and four."

Keyword arguments (was Intentionally Blank)

CSC 372 Spring 2023, Racket Slide 142

Defining variadic procedures

CSC 372 Spring 2023, Racket Slide 143

Here's a procedure that accepts two or more arguments:
(define (show-args a1 a2 . more-args)

(printf "a1: ~a, a2: ~a, more-args: ~a" a1 a2 more-args))

Usage:
> (show-args 10 20 30 40)
a1: 10, a2: 20, more-args: (30 40)

> (show-args 10 20)
a1: 10, a2: 20, more-args: ()

> (show-args 10)
show-args: arity mismatch; expected: at least 2; given: 1

What's interesting about the syntax used to describe this variadic procedure?
An existing syntactic element was used; nothing new was devised.

Defining variadic procedures

CSC 372 Spring 2023, Racket Slide 144

Contrast with Python:
def show_args(a1, a2, *more_args):

print(f"a1: {a1}, a2: {a2}, more_args: {more_args}")

>>> show_args(10,20,30,40)
a1: 10, a2: 20, more_args: (30, 40)

And Java:
static void showargs(int a1, int a2, int ...more_args) {

System.out.printf("a1: %d, a2: %d, more_args: %s\n",
a1, a2, Arrays.toString(more_args));

}

jshell> varargs.showargs(10, 20, 30, 40);
a1: 10, a2: 20, more_args: [30, 40]

Variadic procedures, continued

CSC 372 Spring 2023, Racket Slide 145

Recall that we can make a string like this:
> (string #\T #\e #\s #\t)
"Test"

What's the variadic aspect of string?

Let's write my-string, with the same behavior:
> (my-string #\R #\a #\c #\k #\e #\t)
"Racket"

Two handy procedures:
> (make-string 3)
"\u0000\u0000\u0000" (mutable...)

(string-set! s 0 #\x)

Variadic procedures, continued

CSC 372 Spring 2023, Racket Slide 146

Wanted:
> (my-string #\R #\a #\c #\k #\e #\t)
"Racket"

Solution:
(define (my-string . chars)

(let [(result (make-string (length chars)))]
(for ((i (in-naturals)) (c chars))

(string-set! result i c))
result))

Will just (my-string) work?

Would a recursive solution be better?

Variadic procedures, continued

CSC 372 Spring 2023, Racket Slide 147

Code as data

CSC 372 Spring 2023, Racket Slide 148

What does the following create?
> (define (add a b) (let ([sum (+ a b)]) (printf "sum is ~a\n" sum) sum))

What does the following create?
> '(define (add a b) (let ([sum (+ a b)]) (printf "sum is ~a\n" sum) sum))

Let's give that list a name and explore it!
> (define code ^)
> (car code)
'define

> (cadr code)
'(add a b)

> (caddr code)
'(let ((sum (+ a b))) (printf "sum is ~a\n" sum) sum) ; note no []!

Code as data

CSC 372 Spring 2023, Racket Slide 149

At hand:
> code
'(define (add a b) (let ((sum (+ a b))) (printf "sum is ~a\n" sum) sum))

An apostrophe transforms the source code for a procedure into an easily manipulated
data structure!

How could we get the procedure's name?
> (caadr code)
'add

How could we get the parameter names?
> (cdr (second code))
'(a b)

Given a let like '(let ([x 2] [y 3] [z (+ 4 5)]) (+ x (* y z))), how could we get a list of
the names that are bound?

Code as data

CSC 372 Spring 2023, Racket Slide 150

Most generally, we can say that the following are symbolic expressions, or
S-expressions:

'xyz
3/4
(10 20 30 40)
(+ 3 4)
(if (< x y) (f x) (g y))
((course 372)

(name "Comparative Programming Languages) (location "GS 906"))

"S-expression: The essential building block of Racket programs. An S-expression can be
either a) an atomic value (like a string, number, or symbol) or b) a parenthesized list of
values." [Beautiful Racket [BR] glossary]

Recall the title of McCarthy's first paper on Lisp:
Recursive Functions of Symbolic Expressions and Their Computation by Machine, Part I

S-expressions

CSC 372 Spring 2023, Racket Slide 151

In essence, the read procedure reads an s-expression:
> (read)
just ; input in bold
'just ; read returned the symbol 'just

> (read)
(just some

values:
3.4 #f (a b
)

)
'(just some values: 3.4 #f (a b))

We have now seen three ways to read data: read-line, read-char, and read.

RR: "(read [in]) reads and returns a single datum from in." (in is a port.)

The read procedure

CSC 372 Spring 2023, Racket Slide 152

Here's a procedure that prints the s-expressions (forms) contained in a file:
(define (print-exprs filename)

(define (read-and-print port)
(let ([expr (read port)])

(cond
[(equal? expr eof) (void)]
[else (printf "Expression: ~a\n" expr)

(read-and-print port)])))
(read-and-print (open-input-file filename)))

% cat exprs.1
(10 20 30 40)
(+ 3 4)
; Here's a comment!
(if (< x y)

(f x)
(g y))

9/54
CSC 372 Spring 2023, Racket Slide 153

Execution:
> (print-exprs "exprs.1")
Expression: (10 20 30 40)
Expression: (+ 3 4)
Expression: (if (< x y) (f x) (g y))
Expression: 1/6

What's the type of each expression
below?

"Languages in which program code is represented as the language's fundamental data
type are called 'homoiconic'."—wiki.c2.com

"A language is homoiconic if a program written in it can be manipulated as data using
the language, and thus the program's internal representation can be inferred just by
reading the program itself. This property is often summarized by saying that the
language treats code as data."—W

• All Lisps are fundamentally homoiconic.
• Is Java homoiconic?
• Is Python homoiconic?
• Is Prolog homoiconic?

"Homoiconic"

CSC 372 Spring 2023, Racket Slide 154

Experiments:
?- display(member(X,[_|T]) :- member(X,T)).
:-(member(_4052,[_4046|_4048]),member(_4052,_4048))
true.

?- atom_chars('test',C),member(E,C),writeln(E),fail.
t
e
s
t
false.

?- display((atom_chars('test',C),member(E,C),writeln(E),fail)).
','(atom_chars(test,_4164),','(member(_4168,_4164),','(writeln(_4168),fail)))
true.

Sidebar: Is Prolog homoiconic?

CSC 372 Spring 2023, Racket Slide 155

Binary trees
(adapted from Dr. Collberg's slides)

CSC 372 Spring 2023, Racket Slide 156

REPLACEMENTS!
Discard 156-157 in prior set

Here's a binary tree:

Can we represent it with a Racket list?
(4 (2 () ()) (6 (5 () ()) ()))

How about with a Python list?
[4, [2, [], []], [6, [5, [], []], []]] (more text than Racket...)

Binary trees with lists

CSC 372 Spring 2023, Racket Slide 157

2 6

4

5() () ()

() ()

A little more readable:
(4

(2
()
())

(6
(5

()
())

()))

Our tree:
> t
'(4 (2 () ()) (6 (5 () ()) ()))

What do these values represent?
> (car t)
4
> (cadr t)
'(2 () ())
> (caddr t)
'(6 (5 () ()) ())

Let's write some accessors:
(define (key tree) (car tree))
(define (left tree) (cadr tree))
(define (right tree) (caddr tree))

Accessors for our tree

CSC 372 Spring 2023, Racket Slide 158

Let's use them...
> (key (left t))
2
> (right t)
'(6 (5 () ()) ())

How can we get the 5?
> (key (left (right t)))
5

Bug

Let's write an in-order traversal procedure:
> (in-order empty)
> (in-order '(7 () ()))
7
> (in-order '(4 (2 () ()) (6 (5 () ()) ())))
2 4 5 6

Solution:
(define (in-order tree)

(cond
((null? tree) (void))

(else
(in-order (left tree))
(printf "~a " (key tree))
(in-order (right tree)))))

CSC 372 Spring 2023, Racket Slide 159

Let's write a "pretty-printer" for our trees:
> (print-tree t)
4

2
6

5

Here it is; how does it work?
(define (print-tree tree [depth 0])
(cond
[(null? tree) (void)]
[else

