- Illumination Models Z-buffer methods: - ★ Compute only direct lighting. - ★ Ignore secondary light sources. Ray-tracing methods: - ★ Model specular reflection and refraction well. - ★ Still uses directionless ambient lighting. - * Not good for global lighting. Radiosity methods: - ★ Introduced in 1984 by (Goral, Torrance, Greenberg, & Battaile). - ★ Use thermal radiation models to calculate global lighting. - ★ Good for ideal *diffuse* environments. - ★ Assumes conservation of light energy in a closed environment. - ★ Determines all light interactions in a viewindependent way. - (44444) Slide 1 CPS124, 296: COMPUTER GRAPHICS Radiosity Radiosity: Power (Energy/unit time) leaving a surface at a given point, per unit area. - * Allows any surface to radiate power. - If light source, emits energy. - Otherwise, radiates a portion of the incident energy. - ★ Surfaces have finite area. - ★ Power leaving a surface: emitted power + reflected power. - ★ Need to mesh original surfaces to capture finescale illumination. **- (4)** Slide 2 RADIOSITY Page 1 ### Radiosity —— - $\star S_1, \ldots, S_n$: Set of surface patches. - ★ A_i : Area of S_i . - $\star \rho_i$: Reflectance of S_i . - **★** B_i : Radiosity of S_i . - \bigstar E_i : Rate at which S_i emits power. (Energy per unit time per unit area.) $B_i A_i = E_i A_i + \rho_i \cdot \text{total power incident to } S_i$ $$= E_i A_i + ho_i \sum_{j=1}^n ext{Incident power from } S_j$$ $$= E_i A_i + \rho_i \sum_{i=1}^n B_j A_j F_{ji}$$ F_{ji} : Fraction of light leaving S_j that reaches S_i . $$B_i = E_i + \rho_i \sum_{j=1}^n B_j F_{ji} \frac{A_j}{A_i}.$$ Slide 3 00000 # Form Factors — - ★ F_{ji}: Fraction of light leaving S_j that arrives at S_i - \bullet Depends on shape, orientation, & occlusion. - $F_{ii} \neq 0$ (e.g., concave surfaces). - $\star MA_i$: Number of lines through S_i . - $\star MA_i$: Number of lines through S_i . - ★ MA_jF_{ji} : # lines leaving S_j & reaching S_i . - $\star MA_iF_{ij}$: # lines leaving S_i & reaching S_j . $$A_i F_{ij} = A_j F_{ji}$$ $$F_{ij} = \frac{A_j}{A_i} F_{ji}.$$ Slide 4 Slide 6 CPS124, 296: COMPUTER GRAPHICS RADIOSITY Page 3 # Iterative Methods - - ★ No closed form for the radiosity equation. - ★ Use numerical methods. - **★** Compute form factors F_{ij} , $1 \le i, j, \le n$. - ★ Set up initial conditions - $E_i > 0$ for light sources. - $E_i = 0$ for other surfaces. - Guess initial values of B_i , $1 \le i \le n$. Slide 7 # Iterative Methods - - ★ Iterate the system until convergence. - \star Computes a better approximation of B_i at each step. $$\mathbf{M} \cdot \mathbf{B} = \mathbf{E}$$ $\mathbf{M} = [M_{ij}]$ $M_{ii} > 0$ $$B_i = -\sum_{\stackrel{j=1}{i \neq i}}^n rac{M_{ij}}{M_{ii}} B_j + rac{E_i}{M_{ii}}.$$ Use any of the relaxation methods to compute the new value of B_i . - ★ Jacobian relaxation - ★ Gauss-Seidel relaxation Slide 8 ### Iterative Methods How do we compute $B_i^{(m)}$, value of B_i in the m-th iteration? #### Jacobian relaxation: Use values from the previous iteration for all $$B_{i}^{(m)} = -\sum_{j=1 top j otin j otin i}^{n} rac{M_{ij}}{M_{ii}} B_{j}^{(m-1)} + rac{E_{i}}{M_{ii}}.$$ ## Gauss-Seidel relaxation: Use values from the previous iteration for j < iand from the current iteration for j > i. $$B_i^{(m)} = -\sum_{j=1}^{i-1} \frac{M_{ij}}{M_{ii}} B_j^{(m)} - \sum_{j=i+1}^n \frac{M_{ij}}{M_{ii}} B_j^{(m-1)} + \frac{E_i}{M_{ii}}.$$ - \star In-place update of B_i 's. - ★ Convergence rate is better. - ★ Strictly diagonal dominant matrices converge. Slide 9 # Continuous Shading — Decompose each surface into smaller pacthes Radiosity within each patch is the same. ### Interpolated Shading: - ★ Convert patch radiosity to vertex radiosity. - ★ Interpolate patch radiosity. ### Vertex radiosity: ★ Interior vertex v: Average of radiosity over adjacent patches $$B_e = (B_1 + B_2 + B_3 + B_4)/2$$ Boundary vertex v_b : More complex procedure. - Find a nearest interior vertex v_I . - f_1, \ldots, f_k : faces adjacent to v_b . - $(B_b + B_I)/2 = \sum_{i=1}^k B_i/k$. $(B_b + B_e)/2 = (B_1 + B_2)/2 \Rightarrow$ - $B_b = (3B_1 + 3B_2 B_3 B_4)/4.$ Slide 10 CPS124, 296: COMPUTER GRAPHICS RADIOSITY Page 5 ### Form Factors - F_{ij} : What is the average number of lines leaving a point from S_i and reaching S_i ? ### Example: - \star Small patch dS_i with area - \star Parallel disk of radius r at distance h. - $\star F_{ij}$: Solid angle from a point in dS_i to S_i . ### Form Factors - $\star dS_i, dS_j$: Differential surfaces S_i, S_j - $\star dA_i, dA_j$: Areas of differential surfaces dS_i, dS_j - ★ $F_{di,dj}$: Differential form factor from dS_i to dS_j . - \bigstar H_{ij} : 1 if dS_i visible from dS_j . Slide 12 Slide 11 # Form Factors - - $$\begin{split} & \bigstar \ F_{di,j} \text{: Form factor from } dS_i \text{ to } S_j. \\ & \bigstar \ F_{ij} \text{: Form factor from } S_i \text{ to } S_j. \end{split}$$ $$\begin{array}{lcl} F_{di,j} & = & \displaystyle \int_{A_j} \frac{\cos\theta_i \cos\theta_j}{\pi r^2} H_{ij} dA_j \\ \\ F_{i,j} & = & \displaystyle \frac{1}{A_i} \int_{A_i} \int_{A_j} \frac{\cos\theta_i \cos\theta_j}{\pi r^2} H_{ij} dA_j dA_i \end{array}$$ Slide 13 Slide 14 CPS124, 296: COMPUTER GRAPHICS RADIOSITY Page 7