Hidden Surface Removal

- In this dack of slides, we will assume that 'depths' is along the zaxis. That is, camera is at $(0,0,0)$, LookAt at $(0,0,-1)$ and $\vec{w}=(0,0,1)$
- Furthermore, we assume that the projection is orthographic. $(x, y, z) \rightarrow(x, y, 0)$.
- That is, not a perspective projection
- Our hardware likes this assumptions.
- But if the camera's parameters don't agree - will discuss transformations (later)

Hidden Surface Removal for Polygonal Scenes

Input: Set of polygons in three-dimensional space + a viewpoint

\square Output: A two-dimensional image of projected polygons, containing only visible portions

$$
n(1,2,3)=n(2,3,1)=-n(2,1,3)
$$

Back Face Culling

Determine back \& front faces using sign of inner product $<n, V>$
\square In a convex object : Invisible back faces
All front faces entirely visible \Rightarrow solves hidden surfaces problem
In non-convex object:
Invisible back faces
Front faces can be visible, invisible, or partially visible

Depth Sort (object space)

Question: Given a set of polygons, is it possible to:
\square sort them by depth. The order is not necessarily unique.Then paint them back to front (over each other) to remove the hidden surfaces ?(each polygon fully rendered)This is called the painter algorithm.

Answer: Usually not

- Works for special cases
- E.g. polygons with constant z (where do we have polygons with constant z!?)

Painter's Algorithm

- Draw one primitive at a time.

Painter's Algorithm

- Draw one primitive at a time.

Painter's Algorithm

- Draw one primitive at a time.

Painter's Algorithm

- Draw one primitive at a time.

Painter's Algorithm

- Draw one primitive at a time.

Painter's Algorithm

- Draw one primitive at a time.

Painter's algorithm

- Amounts to a topological sort of the graph of occlusions
- that is, an edge from A to B means A sometimes occludes B
- any sort is valid
- ABCDEF
- BADCFE
- if there are cycles there is no sort

From

Painter's algorithm

- Amounts to a topological sort of the graph of occlusions

- that is, an edge from A to B means A sometimes occludes B
- any sort is valid
- ABCDEF
- BADCFE
- if there are cycles there is no sort

BSP (Binary Space Partition) Trees

- Partition a set of objects using a set of arbitrary half-spaces (for clarity, we only show segments, and not the full line separating objects).
- Each internal node contains a halfplane (in 3D) or a line (in 2D).
- For each half-space, divide the objects into two groups, those above and those below the half-space boundary
- Store the resulting divisions in a binary tree
- Arbitrarily oriented split planes
- Objects get fragmented into multiple pieces
- Example BSP of 5 objects in the plane
- The same object might Possibly objects might be "split". They are not physically split, but an object might be stored more than once in the tree (e.g. O4)

BSP has many other applications We will revisit BSP when talking about accelerating

QuadTrees/OctTree for shape - also a BSP

Input: Set S of triangles $S=\left\{t_{1 . \ldots} t_{n}\right\}$
Splitting policy: Split quadrant if it intersects more than 1 triangle of S.

The Visibility Problem
I
a

e

Binary Planar Partitions

Draw everything below the line 0 (farther from the eye) before drawing the ones closer to the eye. Continue inside each subtree.
(the drawing actually takes place when visiting leaves of tree)
This structure, as any other hierarchical decomposition, is useful for range searching, point location etc.

Given the location of the camera (Eye), and a root of a BSP, the Eye is in one of the two half spaces that the root separates.

1. Render the objects in the subtree that is more remote from Eye (recursively)
2. Render objects in the root
3. Render objects in the nearer subtree

-Can you think of 3 non-intersecting segments, where you cannot find a BSP without splitting?

- Z-Buffer Algorithm (image space)

Basic Idea: resolve the visibility at the pixel level, using depth sort.

For each image pixel - store both the color and the current z depth

Instead of always painting the pixels while scanconverting a polygon, do so only if polygon's depth is less than current z depth at that pixel

Questions: How can one compute Project(P) and Depth($\mathrm{Q}, \mathrm{x}, \mathrm{y})$?

Grey-level indicates z distance.

Darker = closer to camera

-Final image buffer

-Depth buffer

-Color buffer

Z-Buffer Algorithm

Image space algorithm

Data structure: Array of depth values

Common in hardware due to simplicity
\square Scene may be updated on the fly, adding new polygons

-Hardware implementation of screen Z-buffer:
Polygons sent through pipeline one at a time -Display updated to reflect each new polygon

How can we emulate transparent objects?