(display (make-string depth #\))
(display (key tree))
(newline)
(print-tree (left tree) (+ depth 3))
(print-tree (right tree) (+ depth 3))]))

A pretty-printer for trees

CSC 372 Spring 2023, Racket Slide 160

Let's write insert for our trees:
> (insert 5 '())
'(5 () ())

> (insert 3 ^)
'(5 (3 () ()) ())

> (insert 10 ^)
'(5 (3 () ()) (10 () ()))

> (insert 1 ^)
'(5 (3 (1 () ()) ()) (10 () ()))

> (print-tree ^)
5

3
1

10

Insertion into trees

CSC 372 Spring 2023, Racket Slide 161

Let's walk through a solution:
(define (insert value tree)
(cond
[(empty? tree) (void)

(list value '() '())]
[(< value (key tree))

(list (key tree)
(insert value (left tree))
(right tree))]

[(> value (key tree))
(list (key tree)

(left tree)
(insert value (right tree)))]

[else
(printf "ignored: ~a\n" value) tree]))

Association lists

CSC 372 Spring 2023, Racket Slide 162

A commonly used Lisp data structure is an association list:
> (define A '((one . 1) (two . 2) (three . 3)))
> A
'((one . 1) (two . 2) (three . 3))

The procedure (assoc value list) searches list for a pair whose car is equal? to value.
> (assoc 'one A)
'(one . 1)

> (assoc 'two A)
'(two . 2)

> (assoc 'four A)
#f

Association lists

CSC 372 Spring 2023, Racket Slide 163

Here's another association list:
> denoms
'((pennies . 1) (nickels . 5) (dimes . 10) (quarters . 25))

Problem: Write a procedure that will compute the total number of cents for some coins.
Assume denoms is a global variable.

> (total '(2 nickels 3 pennies 2 quarters))
63
> (total '(7 pennies 3 dimes))
37

We'll live with awkward wording:
> (total '(1 quarters 1 pennies 1 dimes))
36

Association lists, continued

CSC 372 Spring 2023, Racket Slide 164

Given:
> denoms
'((pennies . 1) (nickels . 5) (dimes . 10) (quarters . 25))

Desired:
> (total '(2 nickels 3 pennies 2 quarters))
63

Solution:
(define (total L)

(if (empty? L) 0
(let* [(count (car L))

(coin (cadr L))
(info (assoc coin denoms))]

(+ (* count (cdr info)) (total (cddr L))))))

Association lists, continued

CSC 372 Spring 2023, Racket Slide 165

The pairs in an association list need not be be dotted pairs:
> items
'((antfarm "Ant Farm" 24.95) (twinkies "Twinkies" 2.75) (hamster "Hamster" 9.25))

Problem: Write a lookup procedure that assumes items is a global.
> (lookup 'antfarm)
"Ant Farm: $24.95"

> (lookup 'tiger)
"Not found"

Association lists, continued

CSC 372 Spring 2023, Racket Slide 166

(define (lookup item)
(let
(if match

(format "~a: $~a"
(cadr match)
(caddr match))

"Not found")))

Fill in the binding(s) for the let!

([match (assoc item items)])

More association lists:
(define bands

'(('black . 0) ('brown . 1) ('red . 2) ('orange . 3) ('yellow . 4)
('green . 5) ('blue . 6) ('violet . 7) ('grey . 8) ('white . 9)))

(define dir-to-offset ; from travel.hs, the robot moving around on a grid
'((north . (0 . 1)) (south . (0 . -1)) (east . (1 . 0)) (west . (-1 . 0))))

Racket has a roomba package. Here's one of its procedures:
> (decode-roomba-manufacturing-code "JEN041100610060012345")
'((manufacturer . jetta)
(status . new)
(model . 4110)
(date . #(2006 10 6)) ; A vector! Coming soon!
(rev . 0)
(serial . 12345))

More examples

CSC 372 Spring 2023, Racket Slide 167

assoc has these arguments: (assoc value lst [is-equal?]) where is-equal? is a
predicate that defaults to equal?.

Racket has a number of "indelicately named" built-in procedures related to association
lists:
• (assw value lst) uses equal-always? for comparison. (Related to mutability...)

• (assv value lst) uses eqv? for comparison.

• (assq value lst) uses eq? for comparison.

• (assf proc lst) matches when (proc (car pair)) returns true.

How many of these do we really need? Why so many?

Sidebar: Minimalism in library design

CSC 372 Spring 2023, Racket Slide 168

Lists and mutability

CSC 372 Spring 2023, Racket Slide 169

In Scheme, lists are mutable!
% chezscheme
Chez Scheme Version 9.5
> (define L '(a b c d e))
> L
(a b c d e)

> (set-car! L 'x) ; "list surgery"
> L
(x b c d e)

> (set-cdr! L '(3 4 5))
> L
(x 3 4 5)

> (set-cdr! (cdddr L) '(10 20 30))
> L
(x 3 4 5 10 20 30)

Racket lists are immutable, but...

CSC 372 Spring 2023, Racket Slide 170

> (set-cdr! (cddr L) L)
> L
Warning in pretty-print: cycle detected;
proceeding with (print-graph #t)

#0=(x 3 4 . #0#)

> (list-ref L 2)
4
> (list-ref L 3)
x
> (list-ref L 4)
3
> (list-ref L 5)
4
> (list-ref L 6)
x

blog.racket-lang.org/2007/11/getting-rid-of-set-car-and-set-cdr.html

https://blog.racket-lang.org/2007/11/getting-rid-of-set-car-and-set-cdr.html

>>> L = [10, 20, 30]

>>> L.append(L)
>>> L
[10, 20, 30, [...]]

>>> len(L)
4

>>> L[-1]
[10, 20, 30, [...]]

>>> L[-1][1]
20

Sidebar: Python lists can be cyclic, too!

CSC 372 Spring 2023, Racket Slide 171

>>> L.append(40)

>>> L
[10, 20, 30, [...], 40]

>>> L[0] = L
>>> L
[[...], 20, 30, [...], 40]

[,10, 20, 30, ,40]

L

Vectors

CSC 372 Spring 2023, Racket Slide 172

R6RS says,
"Vectors, like lists, are linear data structures, representing finite sequences of arbitrary
objects. Whereas the elements of a list are accessed sequentially through the chain of
pairs representing it, the elements of a vector are addressed by integer indices. Thus,
vectors are more appropriate than lists for random access to elements."

> (define v (make-vector 3 7)) v
'#(7 7 7)

> (vector-set! v 0 '(a b)) v
'#((a b) 7 7)

> (vector-length v)
3

> (vector-ref v 2) (car (vector-ref v 0))
7
'a

Vector basics

CSC 372 Spring 2023, Racket Slide 173

> (vector->list v)
'((a b) 7 7)

What does the following tell us?
> (immutable? #(5 3))
#t

> (immutable? (vector 5 3))
#f

Imagine a game that uses an association list to represent players, with each player having
two numeric attributes, "attack" and "health" that can change over time:

> (define players (list (cons 'a (vector 3 12)) (cons 'b (vector 2 9))))
> players
'((a . #(3 12)) (b . #(2 9)))

Let's imagine an accessor and a
mutator for a player's health:

> (get-health 'b)
9

> (adjust-health 'b -5)
> (get-health 'b)
4

Key point: Vectors can be put in immutable objects to provide fields we can change.

Association list + vectors

CSC 372 Spring 2023, Racket Slide 174

Implementation:
(define (get-health player)

(let ([stats (cdr (assoc player players))])
(vector-ref stats 1)))

(define (adjust-health player adj)
(let ([stats (cdr (assoc player players))])

(vector-set!
stats 1 (+ (vector-ref stats 1) adj))))

Imagine a procedure that splits up a string and groups its words by length into a vector of lists:
> (by-length "now a test of it with this" 5)
'#(() ("a") ("it" "of") ("now") ("this" "with" "test") ())

0 1 2 3 4 5 (vector indices/word lengths)

The second argument specifies the maximum word length. Any words exceeding the
maximum go into element zero:

> (by-length "now a test of it with this" 3)
'#(("this" "with" "test") ("a") ("it" "of") ("now"))

How can we approach it?

