
HOMEWORK #2

THE ART CRITIC

This assignment may be done in teams of two. Due October 8, 2009 by
11:59PM. The turnin name is cs433_hw2. This homework is a continuation of
HW1, with major additions.

Figure 1. Scene concept: perusing a wall of art.

For this assignment, you will simulate the view of an art critic as she takes a virtual
tour along the wall of an art gallery. Imagine that beautiful works of art line this wall.
Call them pic1, pic2 . . . pic5, and include them with your submission. Your program
should simulate the art critic’s view as she walks slowly along the wall, examining
each picture in turn as shown in Fig.1. In particular, your scene construction must
consider the following:

• The critic’s walk is along a straight line parallel to the wall. The critic is
looking both at the wall and forward, such that her view axis forms a 45◦

angle with the wall’s surface.
• The pictures should be large enough that, as the critic walks along the wall,

one picture should fill much of her view as she gets close to it. As the critic
1



moves along the wall, there will also be times when two pictures are indeed
seen, as pici moves out of view and pici+1 comes into view.

• The wall should be infinitely long, so that when the critic reaches the last
picture picn, the series restarts with pic1, then pic2, etc. Although the wall
has both top and bottom edges, you can ignore the existence of the ceiling
and floor.

• Use perspective projection to render the critic’s view. As the view axis forms
a 45◦ angle with the wall, perspective foreshortening should be observed in
your scene for both the wall and pictures.

• The construction of your scene should resemble Fig.1. Nonetheless you are
free to make individual decisions about the critic’s field of view and walking
speed, as well as the size of the pictures, their placement on the wall, etc.
Excluding the walking motion, you may assume that all other parameters of
the scene remain constant.

Your program should render the scene using the following draw modes:
(1) (60 pts) Basic Mode: If the ‘b’ key is pressed, only pixel-level GL operations

are allowed. You should only plot colors pixel-by-pixel using glVertex and
glColor, as in HW1. To implement “Basic” mode, you should consider only
what is seen by each pixel in the window space. Imagine a line (i.e. ray)
extending from the center of projection through a pixel on the projection
plane into the view volume (Fig.2). Determine the intersection of this line
with the wall full of pictures. The color of the pixel is the color of the wall,
or a picture on it, at the point of intersection. Do not worry too much about
the efficiency of your solution here.

Figure 2. Geometric construction of view volume and projection plane.



(2) (40 pts) GL Mode: If the ’g’ key is pressed, your program should draw the
scene using the hardware-accelerated GL pipeline. Your scene construction
should be similar to Basic mode, but it does not have to be identical. For this
mode you are free to use any GL or GLU functions that you find convenient
to draw the scene. For instance, you may exploit GL to maintain the view
and perspective transformations and to perform polygon filling. You may
use textured polygons to represent the gallery pictures. Note that your GL
mode should run at interactive frame rates! For specifics on initializing your
program for texturing and polygon filling, please consult the GL tutorials and
documentation. You may also find the following functions useful:

gluLookAt: defines the eye (camera) pose in world coordinates
glFrustum: defines the sides of a perspective view volume
gluPerspective: builds a view volume based on FOV, aspect ratio
glBindTexture: activates an image ID for texture mapping
glTexCoord2{f,d}: defines texture coordinates for vertices

(3) (25 pts) For Grads: Extend the Basic mode by anti-aliasing the viewing
window using a jittered super-sampling approach. Instead of casting 1 ray
per pixel, you should cast k rays. The number of rays k should be selectable
from the set {1, 4, 9} at runtime using the corresponding numeric keys. Let
k = 1 by default. Also, jittering should only be used when k > 1.

To implement your algorithm, imagine that each of the k rays originates
from a unique cell in a regular

√
k by

√
k grid overlaying each pixel i on the

projection plane. The color for i is then given as the average of the colors
returned by its k sub-pixel rays. Further, you should jitter each of the k rays
around the center of its respective grid cell using a noise function (rand is suf-
ficient). With jittered anti-aliasing, you should see a significant improvement
in image quality over the k = 1 case, albeit at significant computational cost.
If you’re curious as to why it works, consider that we’re approximating the
same stochastic process as used by the human visual system to de-alias what
you see (i.e. a Poisson process). If interested, see Cook’s classic paper [1].

[1] Cook, Robert L, "Stochastic Sampling in Computer Graphics," ACM Transac-
tions on Graphics (TOG), Vol.5(1), 1986, 51-72.


