
COMPUTER GRAPHICS: HOMEWORK #6
DUE 10/12/08

1. An Introduction to the Programmable GPU.

The programmable GPU is a very powerful and versatile tool for creating realistic
graphical environments in realtime. In this assignment, you will be upgrading the
program you wrote in HW5 by adding a simple shader program to perform your
lighting calculations on the GPU. You’ll again use Hermite splines to control a bump
map, but, rather than computing the lighting equations entirely on the CPU for each
pixel – which is very slow – your shader program will allow your lighting transforms
to run in (pseudo)parallel on the GPU for many pixels at once.

1.1. Display Setup and Rendering. The layout of your display window is the
same as in HW5; it should again be divided into 2 viewports. In the upper viewport,
display the image plate pic.jpg. We denote by II[u, v] the [u, v] pixel of the Input
image. We assume that the width of this image is 512 pixels. Display the image using
an orthographic projection, where the image is in the plane z=-10, and assume that
there is a source of light white at (0, 512, 0). The function F [u, v], whose details are
described below, defines a displacement of the normal at each pixel for shading.

Implement a shader program to perform lighting. Use the standard Phong illu-
mination model to calculate the image intensity at each image pixel location. As in
HW5, use the normals computed from the bump map as discussed below. Implement
the full Phong lighting model as discussed in class, including the specular, diffuse,
and ambient terms (if you are having difficulty remembering the lighting equation,
refer to the lecture slides and HW2). The intensity of the image pixels should vary
according to the displaced normals given by F and the direction from that pixel to
the light source. You can assume the viewing position is fixed at (0,0,0).

Additionally, allow the user to move the light position incrementally in the plane
z = 0 by pressing the ’a’, ’d’, ’w’ and ’s’ keys, which are mapped to left, right, up,
and down movements, respectively. Output the current light position to the console
after each keystroke.

The lower viewport of the display window again shows the curve C, through which
the user can control C. There is no requirement to implement a GPU program to
render this lower 2D viewport (although it is possible). For this viewport, you can just
disable your GPU program and use the default GL rendering capabilities as before
(see shader section below for details).

1



1.2. A Shader Program for Lighting. Recall that a valid shader program requires
at least two parts: a vertex shader, which is called on every GL vertex, and a fragment
shader, which operates on every interpolated pixel. You may choose either type of
shader to render your lit, bump-mapped image. Extra credit: For modest extra credit,
implement both approaches and comment on the differences between them.

Hints on building your shader:

• The type of shader you choose to implement, i.e. vertex or fragment, will
dictate the approach you use to model and render your Input image. For
example, if you choose to write a vertex program for lighting, you’ll need
to treat each pixel in your image as a vertex in order to maintain fidelity;
in essence, your image becomes a collection of vertices. Conversely, if you
implement lighting via a fragment shader, you might represent your image as
a single quadrilateral (i.e. GL_QUAD) with a texture – the image pixels –
"painted" onto it. There are pros and cons to each approach, such as a modest
difference in implementation complexity and overall performance (framerate).
Pick the approach with which you feel most comfortable; we’ll accept either.

• A valid shader program requires function definitions for both the vertex and
fragment shader components. Thus one of your shaders will likely serve as a
pass-through "dummy" that doesn’t do much. Consult the slides for details
of setting up a pass-through for each shader type.

• You are not required to use a custom shader for rendering the 2D spline
viewport. For this viewport, you can default back to the standard OpenGL
rendering. Fortunately, GL provides an easy way to do this via a call to
glUseProgram(GLuint handle). To use your custom shader program, input
the handle received during initialization (returned from glCreateProgram);
to use the default GL rendering, simply pass zero (0) to glUseProgram.

• Your shader program "lives" on the GPU and has no direct access to the
variables in main memory. Additionally, the functions in your C program
cannot be called from within your GPU program. Thus specific channels
of communication are needed to transmit values to the shader from your C
program. Data should be communicated between your C program and shader
using either built-in system globals or user-defined globals that you declare at
the top of your shaders. When using custom-defined globals, you should take
care to assign the proper qualifiers (i.e. varying, attribute, or uniform) and
to use the correct functions to access them from within your C program (see
the glGet ∗ Location functions for details). You’ll find more information on
data communication in the lecture slides as well as in the tutorials suggested
on the webpage.

• A simple demo program has been provided on the class webpage. It includes
the skeleton of a working shader program.



1.3. The Curve C(u) and the Function F (u, v). As in HW5, the curve C is
controlled by the user and is the concatenation of 4 curves C1(u) . . . C4(u). They
are determined via cubic splines (as defined in the slides). This curve C is the
concatenation of 4 cubics C1, C2, C3, C4, where

• C1(0) = P0, C4(511) = P4,
• C ′

1(0) = C ′′
1 (0) = 0

• C1(127) = C2(127) = P1 ; C2(255) = C3(255) = P2 ; C3(384) = C4(384) = P3

• C ′
1(127) = C ′

2(127) ; C ′
2(255) = C ′

3(255) ; C ′
3(384) = C ′

4(384) ;
• C ′′

1 (127) = C ′′
2 (127) ; C ′′

2 (255) = C ′′
3 (255) ; C ′′

3 (384) = C ′′
4 (384) ;

To compute this curve, you should use Hermite bases. The spline is specified
by 5 control points (P1 . . . P5). Initially Pi = ((i − 1)128, 0), but the user can in-
crease/decrease its y-value using the up and down arrows. So C is always smooth
(that is, C ′(u) is continuous), and in addition, C ′′

1 (0) always equals 0.
The user should be allowed to select an individual control point for manipulation

by using the left and right arrows to move along the splines. On each press of the ∗
key, the value of active control point Pi = (ui, vi) is replaced by (ui, 2vi). This allows
the spline curvature to be exaggerated very quickly. Hitting the ’ESC’ button resets
each Pi to its original value.

Extra credit: If you’re tired of Hermite bases and are feeling ambitious, you might
choose to implement one of the other popular cubic spline forms, such as Bezier or
Catmull-Rom, for modest extra credit. (Just make sure to explain what you did and
the constraints you used in your readme.)

1.4. The Bump Map. As in HW5, the idea is to specify the normal to the plate
as follows: We define the function F (u, v) = (C(u), 0), and the normal F (u, v) is
approximated as the normal to plane passing through the points

(u, v, F (u, v)), (u + 1, v, F (u + 1, v)) and (u + 1, v + 1, F (u + 1, v + 1)) .

You will need a formula here to help you compute the normal from this data, and
don’t forget that the length of the normal vector is always 1.