Example: by-length

CSC 372 Spring 2023, Racket Slide 175

Let's make a vector of five empty lists:
> (define v (make-vector 5 empty))
> v
'#(() () () () ())

Let's add "test" to the fourth list:
> (vector-set! v 4 (cons "test" (vector-ref v 4)))
> v
'#(() () () () ("test"))

How can we add "this" to the fourth list?
> (vector-set! v 4 (cons "this" (vector-ref v 4)))
> v
'#(() () () () ("this" "test"))

What if we didn't want the order reversed?
> (vector-set! v 4 (append (vector-ref v 4) (list "this")))

by-length, continued

CSC 372 Spring 2023, Racket Slide 176

Wanted:
> (by-length "now a test of it with this" 5)
'#(() ("a") ("it" "of") ("now") ("this" "with" "test") ())

> (by-length "now a test of it with this" 3)
'#(("this" "with" "test") ("a") ("it" "of") ("now"))

Solution:
(define (by-length s maxlen)

(define words-by-len (make-vector (add1 maxlen) empty))
(for ([w (string-split s)])

(let* ([len (string-length w)]
[pos (if (<= len maxlen) len 0)]
[current (vector-ref words-by-len pos)])

(vector-set! words-by-len pos (cons w current))))
words-by-len)

Key point: We started with a vector of empty lists and repeatedly replaced, with vector-set!,
a given list L with (cons new-element L).

by-length, continued

CSC 372 Spring 2023, Racket Slide 177

Imagine a program that sorts its input character by character:

% echo anthropomorphologically | racket csort.rkt

aacghhilllmnooooopprrty%
% echo to be or not to be | racket csort.rkt

bbeenoooorttt%
%

First, where are those blank lines coming from? And why is my Bash prompt appearing
at the end of two lines?

How can we approach it?

Simple utility: Character sorting

CSC 372 Spring 2023, Racket Slide 178

Here's the solution. How does it work?
(define (build-char-counts)

(let ([counts (make-vector #x10FFFF)])
(for ([c (in-port read-char)])

(let ([i (char->integer c)])
(vector-set! counts i (add1 (vector-ref counts i)))))

counts))

(define (show-chars counts)
(for ([pos (vector-length counts)])

(for ([n (vector-ref counts pos)])
(write-char (integer->char pos)))))

(show-chars (build-char-counts))

What's big-O for this sort?

Character sorting, continued

CSC 372 Spring 2023, Racket Slide 179

Recall R6RS:
"Vectors, like lists, are linear data structures, representing finite sequences of arbitrary
objects. Whereas the elements of a list are accessed sequentially through the chain of
pairs representing it, the elements of a vector are addressed by integer indices. Thus,
vectors are more appropriate than lists for random access to elements."

A simple experiment...
> (define L (range 50000000)) ; 50 million
> (time (list-ref L 49999999))
cpu time: 269 real time: 274 gc time: 0
49999999

> (define v (list->vector L))
> (time (vector-ref v 49999999))
cpu time: 0 real time: 0 gc time: 0
49999999

Experiment: vector vs. list access time

CSC 372 Spring 2023, Racket Slide 180

Two catch-ups!
("named let", and a little lambda)

CSC 372 Spring 2023, Racket Slide 181

Loops with "named let"

CSC 372 Spring 2023, Racket Slide 182

This is an example of a "named let":
(let loop ([n 3])

(if (= n 0)
(displayln "Done!")
(begin

(printf "~a...\n" n)
(loop (sub1 n)))))

Execution:
3...
2...
1...
Done!

What's the idea of it? (Don't peek ahead!)

"named let"

CSC 372 Spring 2023, Racket Slide 183

At hand:
(let loop ([n 3])

(if (zero? n)
(displayln "Done!")
(begin

(printf "~a...\n" n)
(loop (sub1 n)))))

A named let is essentially a let that's a loop implemented with an implicit recursive
procedure.

Operation:
• loop gets bound to a procedure with one parameter, n
• That procedure is initially called with 3
• (loop (sub1 n)) is a recursive call to that procedure
• if n is zero, (displayln "Done!") is evaluated and becomes the value of the let

named let, continued

CSC 372 Spring 2023, Racket Slide 184

Problem: Write a named let that will print the elements in a list values, numbering
them:

> values
'(some symbols here)
> (let loop ...your code here...)
1: some
2: symbols
3: here

Solution:
(let loop ([pos 1][lst values])

(if (empty? lst) (void)
(begin

(printf "~a: ~a\n" pos (car lst))
(loop (add1 pos) (cdr lst)))))

Could we have just used a for instead?

Problem

CSC 372 Spring 2023, Racket Slide 185

In essence, a named let gives us a way to put a loop into the middle of some code.

Here's a procedure from /usr/local/racket/collects/racket/format.rkt:
(define (number->string* N base upper?)
(cond

[(memv base '(2 8 10 16))
(let ([s (number->string N base)])
(if (and (= base 16) upper?) (string-upcase s) s))]

[(zero? N) (string #\0)]
[else
(let loop ([N N] [digits null])
(cond [(zero? N) (apply string digits)]

[else (let-values ([(q r) (quotient/remainder N base)])
(loop q (cons (get-digit r upper?) digits)))]))]))

Would a helper function be better or worse than the named let?

In essence...

CSC 372 Spring 2023, Racket Slide 186

(a little) lambda

CSC 372 Spring 2023, Racket Slide 187

The lambda special form creates an anonymous procedure:
> (lambda (n) (* n 2))
#<procedure>

> (^ 7)
14

In general, everything we learned about anonymous functions/lambda expressions in
Haskell and Python carries over to lambda in Racket.

Haskell: \n -> n * 2
Python: lambda n: n * 2

What's the following code doing?
((lambda (a b c) (+ a (* b c))) 3 4 5)

lambda

CSC 372 Spring 2023, Racket Slide 188

Did I really need to show you how to create procedures with define?
(define (add a b)

(+ a b))

Nope!
(define add

(lambda (a b)
(+ a b)))

This works, too:
(define add

(λ (a b)
(+ a b)))

lambda, continued

CSC 372 Spring 2023, Racket Slide 189

Recall that sort requires a comparison procedure:
> (sort '(b a c d e) symbol<?)
'(a b c d e)

Problem: Using a lambda, sort a list of words by decreasing length.
> (sort (string-split "the words to sort are these")

(lambda ...))

Solution:
> (sort (string-split "the words to sort are these")

(lambda (s1 s2) (> (string-length s1) (string-length s2))))

lambda, continued

CSC 372 Spring 2023, Racket Slide 190

Macros

CSC 372 Spring 2023, Racket Slide 191

The C preprocessor provides a macro facility.
$ cat macros.c
#include <stdio.h>
#include <limits.h>

#define abs(x) ((x) < 0 ? -(x) : (x))
#define iprint(e) printf(#e " = %d\n", (e))

int main()
{

iprint(3+4);
iprint(INT_MAX);
iprint(abs('a' - 'z'));

}

Something familiar to many: The C preprocessor

CSC 372 Spring 2023, Racket Slide 192

Execution:
$ gcc macros.c && ./a.out
3+4 = 7
INT_MAX = 2147483647
abs('a' - 'z') = 25

Try gcc –E macros.c, too!

I'd like to be able to create a variable and initialize it to zero like this:
> (zero x)
> x
0

Would zero need to be a special form? Why or why not?
It needs to be a special form. It doesn't evaluate the subform x.

A very simple macro

CSC 372 Spring 2023, Racket Slide 193

Wanted—create a variable and initialize it to zero:
> (zero x)
> x
0

We can define a special form zero like this:
(define-syntax-rule

(zero var) (define var 0))

We've now defined zero as a new syntactic keyword and specified its expansion.

