- Surface Details -

- ★ Incorporate fine details in the scene.
- ★ Modeling with polygons is impractical.
- ★ Map an image (texture/pattern) on the surface (Catmull, 1974); (Blin & Newell, 1976).
- ★ Texture map
 - Models patterns, rough surfaces, 3D effects.
- ★ Solid textures
 - (3D textures) to model wood grain, stains, marble, etc.
- * Bump mapping
 - Displace normals to create shading effects.
- ★ Environment mapping
 - Reflections of environment on shiny surfaces.
- ★ Displacement mapping
 - Perturb the position of some pixels.

Slide 1

CPS124, 296: COMPUTER GRAPHICS

Texture Maps -

- ★ Maps an image on a surface.
- ★ Each element is called texel.
- * Textures are fixed patterns, procedurally generated, or digitized images.

Slide 2

SURFACE DETAILS

Page 1

Texture Maps —

- ★ Texture map has its own coordinate system; $st ext{-coordinate system}.$
- ★ Surface has its own coordinate system; uv-coordinates.
- ★ Pixels are referenced in the window coordinate system (Cartesian coordinates).

Slide 3

Slide 4

CPS124, 296: COMPUTER GRAPHICS

SURFACE DETAILS

Page 2

Texture Mapping -

Forward mapping: (Texture scanning)

★ Map texture pattern to the object space.

$$u = f_u(s,t) = a_u s + b_u t + c,$$

 $v = f_v(s,t) = a_v s + b_v t + c.$

★ Map object space to window coordinate system.

Use modelview/projection transformations.

Drawback: Selected texture patch usual does not match with pixel boundaries.

* Requires fractional pixel calculations.

Slide 6

CPS124, 296: COMPUTER GRAPHICS

SURFACE DETAILS

Page 3

Inverse Mapping

- ★ Map screen coordinate system to object space.
- \bigstar Map object coordinate system to texture space.
- ★ Avoids fractional pixel calculations.
- ★ Allows anti-aliasing.
- ★ Requires calculating inverse transformations; M_{PV}^{-1}, M_{T}^{-1} .
 - M_{PV}^{-1} can be computed from projection and modelview matrices (gluUnproject)

• Computing M_T^{-1} is not easy.

Parametric Representation -

Curves: Coordinates are represented as functions of one parameter.

$$\gamma(t) = (x(t), y(t)), \quad t \in [a, b]$$

Line:
$$\ell : (a_1 + b_1 t, a_2 + b_2 t), t \in \mathbb{R}$$

Surfaces: Coordinates of each point is represented as a function of u and v.

$$S(u, v) = (x(u, v), y(u, v), z(u, v)).$$

★ Sphere:

$$S(u,v) = (r\cos u\cos v, r\cos u\sin v, r\sin u)$$

$$-\pi/2 \le u \le \pi/2, 0 \le v \le 2\pi.$$

 \star Cylinder:

$$S(u,v) = (r\cos u, r\sin u, v)$$

$$0 \le u \le 2\pi, 0 \le v \le h$$
.

Slide 8

0000

Inverse Mapping: An Example -

$$u=\theta, v=y \qquad 0 \leq \theta \leq \pi/2, 0 \leq y \leq 1$$

$$x = \sin \theta, z = \cos \theta, y = v.$$

$$M_{PV}^{-1}: u = \sin^{-1} x, \quad v = y.$$

Map texture origin to left bottom corner of the surface

$$u = s\pi/2, \quad v = t.$$

Projected pixels are mapped to texture with M_T^{-1} : $M_T^{-1}: s = \frac{2u}{\pi} \qquad t = v.$

$$M_T^{-1}: s = \frac{2u}{\pi} \qquad t = v.$$

$$s = \frac{2}{\pi} \sin^{-1} x \qquad t = z.$$

Slide 9

Object to Texture Mapping -

How does one define a reasonable M_T^{-1} ?

(Bier & Sloan, 1986): Two-step process:

S-mapping: Mapping from a 2D texture space to a simple 3D surface, e.g., cylinder.

$$T(u,v) \rightarrow T'(x_i,y_i,z_i).$$

O-mapping: Mapping from the 3D texture pattern onto the object surface.

$$T'(x_i, y_i, z_i) \rightarrow O(x_w, y_w, z_w).$$

Slide 10

CPS124, 296: COMPUTER GRAPHICS

SURFACE DETAILS

Page 5

Two-Step Inverse Mapping -

Inverse mapping: Apply them in the reverse order!

Slide 11

0000

-S-Mapping —

Four possible surfaces: Plane, cylinder, sphere, box.

Cylinder: (θ, z)

$$S: (\theta, z) \to \left[\frac{r}{c}(\theta - \theta_0), \frac{1}{d}(z - z_0)\right]$$

- ★ c, d: Scaling factors.
- ★ Texture origin is mapped to the point (θ_0, z_0) on the cylinder.

Sphere: (θ, φ) , stereographic projection.

$$\begin{split} S:(\theta,\varphi) & \to & \left[\frac{2\alpha}{1+(1+\alpha^2+\beta^2)^{1/2}} \right. \\ & \left. \frac{2\beta}{1+(1+\alpha^2+\beta^2)^{1/2}} \right] \end{split}$$

 $\alpha = \tan\varphi\cos\theta,\, \beta = \tan\varphi\sin\theta$

Slide 12

O-Mapping
★ Γ: Intermediate surface
★ P': Intersection of Γ with a ray ρ emanating from P.
★ Direction of ρ:
(i) Reflection direction
(ii) Normal of O at P
(iii) \(\overline{CP} \); C: centroid of O
(iv) -ρ: Normal of Γ at P'
★ (ii), (iii) are bad if Γ is cylinder.

