Exercise #5 in Computer Graphics
Even Better Boxes world

Due: Last day of class

1 Introduction

This exercise adds a few features to the boxes world that you implemented
in Exercise #3. Your main purpose is to implement and use a ray-tracer. In
addition to the description of the boxes and cameras, your program should
also handle the existence of mirrors in the world. If you are either a graduate
student, or an honor student, your program should also handle lamps. Their
descriptions appears below. A nice interface to control the location of the
mirrors (and the lamps, if exists) is required.

It is not unlikely that you can find on the WWW pieces of code that
might help you reach the goal. Yet you are expected to implement all of
it by yourself, (together of course with your partner) Hence a few students
might be asked to meet with the instructor or the TA, and explain their
implementations.

2 Mirrors

Each mirror has a color, and is a triangle-shape. Your program should look
for a file called mirrors.dat, which contains a few lines of the form

T1,Y1, 21, T2,Y2, 22, T3,Y3, <3, krakgakb



The vertices of the mirror lie in the points (x1,y1,21), (22,9, 22) and in
(23,3, 23). Both sides of the triangles defined by these vertices are mirrors
with the same properties. The factor k, is a number (float) between 0 and
1. It specifies how much of the red light that reaches the mirror, would be
reflected. The parameters k, and k, are defined analogously for green and
blue. So for example if k, = 1, k, = 0 and k, = 0, the mirror reflects only red
light. If you prefer to take the “easy” (relatively speaking) of the exercise,
you might assure ambient light model.

Your program would be evaluated based on its speed, so an efficient ray
tracer is in place. A ray of light will not be reflected in more than 3 mirrors.
You should not care about the effect of illumination on boxes caused from
the mirror. However, you should show the pictures with the images of the
boxes that they reflect.

3 Lamps — for graduate students and honors

In this case your program should also look for a file lamps.dat, each with
the form
x,Y,z, Irv Ig7 Ib

where z,y, 2 is the location of the lamp, and I, I,, I; is the intensity in the
red, green and blue. Assume only diffuse light, with the existence of some
weak while ambient light.

4 World description - as appeared in ex #3

The world box consists of mirrors, as described above, cameras, and (surprise)
boxes. You’d be asked to describe the view each one of these cameras sees.

There are several coordinate systems. The universe coordinate system
and the ones as defined by each of the cameras.

The program is interactive. It waits for an input from the user, given as
a command from the prompt, and it reacts to these commands.

The file "boxes.dat” consists of several lines. Each line describes a box.
It consists of 9 numbers:

T1,Y1, 21, T2,Y2, 22, R7 Gv B



where x1,y1, 21 and xo,ys, 20 are the coordinates of the lower left closest
corner of a box, and x9, s, z0. le. 1 < X0, Y1 < Yo,21 < 20. R, G, B are
numbers between 0 and 1, and describes the box’s color. Later on, we refer
to these boxes, as box i, which is the box described in line 7 of the file.

We also represent 1-4 cameras. Their location is described in the file
"cameras.dat”. Each line is of the format (z1, 1, 21, {p|q}), describing the
location of the camera, and the character 'p’ or 'o’ describes whether this
camera uses orthogonal or prospective projection. The cameras always look
at the origin o, of the universe coordinate system. Their view should include
at least a piece of each box. Fach camera i defines its own coordinate system
as follows: The origin o; of the i-th coordinate system is in the location
of the camera. The z-direction is the direction towards the center of the
universe coordinate system. Define h; as a plane passing thorough o;, and
orthogonal to the vector o, — 0,,. The y-direction is the projection on h; of
the y-direction of the universe.

Commands:

view 7 Show the view of the boxes from the 7’th camera

pick i In the following commands, use the coordinate system of the ith
camera.

move j z d Move the jth box in the z direction by d units. A nice anima-
tion would be appreciated. Note that the z-direction is with respect to
the camera which was picked. Note that boxes might overlap. This is a
common phenomenon among boxes, and should not bother use. boxes
are opaque.

move j x d -analogous to move in the x direction.

move j y d -analogous to move in the y direction.

reset — move all boxes to their original location, as specified.
Comments

e Note the different between “view” command and ”pick” command —
they might refer to different cameras.

e Make sure to print appropriate error messages if a command is invalid.



The use of illumination and any other tricks for enhancing the three
dimensional feeling is encouraged.

Add a document describing the good things that your program are
doing.

Submitting in groups of two (at most).
We will spent some time checking copying between projects.

Example files would be available on the web. We would also published
extra information, corrections, and FAQ if needed.