We say that zero is a macro.

zero, continued

CSC 372 Spring 2023, Racket Slide 194

At hand:
(define-syntax-rule

(zero var) (define var 0))

• The first argument of define-syntax-rule specifies a pattern: (zero var)

• var is a pattern variable.

• The second argument specifies a template: (define var 0).

When the compiler sees
(zero x)

the pattern is matched, var is given the value x and (zero x) is replaced with
(define x 0)

zero, continued

CSC 372 Spring 2023, Racket Slide 195

zero is not a procedure! zero is new keyword, on equal footing with let, if, cond and
more.

> zero
string:1:0: zero: bad syntax

> (zero)
string:1:0: zero: bad syntax

> (zero x y)
string:1:0: zero: bad syntax

> (zero 7)
string:1:6: define: bad syntax
in: (define 7 0)

zero, continued

CSC 372 Spring 2023, Racket Slide 196

At hand:
(define-syntax-rule

(zero var) (define var 0))

With XREPL we can see the expansion of a macro using the ,stx command:
> ,stx (zero total) ! Note: Does not work in Dr. Racket!
; Syntax set
; expand ->
; (define-values (total) '0)

Any surprises?

zero, continued

CSC 372 Spring 2023, Racket Slide 197

define is itself a macro!
> ,stx (define somevar 25) !
; Syntax set
; expand ->
; (define-values (somevar) '25)

Whenever we use the special form define, Racket is transforming that code into new
code that uses define-values, a more general special form!

Three steps:
(zero x)
(define x 0)
(define-values (x) '0)

define-values is said to be a core form.

zero, continued

CSC 372 Spring 2023, Racket Slide 198

We can add an asterisk to the ,stx command to see the intermediate steps
> ,stx (zero total) * !
; Syntax set
; Stepper:
; ---- Macro transformation ----
; (zero total)
; ==>
; (define:1 total 0)
; expand ->
; (define-values (total) '0)

(Try it with two asterisks, too: ,stx (zero total) ** !)

zero, continued

CSC 372 Spring 2023, Racket Slide 199

Let's see if if is a macro:
> ,stx (if 1 2 3) !
; expand ->
; (if '1 '2 '3)

How about and?
> ,stx (and (< 1 2) (> 3 4) (= 5 6)) !
; Syntax set
; expand ->
; (if (< '1 '2) (if (> '3 '4) (= '5 '6) '#f) '#f)

I lied! In fact, the final result is this:
; (if (#%app < '1 '2) (if (#%app > '3 '4) (#%app = '5 '6) '#f) '#f)

I'll elide #%apps in these examples.

Sidebar: Macros among us!

CSC 372 Spring 2023, Racket Slide 200

Note:
> '3
3
> (number? '3)
#t
> (symbol? '3)
#f

Here's or:
> ,stx (or (< 1 2) (> 3 4) (= 5 6) (zero? 7)) !
; Syntax set
; expand ->
; (let-values (((or-part) (< '1 '2)))

(if or-part
or-part
(let-values (((or-part) (> '3 '4)))
(if or-part
or-part
(let-values (((or-part) (= '5 '6)))
(if or-part or-part (zero? '7)))))))

Macros among us, continued!

CSC 372 Spring 2023, Racket Slide 201

Let's try our sign procedure:
> ,stx (define (sign n)

(cond
((< n 0) -1)
((zero? n) 0)
(else 1))) !

(define-values
(sign)
(lambda (n) ; an anonymous function...
(if (< n '0)
(let-values () '-1)
(if (zero? n) (let-values () '0) (let-values () '1)))))

Speculate: How many lines does the seven-line wc procedure on slide 97 expand into?
78 lines

Macros among us, continued!

CSC 372 Spring 2023, Racket Slide 202

April 15, 2023
Dear Mom and Dad,

I'm not sure if I like it here at Camp Racket. Everywhere I look there are
parentheses! (And I mean EVERYWHERE!!)

I really miss some things, too, like the += operator we have at home in
Javatown. I sure wish I could do something like this:

> (define a 10)
> (+= a 5)
> a
15
> (+= a (* 3 4))
> a
27

Your son,
Cuthbert

Homesick!

CSC 372 Spring 2023, Racket Slide 203

Let's help, by writing a += procedure to send to Cuthbert!

% cat plus-equal.rkt
#lang racket

(define (+= var value)
(set! var (+ var value)))

% rk/i plus-equal.rkt
Welcome to Racket v8.5 [cs].
"plus-equal.rkt"> (define a 10)
"plus-equal.rkt"> (+= a 5)
"plus-equal.rkt"> a
10

Are we ready to mail it to Camp Racket?

Homesick, continued

CSC 372 Spring 2023, Racket Slide 204

Could we use a macro?

With a macro, what should (+= a 5) expand into?
(set! a (+ a 5))

A += macro:
(define-syntax-rule

(+= var value) (set! var (+ var value)))

What's the pattern?
(+= var value)

What are the pattern variables?
var and value

What's the template?
(set! var (+ var value))

Homesick, continued

CSC 372 Spring 2023, Racket Slide 205

At hand:
(define-syntax-rule

(+= var value) (set! var (+ var value)))

Usage:
> (define a 10)
> (+= a 5)
> a
15

> ,stx (+= a 5) !
; expand ->
; (set! a (+ a '5))

Homesick, continued

CSC 372 Spring 2023, Racket Slide 206

Does our += behave exactly like Java's += ?
jshell> int a = 10

jshell> System.out.println(a += 5)
15

jshell> int b = a += 3

jshell> /var
| int a = 18
| int b = 18

For reference:
(define-syntax-rule

(+= var value) (set! var (+ var value)))

Homesick, continued

CSC 372 Spring 2023, Racket Slide 207

Ours...
> (define a 10)
> (displayln (+= a 5))
#<void>

> (define b (+= a 3))
> a b
18

> (cons a b)
'(18 . #<void>)

At hand:
(define-syntax-rule

(+= var value) (set! var (+ var value)))

> a
7
> (displayln (+= a 5))
#<void>

How does the behavior of our += differ from Java and C?
It produces #<void> instead of the value assigned.

How can we fix it? (Don't peek ahead!)

+=, continued

CSC 372 Spring 2023, Racket Slide 208

Version 1:
(define-syntax-rule

(+= var value) (set! var (+ var value)))

Version 2:
(define-syntax-rule

(+= var value)
(let ([result (+ var value)])

(set! var result)
result))

What's the pattern? What's the template?

+=, continued

CSC 372 Spring 2023, Racket Slide 209

Consider the task of swapping the value of two variables.

Python: x,y = y,x

Icon: x :=: y // :=: is the "swap" operator

C: swap(&x, &y) // Pointers...

C++: swap(x, y) // Uses "references"

Java: x = x + y; // Assuming integers...
y = x - y;
x = x - y;

JavaScript: [x, y] = [y, x]

Problem: Write (swap x y) for Racket

"swap" in six languages

CSC 372 Spring 2023, Racket Slide 210

Wanted: A swap special form.
> x y
'xylophone
25
> (swap x y)
> x y
25
'xylophone

Solution, from The Racket Guide:
(define-syntax-rule

(swap v1 v2) (let ([tmp v1])
(set! v1 v2)
(set! v2 tmp)))

swap

CSC 372 Spring 2023, Racket Slide 211

Imagine a while loop for Racket:
> (zero a)
> (while (< a 10) (displayln a) (+= a 3))
0
3
6
9

How could we build it?

while

CSC 372 Spring 2023, Racket Slide 212

Wanted:
(while (< a 10) (displayln a) (+= a 3))

First, let's just write out the desired expansion. We'll use a named-let:
(let loop ()

(if (< a 10)
(begin

(displayln a)
(+= a 3)
(loop))

(void)))

while, continued

CSC 372 Spring 2023, Racket Slide 213

We'll let our while have zero or more forms after the condition:
(while (< a 10) (displayln a) (+= a 3))
(while (f))
(while (> x y) (f x y) (g x) (x += 5) (h x y))

Our while requires another element of pattern and template syntax, an ellipsis (...).
(define-syntax-rule

(while condition expr ...)
(let loop ()

(if condition
(begin

expr ...
(loop))

(void))))

Above, expr and ... are inseparable!

while, continued

CSC 372 Spring 2023, Racket Slide 214

Desired expansion for first case above...
(let loop ()
(if (< a 10)

(begin
(displayln a)
(+= a 3)
(loop))

(void)))

Have you ever done this?
System.out.println("x: " + x);

Let's write a show macro that will show both an expression and its value:
> (show x)
x: 7

> (show (+ x (* x 3)))
(+ x (* x 3)): 28

Solution:
(define-syntax-rule (show expr)

(printf "~a: ~a\n" 'expr expr))

Key point: we only need to specify the expression once, not twice!

