COMPUTER GRAPHICS - MIDTERM 1

Instructions:

e Answer 4 of the 5 questions below. The total points for each question is
specified.

e Answer only one of the questions 3,4.

e Write your name and email below.



(1) [27 points]

(a) What would be the shading pattern of the moon, if its face were almost
completely smooth? For instance, what if the moon were a perfect sphere
of concrete? Assume only diffuse lighting effects, and that the sun is the
only source of light. Of course, in reality, the moon is not smooth. Explain
how the roughness of the moon’s surface changes your answer.

(b) You are given the endpoints (x1,y1), (22, y2)of a segment sin the xy-plane,
where x1, Y1, T2, yo are integers between 1 and 1000. Suggest an algorithm
that for each integer value ' = 1,2,3...1000, prints the value of the
heighest point (2, y), where y is an integer and is below s. Your algorithm
should be as efficient as possible.

(c) You are given the vertices of two triangles B (Blue) and R (Red) in 3D.
Assume that they cross each other. Suggest an algorithm that does not
use harware acceleration for rendering both of them using orthographic
projection. Only the parts of R not occluded by B and the parts of B
not occluded by R should be rendered. How would your answer change
if the use of a hardware Z-buffer is allowed ?



(2) [27 points] Consider the scenario described in HW2. In generating some
of the illumination (shading) effects, you had to compute the cosine (or dot-
product) of certain values. Assume that the plate is in a fixed arbitrary pose
(i.e. fixed orientation) such that the normal to the plate creates an angle 6
with the z-axis.

(a) How many such cosine or dot-product operations are needed if the source
of light is at infinity? Give only an order of magnitude: Once? small
number (less than 10) ? Once per pixel? Once per raw etc. Justify your
answer.

(b) How many such operations are needed if the source of light is close to the
viewpoint ?

(c) Bonous Suggest a faster algorithm for shading lots of small triangles
of similar but non-identical orientation. You may ignore the specular
component of the Phong intepolation model. Explain how you would im-
plement this model using the smallest number of multiplication /division
operations.



(3) [28 points] This question is similar to HW1, but this time, rather than
mapping the picture onto a plate, we will map it onto a cylinder (drawing-on
whiteboard). Imagine that you have a picture printed on a piece of paper,
which is then stuck to a cylinder whose axis is the line {(z,y.2) |y =0; 2z =
—100}, and with radius=30. You can think of this construction as a paper
label on a soup can. Suggest how we might render this picture on the display
screen, and how you would describe the effect of the cylinder rotating around
its axis. Use perspective transformation. You do not have to specify all
the parameters exactly, but give an overview of the algorithm and the main
transformations mapping pixels in the image printed on the paper to the
proper pixels on the display screen. Hint: you can consider each pixel in the
paper label as a small polygon of uniform color.



(4) [28 points] Consider the rotating plate scenario described in HW1. Recall
that every image pixel is mapped into a single display pixel, but that this
transformation can be many-to-one. Let 6 be the angle between the z-axis
and the plate. Assume that for § = 0, there is a one-to-one correspondence
between image pixels and display pixels, and in particular, their number is
the same. Suggest an algorithm, as efficient as possible (but without using
hardware acceleration) for the case

(a) 0 is between 0 and 5 degrees - so quite small.

(b) 0 is between 80 and 85 degrees, so many image pixels are mapped to each
display pixel, and a large portion of the display is black. Assume that the
color of each display pixel can be decided by a single image pixel mapped
to it, and that you can set the dispay pixel’s color to be any of them.



(5) [28 points] Consider a se S of triangles in 3D, each one with its own color.
Assume that S is stored in an oct-tree, such that each triangle is stored in
exactly one leaf region of the tree. Given a view point gsuggest an efficient
way to use the tree and the painter’s algorithm to render the triangles as seen
from ¢.Explain the correctness of your algorithm. (you might find it easier to
give the description first in 2D, and then generalize to 3D).



