- Illumination Models

Z-buffer methods:

- ★ Compute only direct lighting.
- ★ Ignore secondary light sources.

Ray-tracing methods:

- ★ Model specular reflection and refraction well.
- ★ Still uses directionless ambient lighting.
- * Not good for global lighting.

Radiosity methods:

- ★ Introduced in 1984 by (Goral, Torrance, Greenberg, & Battaile).
- ★ Use thermal radiation models to calculate global lighting.
- ★ Good for ideal *diffuse* environments.
- ★ Assumes conservation of light energy in a closed environment.
- ★ Determines all light interactions in a viewindependent way.

- (44444)

Slide 1

CPS124, 296: COMPUTER GRAPHICS

Radiosity

Radiosity: Power (Energy/unit time) leaving a surface at a given point, per unit area.

- * Allows any surface to radiate power.
 - If light source, emits energy.
 - Otherwise, radiates a portion of the incident energy.
- ★ Surfaces have finite area.
- ★ Power leaving a surface: emitted power + reflected power.
- ★ Need to mesh original surfaces to capture finescale illumination.

- (4)

Slide 2

RADIOSITY

Page 1

Radiosity ——

- $\star S_1, \ldots, S_n$: Set of surface patches.
- ★ A_i : Area of S_i .
- $\star \rho_i$: Reflectance of S_i .
- **★** B_i : Radiosity of S_i .
- \bigstar E_i : Rate at which S_i emits power. (Energy per unit time per unit area.)

 $B_i A_i = E_i A_i + \rho_i \cdot \text{total power incident to } S_i$

$$= E_i A_i +
ho_i \sum_{j=1}^n ext{Incident power from } S_j$$

$$= E_i A_i + \rho_i \sum_{i=1}^n B_j A_j F_{ji}$$

 F_{ji} : Fraction of light leaving S_j that reaches S_i .

$$B_i = E_i + \rho_i \sum_{j=1}^n B_j F_{ji} \frac{A_j}{A_i}.$$

Slide 3

00000

Form Factors —

- ★ F_{ji}: Fraction of light leaving S_j that arrives at S_i
 - \bullet Depends on shape, orientation, & occlusion.
 - $F_{ii} \neq 0$ (e.g., concave surfaces).

- $\star MA_i$: Number of lines through S_i .
- $\star MA_i$: Number of lines through S_i .
- ★ MA_jF_{ji} : # lines leaving S_j & reaching S_i .
- $\star MA_iF_{ij}$: # lines leaving S_i & reaching S_j .

$$A_i F_{ij} = A_j F_{ji}$$

$$F_{ij} = \frac{A_j}{A_i} F_{ji}.$$

Slide 4

Slide 6

CPS124, 296: COMPUTER GRAPHICS

RADIOSITY

Page 3

Iterative Methods -

- ★ No closed form for the radiosity equation.
- ★ Use numerical methods.
- **★** Compute form factors F_{ij} , $1 \le i, j, \le n$.
- ★ Set up initial conditions
 - $E_i > 0$ for light sources.
 - $E_i = 0$ for other surfaces.
 - Guess initial values of B_i , $1 \le i \le n$.

Slide 7

Iterative Methods -

- ★ Iterate the system until convergence.
- \star Computes a better approximation of B_i at each step.

$$\mathbf{M} \cdot \mathbf{B} = \mathbf{E}$$
 $\mathbf{M} = [M_{ij}]$ $M_{ii} > 0$

$$B_i = -\sum_{\stackrel{j=1}{i \neq i}}^n rac{M_{ij}}{M_{ii}} B_j + rac{E_i}{M_{ii}}.$$

Use any of the relaxation methods to compute the new value of B_i .

- ★ Jacobian relaxation
- ★ Gauss-Seidel relaxation

Slide 8

Iterative Methods

How do we compute $B_i^{(m)}$, value of B_i in the m-th iteration?

Jacobian relaxation:

Use values from the previous iteration for all

$$B_{i}^{(m)} = -\sum_{j=1 top j
otin j
otin i}^{n} rac{M_{ij}}{M_{ii}} B_{j}^{(m-1)} + rac{E_{i}}{M_{ii}}.$$

Gauss-Seidel relaxation:

Use values from the previous iteration for j < iand from the current iteration for j > i.

$$B_i^{(m)} = -\sum_{j=1}^{i-1} \frac{M_{ij}}{M_{ii}} B_j^{(m)} - \sum_{j=i+1}^n \frac{M_{ij}}{M_{ii}} B_j^{(m-1)} + \frac{E_i}{M_{ii}}.$$

- \star In-place update of B_i 's.
- ★ Convergence rate is better.
- ★ Strictly diagonal dominant matrices converge.

Slide 9

Continuous Shading —

Decompose each surface into smaller pacthes Radiosity within each patch is the same.

Interpolated Shading:

- ★ Convert patch radiosity to vertex radiosity.
- ★ Interpolate patch radiosity.

Vertex radiosity:

★ Interior vertex v: Average of radiosity over adjacent patches

$$B_e = (B_1 + B_2 + B_3 + B_4)/2$$

Boundary vertex v_b : More complex procedure.

- Find a nearest interior vertex v_I .
- f_1, \ldots, f_k : faces adjacent to v_b .
- $(B_b + B_I)/2 = \sum_{i=1}^k B_i/k$. $(B_b + B_e)/2 = (B_1 + B_2)/2 \Rightarrow$
- $B_b = (3B_1 + 3B_2 B_3 B_4)/4.$

Slide 10

CPS124, 296: COMPUTER GRAPHICS

RADIOSITY

Page 5

Form Factors -

 F_{ij} : What is the average number of lines leaving a point from S_i and reaching S_i ?

Example:

- \star Small patch dS_i with area
- \star Parallel disk of radius r at distance h.
- $\star F_{ij}$: Solid angle from a point in dS_i to S_i .

Form Factors

- $\star dS_i, dS_j$: Differential surfaces S_i, S_j
- $\star dA_i, dA_j$: Areas of differential surfaces dS_i, dS_j
- ★ $F_{di,dj}$: Differential form factor from dS_i to dS_j .
- \bigstar H_{ij} : 1 if dS_i visible from dS_j .

Slide 12

Slide 11

Form Factors -

- $$\begin{split} & \bigstar \ F_{di,j} \text{: Form factor from } dS_i \text{ to } S_j. \\ & \bigstar \ F_{ij} \text{: Form factor from } S_i \text{ to } S_j. \end{split}$$

$$\begin{array}{lcl} F_{di,j} & = & \displaystyle \int_{A_j} \frac{\cos\theta_i \cos\theta_j}{\pi r^2} H_{ij} dA_j \\ \\ F_{i,j} & = & \displaystyle \frac{1}{A_i} \int_{A_i} \int_{A_j} \frac{\cos\theta_i \cos\theta_j}{\pi r^2} H_{ij} dA_j dA_i \end{array}$$

Slide 13

Slide 14

CPS124, 296: COMPUTER GRAPHICS

RADIOSITY

Page 7