Does Eclipse or IntelliJ give us a way to generate code like the println at top?

A show macro

CSC 372 Spring 2023, Racket Slide 215

Let's generalize show to allow any number of expressions:
> (show x (* x 2) (/ x 2))
x: 7
(* x 2): 14
(/ x 2): 7/2

The solution has a couple of new elements, but here it is:
(define-syntax show

(syntax-rules ()
[(show expr) (printf "~a: ~a\n" 'expr expr)]
[(show expr exprs ...) (begin

(show expr)
(show exprs ...))]))

What can we understand about it?

show, continued

CSC 372 Spring 2023, Racket Slide 216

Here are and and or from Dybvig. Note the multiple cases and recursive patterns.
What do the underscores mean?

(define-syntax and
(syntax-rules ()
[(_) #t]
[(_ e) e]
[(_ e1 e2 e3 ...)
(if e1 (and e2 e3 ...) #f)]))

(define-syntax or
(syntax-rules ()
[(_) #f]
[(_ e) e]
[(_ e1 e2 e3 ...)
(let ([t e1]) (if t t (or e2 e3 ...)))]))

and and or

CSC 372 Spring 2023, Racket Slide 217

Here is let defined as a lambda:
(define-syntax let
(lambda (x)
(define ids?
(lambda (ls)
(or (null? ls)

(and (identifier? (car ls))
(ids? (cdr ls))))))

(syntax-case x ()
[(_ ((i e) ...) b1 b2 ...)
(ids? #'(i ...))
#'((lambda (i ...) b1 b2 ...) e ...)])))

Notes:
Lists of identifiers and expressions are referenced separately with

i ... and b ...
The procedure ids? ensures that all would-be identifiers are so.

Industrial strength...

CSC 372 Spring 2023, Racket Slide 218

(let ((x 3) (y 4)) (+ x y))

From /usr/local/racket/collects/racket/list.rkt:
(define-syntax define-lgetter
(syntax-rules ()
[(_ name npos)
(define (name L0)
(if (list? L0)
(let loop ([L L0] [pos npos])
(if (pair? L)
(if (eq? pos 1) (car L) (loop (cdr L) (sub1 pos)))
(raise-arguments-error 'name

"list contains too few elements"
"list" L0)))

(raise-argument-error 'name "list?" L0)))]))

> (define-lgetter fifty-third 53)
> (fifty-third (range 100))
52

second, third, ... tenth

CSC 372 Spring 2023, Racket Slide 219

(define-lgetter second 2)
(define-lgetter third 3)
(define-lgetter fourth 4)
(define-lgetter fifth 5)
(define-lgetter sixth 6)
(define-lgetter seventh 7)
(define-lgetter eighth 8)
(define-lgetter ninth 9)
(define-lgetter tenth 10)SKIP!

Imagine a repeat macro that repeatedly evaluates one or more forms some
number of times:

> (repeat 3 (displayln 'hello))
hello
hello
hello

> (define x 0)
> (repeat 3 (displayln 'adding...) (+= x 5))
adding...
adding...
adding...
> x
15

The "capture" problem with macros

CSC 372 Spring 2023, Racket Slide 220

Implementation:
(define-syntax-rule

(repeat n expr ...)
(let ([i 1])

(while (<= i n)
expr ...
(+= i 1))))

Consider the following usage,
> (define i 0)
> (repeat 3 (+= i 5))

and an expansion of the repeat:
(let ([i 1])

(while (<= i 3)
(+= i 5))
(+= i 1)))

Which uses of i refer to which definitions of i?!

The binding for i established by the let "captures" the i used in (+= i 5).

How could we avoid this capturing in the above case? (Don't peek!)

"capture", continued

CSC 372 Spring 2023, Racket Slide 221

For reference:
(define-syntax-rule

(repeat n expr ...)
(let ([i 1])

(while (<= i n)
expr ...
(+= i 1))))

We could use a less-common name than i for our loop counter:
(define-syntax-rule

(repeat n expr ...)
(let ([repeat-macro-loop-ctr 1])

(while (<= repeat-macro-loop-ctr n)
expr ...
(+= repeat-macro-loop-ctr 1))))

Expansion of (repeat 3 (+= i 5)):
(let ([repeat-macro-loop-ctr 1])

(while (<= repeat-macro-loop-ctr n)
(+= i 5)
(+= repeat-macro-loop-ctr 1))))

Ugly, but little chance of capture!

"capture", continued

CSC 372 Spring 2023, Racket Slide 222

Let's observe the bug that the "capture" of i creates:
> (define-syntax-rule

(repeat n expr ...)
(let ([i 1])

(while (<= i n)
expr ... ; becomes (+= i 5)
(+= i 1))))

> (define i 0)
> (repeat 3 (+= i 5))
> i
15

Your thoughts?

"capture", continued

CSC 372 Spring 2023, Racket Slide 223

Scheme (and Racket) have "hygienic" macros!

There's considerable machinery involved but hygienic macros guarantee that names in
expansions are processed in the scope of their origin.

For the expansion of (repeat 3 (+= i 5)), we had this naive view:
(let ([i 1])

(while (<= i 3)
(+= i 5))
(+= i 1)))

In fact, when Racket expands a macro, it maintains information about the scope (and more)
in which the macro call appeared. It knows that the i in (+= i 5)) is not the same i as the
others!

The bottom line is that in Racket, our repeat macro works as-is!

Hygienic macros

CSC 372 Spring 2023, Racket Slide 224

Racket's macro system is said to be its crown jewel.

Two good papers:
Hygienic Macro Expansion by Eugene Kohlbecker, Daniel P. Friedman, Matthias
Felleisen, and Bruce Duba. In Proceedings of the 1986 ACM Conference on Lisp and
Functional Programming

prl.khoury.northeastern.edu/img/kffd-tr-1986.pdf

Writing Hygienic Macros in Scheme with Syntax-Case by Kent Dybvig (1992)
legacy.cs.indiana.edu/ftp/techreports/TR356.pdf

Borrowing from Richard Feynman's "cataclysm question"...
Q: "If you could only tell me one thing about learning Racket, what would it be?"
A: "Understand hygienic macros."—Andrew Maurer-Oats

(Feynman's question: huffpost.com/entry/if-i-could-pass-on-one-se_b_3462335 and
thecomplexityproject.com/richard-feynman-and-the-cataclysmic-question.)

Hygienic macros, continued

CSC 372 Spring 2023, Racket Slide 225

https://prl.khoury.northeastern.edu/img/kffd-tr-1986.pdf
https://legacy.cs.indiana.edu/ftp/techreports/TR356.pdf
https://www.huffpost.com/entry/if-i-could-pass-on-one-se_b_3462335
https://thecomplexityproject.com/richard-feynman-and-the-cataclysmic-question

Here's an example of using the do special form. How would you describe its behavior?
> L
'(31 17 23 99)
> (do ([i 1 (add1 i)] [lst L (cdr lst)])

((empty? lst) (displayln "Done!") "do's value")
(printf "~a: ~a\n" i (car lst)))

1: 31
2: 17
3: 23
4: 99
Done!
"do's value"

Could we implement it with a macro?

Sidebar: A profusion of control structures

CSC 372 Spring 2023, Racket Slide 226

SKIP!

• For iteration we've got recursion, named let, 50+ variants of for, we wrote while
ourselves, and there's a do-loop, too!

