Computer Graphics

Hidden Surface Removal

Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science, Technion

Computer Graphics

Hidden Surface Removal

Back Face Culling

Determine back \& front faces using sign of inner product $\langle n, V\rangle$

$$
\langle n, v\rangle=n_{x} v_{x}+n_{y} v_{y}+n_{z} v_{z}=\|n\| \cdot\|v\| \cos \theta
$$

In a convex object :

- Invisible back faces
-All front faces entirely visible \Rightarrow solves hidden surfaces problem
In non-convex object:
- Invisible back faces
-Front faces can be visible, invisible, or partially visible

Depth Sort by Splitting

Given two polygons, P and Q, we can order them in z if:

1. P and Q do not overlap in their x extents
2. Or P and Q do not overlap in their y extents
3. Or P is totally on one side of Q 's plane
4. Or Q is totally on one side of P 's plane
5. Or P and Q do not intersect in projection plane

Can we always resolve the relation between P and Q using steps 1-5?

Depth Sort (object space)
Question: Given a set of polygons, is it possible to: - sort them by depth. The order is not necessarily unique.
\square then paint them back to front (over each other) to remove the hidden surfaces?

- This is called the painter algorithm.

Answer: Usually not
Works for special cases

- E.g. polygons with constant z (where do we have polygons with constant z!?)

Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science, Technion

Computer Graphics

Hidden Surface Removal

Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science, Technion

Computer Graphics

Hidden Surface Removal

Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science, Technion

Computer Graphics

Hidden Surface Removal

Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science, Technion

Computer Graphics

Hidden Surface Removal

Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science, Technion

Computer Graphics

Hidden Surface Removal

Scan-Line Z-Buffer Algorithm

In software implementations - amount of memory required for screen Z-buffer may be prohibitive
Scan-line Z-buffer algorithm:

- Render the image one line at a time
- Take into account only polygons affecting this line

Combination of polygon scan-conversion \& Z-buffer algorithms
Only Z-buffer the size of scan-line is required.
Entire scene must be available a-priori
Image cannot be updated incrementally

Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science, Technion

Page