CPS124, 296: COMPUTER GRAPHICS

SURFACE DETAILS

Page 7

3D Textures -

Introduced by Peachey and Perlin in 1985.

- ★ Define texture to be a 3D image.
 - Carving out an object from a 3D solid material.
- ★ Ignoring scaling, M_T is identity.
- ★ Distortion is minimized.
- ★ Three dimensional vector fields can be mapped coherently.
- ★ Texture is generated by a procedure.
- ★ Example: Wood grain can be mapped as a set of cylinders with respect to a prespecified axis.

Slide 15

CPS124, 296: COMPUTER GRAPHICS

SURFACE DETAILS

Page 8

Anti-aliasing & Texture Mapping -

- ★ A pixel is mapped to a curvilinear quadrilat-
- ★ A single pixel may cover many texels.
- ★ Compute a weighted sum of texel values covered by the pixel.
- ★ Summation is called *filtering*.

Two-step process:

- ★ Define and approximate the texture over which filtering is performed.
- ★ Integrate by weighing and summing the texel values within the filtering area.

Slide 18

CPS124, 296: COMPUTER GRAPHICS

SURFACE DETAILS

Page 9

Anti-aliasing: Weight Functions —

Blinn & Newell, (1976): Pyramid weight function

Greene & Heckbert, (1986): Elliptical weighted average

- ★ Approximate a pixel by circle.
- \star Circle always maps to an ellipse in the texture
- ★ Find the texels that lie inside the ellipse.
- ★ Use a look-up table to determine the weighted value of each texel.

Slide 19

Anti-aliasing & Texture Mapping —

Mip-mapping: multum in parvo

(Williams, 1983)

- ★ Store many texture images.
- ★ i-th image is obtained by scaling down the previous image by half along each axis.
- ★ Effectively a 3D database.
- \star Given a pixel, search in the image with an appropriate resolution.

Slide 20

Texture Mapping in OpenGL glTexCoord2f (s, t) Assigns the two dimensional texture coordinates to a vertex. glBegin(GL_QUAD); glTexCoord2f(0.0, 0.0);glVertex3f (x1, y1, z1); ${\tt glTexCoord2f}\ (1.0,\ 0.0);$ glVertex3f (x2, y2, z2); glTexCoord2f(1.0, 1.0);glVertex3f (x3, y3, z3); glTexCoord2f(0.0, 1.0);glVertex3f (x4, y4, z4); Slide 22

Slide 21

CPS124, 296: COMPUTER GRAPHICS

SURFACE DETAILS

Page 11

Texture Mapping in OpenGL -

glBindTexture(target, name); (GL_TEXTURE2D GL_LINEAR: Interpolates the color using a 2×2 average. glTexParameteri(GL_TEXTURE_WRAP_S,GL_REPEAT) glTexParameteri (GL_TEXTURE_WRAP_S,GL_CLAMP) Jse GL_TEXTURE_WRAP_T for t-coordinates GL_TEXTURE_MAG_FILTER, GL_NEAREST) GL_TEXTURE_MIN_FILTER, GL_NEAREST Assign a pixel color to the nearest texel Repeating the texture pattern glGenTextures(n, *names); Texture objects

Slide 23

0000

Bump Mapping —

Perturb normals in the illumination model calculations.

- $\star S(u, v)$: Parameterized surface
- $\star S_u = \partial S(u, v)/\partial u, S_v = \partial S(u, v)/\partial v.$
- $\bigstar N(u,v) = S_u \times S_v; n = N/|N|$
- \star b(u, v): Bump function

$$S'(u,v) = S(u,v) + b(u,v) \cdot n$$
 $N'(u,v) = S'_u \times S_v$

$$S'_{u} = \frac{\partial}{\partial u}(S(u,v) + b(u,v) \cdot n)$$

$$= S_{u} + b_{u} \cdot n + bn_{u}$$

$$\approx S_{u} + b_{u} \cdot n$$

$$S'_{v} \approx S_{v} + b_{v} \cdot n$$

$$N' \approx S_{u} \times S_{v} + b_{u}(S_{u} \times n) + b_{v}(n \times S_{v}) + b_{u}b_{v}(n \times n)$$

$$= S_{u} \times S_{v} + b_{u}(S_{u} \times n) + b_{v}(n \times S_{v})$$

Slide 24

Bump Mapping -

- ★ Define bump functions analytically.
- ★ Use look-up tables for bump functions.
- \bigstar Approximate b_u, b_v with finite differences.
- \bigstar Random pattern vs regular patterns.

Displacement Mapping:

- ★ Perturb normals as well as local coordinate sys-
- \bigstar Used to render anisotropic objects.

Slide 26

CPS124, 296: COMPUTER GRAPHICS

SURFACE DETAILS

Page 13

Environment Mapping —

- * Reflects the surrounding environment on the surface of shiny objects.
- * Similar to texture mapping.
- ★ Pattern depends on the viewpoint.

Slide 27