
Hidden Surface
Removal

Page

Computer GraphicsComputer Graphics

Copyright Gotsman, Elber, Barequet, Karni, Sheffer
Computer Science, Technion

1

Hidden Surface RemovalHidden Surface Removal

2

Hidden Surface Removal for
Polygonal Scenes

� Input: Set of polygons in three-dimensional space +
a viewpoint

� Output: A two-dimensional image of projected
polygons, containing only visible portions

3

The Normal Vector

v1

v2

v3
n = (v3-v1)x(v2-v1)

n(1,2,3) = n(2,3,1) = -n(2,1,3)

(x,y)=v

Barycentric Coordinates

4

(x1,y1)

(x2,y2)

(x3,y3)

A2 A1

A3

3

1

3

1

3

1

(,) (,)

/

1

i i i
i

i i i
i

i
i

x y x y

A A

α

α

α

=

=

=

= ⋅

=

=

∑

∑

∑

Barycentric coordinates of v = (α1, α2, α3)
B.C. are unique.
B.C. of all interior points are ≥ 0.
Triangle centroid = (1/3,1/3,1/3).

(x,y)=v

Linear Interpolation

5

f(x1,y1)

f(x2,y2)

f(x3,y3)

3

1

3

1

(,) (,)

(,) (,)

i i i
i

i i i
i

x y x y

f x y f x y

α

α

=

=

= ⋅

= ⋅

∑

∑

6

V n

n

Back Face Culling (object space)

� In closed polyhedron you don’t
see object “back” faces

� Assumption
Normals of faces point out from the
object

� Object space algorithm

Hidden Surface
Removal

Page

Computer GraphicsComputer Graphics

Copyright Gotsman, Elber, Barequet, Karni, Sheffer
Computer Science, Technion

7

Back Face Culling
�Determine back & front faces using sign of inner

product < n, V >

�In a convex object :
Invisible back faces

All front faces entirely visible ⇒ solves hidden
surfaces problem

�In non-convex object:
Invisible back faces

Front faces can be visible, invisible, or partially visible

θcos, vnvnvnvnvn zzyyxx ⋅=++=

8

Depth Sort (object space)
� Question: Given a set of polygons, is it possible to:

sort them by depth. The order is not necessarily unique.
then paint them back to front (over each other) to remove
the hidden surfaces ?
This is called the painter algorithm.

� Answer: Usually not
� Works for special cases

� E.g. polygons with constant z
(where do we have polygons with
constant z!?)

9

Depth Sort (object space)

� Will fail for:

Intersecting polygons

Mutually occluding polygons

Plane containing P

� Since every polygon is planar, we can speak about

the plane h of a polygon P.

� Observation: If polygon Q does not intersect h, then

If Q is in the side of h containing the viewpoint, then during
the painter algorithm, we can draw P before drawing Q

Otherwise P can be drawn before Q

Z

x

Viewpoint

h

P

Q

11

Depth Sort by Splitting

� Given two polygons, P and Q, we can order
them in z if:
1. P and Q do not overlap in their x extents

2. Or P and Q do not overlap in their y extents

3. Or P is totally on one side of Q’s plane

4. Or Q is totally on one side of P’s plane

5. Or P and Q do not intersect in projection plane

� Can we always resolve the relation between P
and Q using steps 1-5?

12

Depth Sort by Splitting

� What steps 1-5 all fail ?

� Split P (Q) along:

the intersection with Q (resp P) into two smaller
polygons – (how could one compute this
intersection!?)

the intersection of P (Q) with the plane containing Q
(P).

� Object space algorithm

P < Q < R
QQ

P

R

P

Hidden Surface
Removal

Page

Computer GraphicsComputer Graphics

Copyright Gotsman, Elber, Barequet, Karni, Sheffer
Computer Science, Technion

BSP - trees
� Construct a tree that gives a rendering order

� Tree recursively splits 3D world into cells, each of
which contain at most one piece of polygon.

� Constructing tree:
choose polygon (arbitrary)
split its cell using plane on which polygon lies
continue until each cell contains only one polygon

BSP - trees

2D version for
illustration

a

b

c

d

e

BSP - trees

2D version for
illustration

a

b

c

d

e

BSP - trees

2D version for
illustration

a

b

c

d

e

BSP - trees

2D version for
illustration

a

b

c

d

e

BSP - trees

� Rendering tree:
recursive descent
render back, node polygon, front

back/front is determined by what side of the plane the camera is on
� Disadvantages:

many small pieces of polygon (more splits than depth sort!)
over rendering (does not work well for complex scenes with lots of
depth overlap)

� Advantages:
one tree works for all focal points (good for cases when scene is static)
filter anti-aliasing works fine, as does transparency
data structure is worth knowing about

� Comment
expensive to get approximately optimal tree, but for many applications
this can be “off-line” in a pre-processing step.