• For conditionals we've seen if and cond but two more are these:
(when (zero? x) (displayln "It's zero!") ...)
(unless (empty? L) (process L) ...)

• Cooking up a new control structure is no big deal in Lisp!
What facilitates this?

Syntax is simply forms enclosed in parentheses.
The idea of special forms and implementation with macros.

• But there's little inertia against proliferation!
Good or bad?

Too many control structures?

CSC 372 Spring 2023, Racket Slide 227

In general, programming language macros are source code rewriting rules, with varying
levels of complexity and implementation approaches.

Macros originated with assembly language programming.

Many languages have macro facilities:
• C, C++, PL/I, Prolog, Julia, Rust, Scala, many others, and most Lisps.
• C is on the low end; Racket is on the high end
• Tools like m4 can be used with any language (but line number issues...)
• Popularity waned with language designers but seems to be coming back.

Lots of pros and cons with macros!
• A syntactic sugar machine!
• Provide great flexibility
• Easy to get carried away
• Complicates support in debuggers, IDEs, etc.—just about every tool, in fact!

Macros in general

CSC 372 Spring 2023, Racket Slide 228

Higher-order Procedures

CSC 372 Spring 2023, Racket Slide 229

The apply procedure can be used to apply a procedure to a list of values:
> (apply + '(7 2 3)) ; like (+ 7 2 3)
12

Problem: Write a procedure to compute the mean of a non-empty list of numbers.
> (mean '(95.3 90 100 92.8 73))
90.22

Solution:
(define (mean values)

(/ (apply + values) (length values) 1.0))

apply

CSC 372 Spring 2023, Racket Slide 230

There is a built-in max procedure:
> ,desc max
...
; (max x ...+) -> real?
; x : real?

Let's try it:
> (max '(3 1 5))
max: contract violation
expected: real?

What's wrong?
max finds the maximum value of its arguments, not the maximum value in a list.
> (max 3 1 5)
5

apply, continued

CSC 372 Spring 2023, Racket Slide 231

How can we use max to find the largest value in the list L?
> L
'(10/9 7/5 9/2 1/4 14/3 5/13 3/2 13/6 2/7 1/11 11/12 6/5 3/7)

Solution:
> (apply max L)
14/3

Consider the contrast between the Racket and Haskell mechanisms (below) for finding a
maximum value:

> :t max
max :: Ord a => a -> a -> a

> :t maximum
maximum :: (Foldable t, Ord a) => t a -> a (like Ord a => [a] -> a)

apply, continued

CSC 372 Spring 2023, Racket Slide 232

Problem: Write a procedure to see if a list of numbers is in sorted order, either ascending
or descending.

> (ordered? '(3 1 2))
#f
> (ordered? '(3 2 1))
#t
> (ordered? '(1 2 2))
#t

Solution:
(define (ordered? values)

(or (apply <= values) (apply >= values)))

apply, continued

CSC 372 Spring 2023, Racket Slide 233

What does the following demonstrate about apply?
> (apply + 1 2 '(3))
6

> (apply + 1 2 3 empty)
6

apply can be called with individual values followed by a list of values.

apply, continued

CSC 372 Spring 2023, Racket Slide 234

Racket has a map procedure. Let's try it!
> (map string-length (string-split "a few words here"))
'(1 3 5 4)

> (map / '(2 3 4 5))
'(1/2 1/3 1/4 1/5)

> (map string (string->list "test"))
'("t" "e" "s" "t")

> (apply + (map (lambda (n) (* n n)) (range 1 6)))
55

(string-join (map string (map integer->char (range #x2654 #x265f))))
"♔♕♖♗♘♙♚♛♜♝♞"

map

CSC 372 Spring 2023, Racket Slide 235

Problem: Write a procedure to see if all lists in a list of lists are the same length.
> (same-lengths? '((3 1) (5 8) (3 5)))
#t
> (same-lengths? '((3 1) (5 8) (3 5 2)))
#f

Solution:
(define (same-lengths? L)

(apply = (map length L)))

map, continued

CSC 372 Spring 2023, Racket Slide 236

What do these examples tell us about map?
> (map + '(2 5 7) '(3 1 3))
'(5 6 10)

> (map cons '(a b c) (map list '(10 20 30)))
'((a 10) (b 20) (c 30))

We can map an N-ary procedure onto N lists!

What happens if lists are of unequal length?
> (map * '(1 2 3) '(4 5 6 7))
map: all lists must have same size

Challenge: Implement map!

map, continued

CSC 372 Spring 2023, Racket Slide 237

What does andmap seem to do?
> (andmap char-numeric? (string->list "91571"))
#t

> (andmap char-numeric? (string->list "555-1212"))
#f

Do we really need andmap? Could we achieve the same result with apply?
> (apply and (map char-numeric? (string->list "91571")))
string:1:7: and: bad syntax

There's ormap, too.

andmap

CSC 372 Spring 2023, Racket Slide 238

Mapping isn't limited to lists!
> (define v (vector 7 1 3 5))
> (vector-map! (lambda (n) (* n n)) v)
'#(49 1 9 25)
> v
'#(49 1 9 25)

> (sequence-map (lambda (n) (* n n)) (in-naturals))
#<stream>
> (sequence-ref ^ 16)
256

> (time (sequence-ref (sequence-map (lambda (n) (* n n)) (in-naturals))
111111111))
cpu time: 115486 real time: 115567 gc time: 755
12345678987654321

More maps

CSC 372 Spring 2023, Racket Slide 239

Here's some documentation for foldl:
> ,desc foldl
...
; (foldl proc init lst ...+) -> any/c
; proc : procedure?
; init : any/c
; lst : list?

How does Racket's foldl differ from Haskell's?
It operates on one or more lists!

Speculate: What are the arguments for proc, the folding procedure?

Folding

CSC 372 Spring 2023, Racket Slide 240

Here's a procedure to help us explore folding:
> (define (show-args . args) (println args))
> (show-args 10 20 30)
'(10 20 30)

Let's try it with foldl and foldr:
> (foldl show-args '(1 10) '(2 20) '(3 30) '(4 40))
'(2 3 4 (1 10))
'(20 30 40 #<void>)

> (foldr show-args '(1 10) '(2 20) '(3 30) '(4 40))
'(20 30 40 (1 10))
'(2 3 4 #<void>)

What does it show?
The second argument for both foldl and foldr is the initial accumulator.
The folding procedure's last argument is the accumulator.

Folding, continued

CSC 372 Spring 2023, Racket Slide 241

For reference:
; (foldl proc init lst ...+)
; proc : procedure?
; init : any/c
; lst : list?

For reference:
(foldl folding-proc init lst ...+)
(foldr folding-proc init lst ...+)
The folding procedure's last argument is accumulator.

Some simple folds:
> (foldl (lambda (val acm) (+ acm val)) 0 '(3 1 5 7))
16

> (foldr (lambda (val acm) (list* val val acm)) empty '(a b c))
'(a a b b c c)

> (foldr (lambda (val acm)
(string-append acm (make-string val #*)))

"Stars: " '(3 1 5))
"Stars: *********"

Folding, continued

CSC 372 Spring 2023, Racket Slide 242

Recall our binary tree insertion procedure:
> (print-tree (insert 1 (insert 3 (insert 7 (insert 5 empty)))))
5

3
1

7

Let's use a fold to more easily test it:
> (print-tree (foldl (lambda (v tree) (insert v tree)) empty '(1 5 3 7 9 4 2)))
1

5
3

2
4

7
9

Would a foldr produce the same result? Would a map work?
CSC 372 Spring 2023, Racket Slide 243

What does the following fold produce?
> (foldr (lambda (a b acm) (cons (/ a b) acm)) '() '(1 2 3) '(4 5 6))
'(1/4 2/5 1/2)

Let's randomly generate a list of fractions for a max example.
> (let ([nums (range 1 15)])

(foldr (lambda (a b acm) (cons (/ a b) acm))
empty (shuffle nums) (shuffle nums)))

'(10/7 2/3 14/11 1 11/2 9/10 13/4 1/3 1 12/13 3/8 8 7/9 1/14)

Let's see if we like a second batch better:
> (let ([nums (range 1 15)])

(foldr (lambda (a b acm) (cons (/ a b) acm))
empty (shuffle nums) (shuffle nums)))

'(6/13 8/11 12/7 5/7 1/2 9/10 1/6 11/9 13 14/3 7/6 5/4 3/5 1/2)

A little fun...

