
HOMEWORK #1

Abstract. This exercise explores a fundamental process in computer graphics:
how we construct 2D images, consisting of discrete pixels, from a 3D scene. For this
assignment, you’ll to write a program that animates a plate rotating around a line
in 3D space. The plate is a very thin square, (e.g. a thin book) and has a picture
textured on each of its two sides. These pictures should be snapshots of each student
submitting the project. The plate revolves around the line (see details below) at
a constant angular velocity (RPM), finishing a full cycle every few seconds. This
assignment may be done in teams of two. Due September 25, 2008 by 11:59PM.

(1)
(2) The plate rotates around the line �, which is parallel to the y-axis. Use ortho-

graphic projection to view the pictures “printed” on the plate, and pick the
size of the plate such that when orthogonal to the z-axis, it will occupy most
of the window.

1



(3) Animate your plate so that it rotates around the line � over time. Try to
generate smooth motion by incrementing the plate’s orientation slightly on
each consecutive animation frame (i.e. the angle it creates with the z-axis).
Recompute the projection and rasterization (i.e. conversion to pixels) after
each increment.

(4) For this assignment, you’re being asked to construct a simple graphics “pipeline”
that maps your rotating plate in 3D space into a series of 2D pictures. As
such, you may not use OpenGL’s built-in 3D functionality, which includes,
but is not limited to, texture mapping, built-in camera manipulation, and Z-
buffer. Use OpenGL only to paint pixels into the 2D window (i.e. the screen
“canvas”); the output of your graphics pipeline will be the color of each pixel
on this canvas. An easy way to setup the drawing canvas is to initialize GL
with the command glOrtho2D(0,width,height,0), where the width and height
parameters for the canvas are equal to the size of your GLUT window. Then,
you can color the individual pixels of that window using the command glVer-
tex2i. If you have questions regarding whether or not a particular GL function
is “out-of-bounds,” please email your TA before using it!

(5) The course assignments webpage will have a link to a demo program (“paint-
demo”) which constructs a simple GLUT window and paints pixels into it
using the 2D canvas method described above. It also includes example C code
for decompressing a JPEG file into a matrix of pixels (using LibJPEG), and
demonstrates how to manipulate that matrix. You are free to reuse any/all
of this code in your assignment without citation.

(6) Hints: You may assume that the “camera” is always in a fixed position and ori-
entation, i.e. at the origin of the world coordinate system, and pointing down
the positive z-axis. Furthermore, you can disregard the effects of lighting, and
assume that the scene is pre-lit with only ambient light.

(7) Your submission should contain all the code and build files needed for the
grader to easily recompile and run your program on the machines in the
graphics lab (GS 930). Assume that, in addition to the standard C libraries,
the only libraries available by default on the test machine are OpenGL (GL,
GLU, and GLUT) and LibJPEG. If your program uses libraries in addition to
or in exception of these, you should provide those libraries with your submis-
sion. Further, make the necessary adjustments to your build files so that your
project will still compile transparently. Finally, your submision should include
the face images (e.g. JPEGs) that you’re using to texture the polygon and a
readme file with the following info: names of project group member(s), known
errata, acknowledgements for any external code/libraries used, and a sum-
mary of any additional features that you might want considered for (modest)
extra credit.

(8) Submit your code using the turnin function on lectura; the turnin name is
cs433_hw1. Due September 25, 2008 by 11:59PM.

(9) Please check the course newsgroup regularly for updates and/or clarifications
to this spec.