Hidden Surface
Removal

Page

Computer GraphicsComputer Graphics

Copyright Gotsman, Elber, Barequet, Karni, Sheffer
Computer Science, Technion

19

Z-Buffer Algorithm (image space)

� Basic Idea: resolve the visibility at the pixel level,
using depth sort.

� For each image pixel - store both the color and the
current z depth

� Instead of always painting the pixels while scan-
converting a polygon, do so only if polygon’s depth is
less than current z depth at that pixel

20

21 22

Z-Buffer

QuestionsQuestions: How
can one
compute
Project(P) and
Depth(Q,x,y)?

ZBuffer(Scene)
For every pixel (x,y) do PutZ(x,y,MaxZ);
For each polygon P in Scene do

Q := Project(P);
For each pixel (x,y) in Q do

z := Depth(Q,x,y);
if (z < GetZ(x,y)) then

PutZ(x,y,z);
PutColor(x,y,Col(P));

end;
end;

end;

zbuffer

23

4

2

1

3

24

4

2

1

3

10

Hidden Surface
Removal

Page

Computer GraphicsComputer Graphics

Copyright Gotsman, Elber, Barequet, Karni, Sheffer
Computer Science, Technion

25

4

2

1

3

1
10

26

4

2

1

3

1

2

10

27

4

2

1

3

1

2

4

10

28

4

2

1

3 4

1

3

2

10

29

Z-Buffer – Depth(Q,x,y)

1z

2z
3z

scanline Y=y
21114)1(zzz αα −+= 32125)1(zzz αα −+=

Depth(, ,) ()Q x y z z= + −α α3 4 3 51

),(yx

In most cases, polygons are given by specifying their vertices.
For the Z-buffer, we need to find the depth of two triangles in the same pixel.
Linear interpolation will do.

30

Hidden Surface
Removal

Page

Computer GraphicsComputer Graphics

Copyright Gotsman, Elber, Barequet, Karni, Sheffer
Computer Science, Technion

31

Z-Buffer Algorithm

� Image space algorithm

� Data structure: Array of depth values

� Common in hardware due to simplicity

� Depth resolution of 32 bits is common

� Scene may be updated on the fly, adding new
polygons

32

The Graphics Pipeline

�Hardware implementation of screen Z-buffer:
Polygons sent through pipeline one at a time
Display updated to reflect each new polygon

Geometry
Processing

(Viewing
transformation)

Rasterizer
(scan-conversion

Z-buffer)

33

Transparency Z-Buffer

How can we emulate transparent objects?

34

Transparency Buffer

� Extension to the basic Z-buffer algorithm
� Save all pixel values

� At the end – have list of polygons & depths (order)
for each pixel

� Simulate transparency
by weighting the

different list elements,
in order

� For transparent surfaces and filter based
anti-aliasing:

� Algorithm (1): filling buffer
at each pixel, maintain a pointer to a list
of polygons sorted by depth.
when filling a pixel:

if polygon is opaque and covers
pixel, insert into list, removing all
polygons farther away
if polygon is opaque and only
partially covers pixel, insert into list,
but don’t remove farther polygons

pixelpixel

The A - buffer
The A - buffer

� Algorithm (2): rendering pixels

at each pixel, traverse buffer using
brightness values in polygons to fill.

values are used for either for
calculations involving transparency or
for filtering for aliasing

pixelpixel

Hidden Surface
Removal

Page

Computer GraphicsComputer Graphics

Copyright Gotsman, Elber, Barequet, Karni, Sheffer
Computer Science, Technion

37

� In software implementations - amount of memory
required for screen Z-buffer may be prohibitive

� Scan-line Z-buffer algorithm:
Render the image one line at a time
Take into account only polygons affecting this line

� Combination of polygon scan-conversion & Z-buffer
algorithms

� Only Z-buffer the size of scan-line is required.
� Entire scene must be available a-priori
� Image cannot be updated incrementally

Scan-Line Z-Buffer Algorithm

38

A={ }
a

d c

b

A={a,d}

A={a,d,b}

A={b}

A={ }

39

Scan-Line Z-Buffer Algorithm
ScanLineZBuffer(Scene)
Scene2D := Project(Scene);
Sort Scene2D into buckets of polygons P in increasing YMin(P) order;
A := EmptySet;
for y := YMin(Scene2D) to YMax(Scene2D) do

for each pixel (x, y) in scanline Y=y do PutZ(x, MaxZ);
A := A + {P in Scene : YMin(P)<=y};
A := A - {P in A : YMax(P)<y};
for each polygon P in A

for each pixel (x, y) in P’s spans on the scanline
z := Depth(P, x, y);
if (z<GetZ(x)) then

PutZ(x, z);
PutColor(x, y, Col(P));

end;
end;

end;
end;