CSC 372 Spring 2023, Racket Slide 244

Recall group.hs from assignment 4:
$ cat a4/group.1
able
academia
algae
carton
fairway
hex
hockshop

Lets write a pure functional version in Racket using higher-order procedures, with no
recursive code.

group.rkt

CSC 372 Spring 2023, Racket Slide 245

Execution:
% runghc group.hs a4/group.1
1 able
2 academia
3 algae

4 carton

5 fairway

6 hex
7 hockshop

First, let's write a procedure to read a file and produce dotted-pairs with line numbers
and line contents:

> (make-pairs "a4/group.1")
'((1 . "able") (2 . "academia") (3 . "algae") (4 . "carton") (5 . "fairway")
(6 . "hex") (7 . "hockshop"))

Here is make-pairs:
(define (make-pairs fname)

(let* ([all-lines (port->lines (open-input-file fname))]
[lines (filter (lambda (s) (> (string-length s) 0)) all-lines)]
[line-nums (range 1 (add1 (length lines)))]
[pairs (map (lambda (n line) (cons n line)) line-nums lines)])

pairs))

group.rkt, continued

CSC 372 Spring 2023, Racket Slide 246

At hand:
> (make-pairs "a4/group.1")
'((1 . "able") (2 . "academia") (3 . "algae") (4 . "carton") (5 . "fairway")
(6 . "hex") (7 . "hockshop"))

Let's envision how a folding procedure, fp, might work:
> (fp '(7 . "hockshop") empty)
'((7 . "hockshop"))

> (fp '(6 . "hex") ^)
'((6 . "hex") (7 . "hockshop"))

> (fp '(5 . "fairway") ^)
'((5 . "fairway") "--------" (6 . "hex") (7 . "hockshop"))

> (fp '(4 . "carton") ^)
'((4 . "carton") "--------" (5 . "fairway") "--------" (6 . "hex") (7 . "hockshop"))

CSC 372 Spring 2023, Racket Slide 247

We want a folding procedure fp that
behaves like this:

> (fp '(7 . "hockshop") empty)
'((7 . "hockshop"))

> (fp '(6 . "hex") ^)
'((6 . "hex") (7 . "hockshop"))

> (fp '(5 . "fairway") ^)
'((5 . "fairway") "--------" (6 . "hex") (7 . "hockshop"))

> (fp '(4 . "carton") ^)
'((4 . "carton") "--------" (5 . "fairway") "--------" (6 . "hex") (7 . "hockshop"))

CSC 372 Spring 2023, Racket Slide 248

Here's fp:
(define (fp pair acm)

(define (first-same? s1 s2)
(char=? (string-ref s1 0) (string-ref s2 0)))

(if (empty? acm)
(list pair)
(if (first-same? (cdr pair) (cdar acm))

(cons pair acm)
(list* pair "--------" acm))))

Let's write a function to print an "entry":
> (print-entry '(7 . "hockshop"))
7 hockshop

> (print-entry "--------")

And finally, a top-level procedure:
> (group "a4/group.1")
1 able
2 academia
3 algae

4 carton

5 fairway
...

CSC 372 Spring 2023, Racket Slide 249

(define (print-entry entry)
(if (pair? entry)

(printf "~a ~a\n" (car entry) (cdr entry))
(displayln entry)))

(define (group fname)
(let ([pairs (make-pairs fname)])

(map print-entry (foldr fp empty pairs))
(void)))

Procedures that produce procedures

CSC 372 Spring 2023, Racket Slide 250

What does negate seem to do? (Not to be confused with not...)
> (map (negate negative?) '(3 -1 -8 5 -2))
'(#t #f #f #t #f)

> (list->string (filter (negate char-whitespace?)
(string->list "is it this or not?")))

"isitthisornot?"

Further exploration:
> (define nz? (negate zero?))
> nz?
#<procedure:...racket/function.rkt:38:11>

> (nz? 5)
#t

Is negate a special form?

negate

CSC 372 Spring 2023, Racket Slide 251

Better example:
(define mutable? (negate immutable?))

Problem: Write negate

Solution:
(define (my-negate p)

(lambda (x) (not (p x))))

Testing:
> (define nz? (my-negate zero?))
> (map nz? '(-1 0 1))
'(#t #f #t)

> (define != (my-negate =))
> (!= 3 4)
my-negate.rkt:3:22: arity mismatch;
the expected number of arguments does not match the given number
expected: 1
given: 2

negate, continued

CSC 372 Spring 2023, Racket Slide 252

For reference:
> (define nz? (negate zero?))
> nz?
> (nz? 5)
#t

Our limited solution:
(define (my-negate p)

(lambda (x) (not (p x))))

How can we negate a variadic procedure?

A general solution:
(define (my-negate proc)

(lambda args
(not (apply proc args))))

Speculate: What does (lambda args ...) do?

Experiment:
> ((lambda args (displayln args)) 1 2 3)
(1 2 3)

negate, continued

CSC 372 Spring 2023, Racket Slide 253

Testing:
> (define != (my-negate =))
> (!= 3 3 4)
#t

Here's Racket's compose:
> (define next-to-last (compose car cdr reverse))
> (next-to-last (string->list "testing"))
#\n

Contrast with Haskell:
> nextToLast = head . tail . reverse
> nextToLast "testing"
'n'

Problem: Using compose, create string-reverse:
> (string-reverse "testing")
"gnitset"

Solution:
(define string-reverse

(compose list->string reverse string->list))

compose

CSC 372 Spring 2023, Racket Slide 254

Here's curry:
> (define (add3 a b c) (+ a b c))
> (curry add3)
#<procedure:curried:add3>

> (^ 3)
#<procedure:curried:add3>

> (^ 4)
#<procedure:curried:add3>

> (^ 5)
12

> ((((curry add3) 10) 20) 30)
60

curry

CSC 372 Spring 2023, Racket Slide 255

More experimentation:
> (procedure-arity add3)
3

> (procedure-arity (curry add3))
'(0 1 2 3)

Which inspires this...
> (map (curry add3 10 20) '(1 2 3))
'(31 32 33)

> (map (curry string-ref "mudge") (range 5))
'(#\m #\u #\d #\g #\e)

> ((((curry add3))))
#<procedure:curried:add3>

curry, continued

CSC 372 Spring 2023, Racket Slide 256

Tail recursion

CSC 372 Spring 2023, Racket Slide 257

Here's one way to recursively sum the numbers in a list in Python:
def sumnums(L):

if L == []:
return 0

else:
return L[0] + sumnums(L[1:])

If on some execution path, the very last computation performed by a function is to call
itself, that call is said to be tail-recursive.

Do either of the execution paths for sumnums exhibit tail recursion?

Could we rewrite sumnums to be tail recursive?

Basics

CSC 372 Spring 2023, Racket Slide 258

Here is a tail-recursive version of sumnums:
def sumnums_tr(L, total):

if L == []:
return total

else:
return sumnums_tr(L[1:], total + L[0])

Usage:
>>> sumnums_tr([1,2,3], 0)
6

How does it work?

Is this version easier to understand?

Does it present any advantages?

Basics, continued

CSC 372 Spring 2023, Racket Slide 259

If a function exhibits tail-recursion, those tail calls can be eliminated and replaced with a
jump/goto.

Let's eliminate that tail call:
def sumnums_tr(L, total):
top:

if L == []:
return total

else:
total = total + L[0]
L = L[1:]
goto top

Does Python have a "goto" statement?

Basics, continued

CSC 372 Spring 2023, Racket Slide 260

Previous version:
def sumnums_tr(L, total):

if L == []:
return total

else:
return sumnums_tr(L[1:], total + L[0])

Python doesn't have a goto* but we could just make an infinite loop:

def sumnums_loop(L, total):
while True:

if L == []:
return total

else:
total = total + L[0]
L = L[1:]

What's the longest list we can process with each of the two versions?

Basics, continued

CSC 372 Spring 2023, Racket Slide 261

def sumnums_tr(L, total):
if L == []:

return total
else:

return sumnums_tr(L[1:], total + L[0])

Racket, and more generally, Scheme, guarantee that tail calls are turned into
gotos/jumps.

R6RS:
"Implementations of Scheme must be properly tail-recursive. This allows the
execution of an iterative computation in constant space, even if the iterative
computation is described by a syntactically recursive procedure. Thus with a
properly tail-recursive implementation, iteration can be expressed using the ordinary
procedure-call mechanics, so that special iteration constructs are useful only as
syntactic sugar. "

What does that guarantee do for us?
A tail-recursive function will never exceed the stack space available!

CSC 372 Spring 2023, Racket Slide 262

Problem: Make this sum-nums procedure tail-recursive:
(define (sum-nums list)

(if (null? list)
0
(+ (car list) (sum-nums (cdr list)))))

Usage:
> (sum-nums-tr '(3 1 5 7) 0)
20

Solution:
(define (sum-nums-tr list total)

(if (null? list)
sum
(sum-nums-tr (cdr list) (+ total (car list)))))

sum-nums-tr

CSC 372 Spring 2023, Racket Slide 263

Let's compare traces for the two functions:
>(sum-nums '(3 1 5 7))
> (sum-nums '(1 5 7))
> >(sum-nums '(5 7))
> > (sum-nums '(7))
> > >(sum-nums '())
< < <0
< < 7
< <12
< 13
<16
16

In the sum-nums-tr trace, note:
• Procedure call depth does not grow!
• We see evidence of only one return: <16

sum-nums-tr, continued

CSC 372 Spring 2023, Racket Slide 264

>(sum-nums-tr '(3 1 5 7) 0)
>(sum-nums-tr '(1 5 7) 3)
>(sum-nums-tr '(5 7) 4)
>(sum-nums-tr '(7) 9)
>(sum-nums-tr '() 16)
<16
16

Here's the trace for (sum-nums-tr '(3 1 5 7) 0) again:
>(sum-nums-tr '(3 1 5 7) 0)
>(sum-nums-tr '(1 5 7) 3)
>(sum-nums-tr '(5 7) 4)
>(sum-nums-tr '(7) 9)
>(sum-nums-tr '() 16)
<16
16

What's the general pattern of computation we see?
• I see an element-by-element shifting of values from the list to the sum.
• A bit like a fold...

sum-nums-tr, continued

CSC 372 Spring 2023, Racket Slide 265

Let's time them:
> (define L (range 20000000))
> (time (sum-nums L))
cpu time: 1824 real time: 1830 gc time: 1443
199999990000000

> (time (sum-nums L))
cpu time: 1418 real time: 1482 gc time: 1091
...

> (time (sum-nums L))
cpu time: 1647 real time: 1652 gc time: 1284
...

> (time (sum-nums L))
cpu time: 1326 real time: 1345 gc time: 967
...

CSC 372 Spring 2023, Racket Slide 266

> (define L (range 20000000))
> (time (sum-nums-tr L 0))
cpu time: 118 real time: 168 gc time: 0
199999990000000

> (time (sum-nums-tr L 0))
cpu time: 95 real time: 98 gc time: 0
...

> (time (sum-nums-tr L 0))
cpu time: 101 real time: 105 gc time: 0
...

> (time (sum-nums-tr L 0))
cpu time: 102 real time: 106 gc time: 0
...

Here's an implementation of length. What makes it not tail-recursive?
(define (length lst)

(if (empty? lst)
0
(add1 (length (cdr lst)))))

Problem: Write a tail-recursive version of length:
> (length-tr '(3 1 5 7) 0)
4

Solution:
(define (length-tr lst acc)

(if (null? list) acc
(length-tr (cdr lst) (add1 acc))))

length

CSC 372 Spring 2023, Racket Slide 267

A trace:
> (length-tr '(3 1 5 7) 0)
>(length-tr '(3 1 5 7) 0)
>(length-tr '(1 5 7) 1)
>(length-tr '(5 7) 2)
>(length-tr '(7) 3)
>(length-tr '() 4)
<4
4

At hand:
(define (length-tr lst acc)

(if (null? list) acc
(length-tr (cdr lst) (add1 acc))))

It's a little icky to need to specify an accumulator: (length-tr '(3 1 5 7) 0)

Let's use a named let instead:
(define (length-nl lst)

(let loop ([lst lst][acc 0])
(if (null? list) acc

(loop (cdr lst) (add1 acc)))))

Does the named let exhibit tail recursion?

length, continued

CSC 372 Spring 2023, Racket Slide 268

Two "Wow!"s for me...

CSC 372 Spring 2023, Racket Slide 269

This procedure from page 50 in Dybvig was perhaps my first Wow! when learning Scheme:
(define count

(let ([next 0])
(lambda ()

(let ([v next])
(set! next (add1 next))
v))))

Let's run it:
> (count)
0
> (count)
1
> (count)
2
> (count)
3

An interesting procedure

CSC 372 Spring 2023, Racket Slide 270

Dybvig then generalizes it:
(define (make-counter)

(let ([next 0])
(lambda ()

(let ([v next])
(set! next (add1 next))
v))))

count, generalized...

CSC 372 Spring 2023, Racket Slide 271

Usage:
> (define c1 (make-counter))
> (define c2 (make-counter))
> (c1)
0
> (c1)
1
> (c1)
2
> (c2)
0
> (c2)
1

Here's an example from 2.1.3 What Is Meant by Data? in SICP:
(define (cons x y)
(define (dispatch m)
(cond

((= m 0) x)
((= m 1) y)))

dispatch)

(define (car z) (z 0))

(define (cdr z) (z 1))

What have we got here? (Don't peek!)

A WOW! in SICP

CSC 372 Spring 2023, Racket Slide 272

https://mitp-content-server.mit.edu/books/content/sectbyfn/books_pres_0/6515/sicp.zip/full-text/book/book-Z-H-14.html

At hand:
(define (cons x y)
(define (dispatch m)
(cond

((= m 0) x)
((= m 1) y)))

dispatch)

(define (car z) (z 0))

(define (cdr z) (z 1))

"The single compound-data primitive pair, implemented by the procedures cons, car,
and cdr, is the only glue we need."—SICP

CSC 372 Spring 2023, Racket Slide 273

Usage:
> (define L (cons 10 (cons 20 (cons 30 'empty))))

> (car L)
10

> (car (cdr L))
20

> (cdr (cdr (cdr L)))
'empty

> (cdr L)
#<procedure:dispatch>

If we had more time...

CSC 372 Spring 2023, Racket Slide 274

Study continuations, a way to capture the future of an expression.

Racket: A Programming-Language Programming Language
—Robby Findler at Lambda Jam 2015
See also:

Other Languages in the Racket Environment on docs.racket-lang.org
Beautiful Racket by Matthew Butterick

Look at some embedded Lisps:
GNU Emacs Lisp
Scheme in GIMP
GNU's programming and extension language — GNU Guile
www-isl.ece.arizona.edu/ACIS-docs

(Type solid primitives in box, click Index, click on Solid Primitives link)

Look at Common Lisp, for contrast. (common-lisp.net)

Read Recursive Functions of Symbolic Expressions and Their Computation by Machine,
Part I

CSC 372 Spring 2023, Racket Slide 275

https://www.youtube.com/watch?v=hFlIl0Zo234
https://docs.racket-lang.org/
https://beautifulracket.com/
https://www.gnu.org/software/emacs/manual/html_mono/elisp.html
https://www.gimp.org/tutorials/Basic_Scheme/
https://www.gnu.org/s/guile/
http://www-isl.ece.arizona.edu/ACIS-docs/
https://common-lisp.net/
http://jmc.stanford.edu/articles/recursive/recursive.pdf