- Transparency Buffer

Extension to the basic Z-buffer algorithm

- Save all pixel values

At the end - have list of polygons \& depths (order) for each pixel
\square Simulate transparency
by weighting the
different list elements, in order

The A - buffer

Algorithm (2): rendering pixels
at each pixel, traverse buffer using brightness values in polygons to fill.
\square values are used for either for calculations involving transparency or for filtering for aliasing

pixel

Viewing

Coordinate Transformations

Recall: Coordinate Systems

- Points in space can be represented using an origin position and a set of orthogonal basis vectors:

$$
\mathbf{p}=\left(x_{p}, y_{p}\right) \equiv \mathbf{0}+x_{p} \mathbf{x}+y_{p} \mathbf{y} \quad \mathbf{p}=\left(u_{p}, v_{p}\right) \equiv \mathbf{e}+u_{p} \mathbf{u}+v_{p} \mathbf{v}
$$

- Any point can be described in either coordinate system

Recall: Matrices for Converting Coordinate Systems

- Using homogenous coordinates and affine transformations, we can convert between coordinate systems:

$$
\left[\begin{array}{c}
x_{p} \\
y_{p} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & x_{e} \\
0 & 1 & y_{e} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
x_{u} & x_{v} & 0 \\
y_{u} & y_{v} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
u_{p} \\
v_{p} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
x_{u} & x_{v} & x_{e} \\
y_{u} & y_{v} & y_{e} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
u_{p} \\
v_{p} \\
1
\end{array}\right]
$$

- More generally, any arbitrary coordinate system transform:
-

$$
\mathbf{P}_{u v}=\left[\begin{array}{ccc}
\mathbf{x}_{u v} & \mathbf{y}_{u v} & \mathbf{o}_{u v} \\
0 & 0 & 1
\end{array}\right] \mathbf{p}_{x y}
$$

Drawing by Transformation

- For now, we will consider drawing wireframe objects (collections of 3D line segments)

Perspective + Hidden Line Removal

Step-by-Step Viewing Transformations

(Each arrow is a matrix)

We'll Discuss Later

Camera transformation

World space

Projection Viewport transformation transformation

Canonical view volume

Viewport Transformation

- Goal: Transform from a canonical 2D space to pixel coordinates

- Canonical space:
$\left(\mathrm{X}_{\text {canonical }}, \mathrm{y}_{\text {canonical }}\right) \in[-1,1] \times[-1,1]$
Viewport transformation
- Pixel space:
$\left(\mathrm{x}_{\text {screen }}, \mathrm{y}_{\text {screen }}\right) \in$

$$
\left[0.5, n_{x}-0.5\right] \times\left[0.5, n_{y}-0.5\right]
$$

- Initially, we will think of this as transformation of a 2D to 2D space

Viewports as Windowing

Viewports as Windowing

translate $\left(x^{\prime}{ }_{l}, y^{\prime}{ }_{l}\right)$ scale $\left(\frac{x^{\prime}{ }_{h}-x^{\prime} l}{x_{h}-x_{l}}, \frac{y^{\prime}{ }_{h}-y_{l}^{\prime}}{y_{h}-y_{l}}\right)$ translate $\left(-x_{l},-y_{l}\right)$

Canonical View Volume

- In actuality, our viewport transformation will work with the canonical view volume

Viewport transformation

Canonical view volume

Orthographic Projection

- Orthographic view volume defined by six scalars:
- Convention: $n>f$, but note that both are negative
$x=l \equiv$ left plane,
$x=r \equiv$ right plane,
$y=b \equiv$ bottom plane,
$y=t \equiv$ top plane,
$z=n \equiv$ near plane,
$z=f \equiv$ far plane.

Camera Coordinates

Changing Coordinates

- We need to both translate the origin and change coordinate systems

$$
\mathbf{M}_{\mathrm{cam}}=\left[\begin{array}{cccc}
\mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{e} \\
0 & 0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cccc}
x_{u} & y_{u} & z_{u} & 0 \\
x_{v} & y_{v} & z_{v} & 0 \\
x_{w} & y_{w} & z_{w} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & -x_{e} \\
0 & 1 & 0 & -y_{e} \\
0 & 0 & 1 & -z_{e} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Projective Transformations (note: Transformation is not a Projection)

Relative Size Based on Distance

$\begin{aligned} & \text { - Key idea of perspective: the size of an } \\ & \text { object on the screen is proportional to } 1 / z\end{aligned} \quad y_{s}=\frac{d}{z} y$

Using Homogenious coord for Perspective First attempt that will only partially work

- We can now replace:

$$
y_{s}=\frac{d}{z} y
$$

- With:

$$
\left[\begin{array}{c}
\boldsymbol{y}_{\boldsymbol{s}} \\
1
\end{array}\right] \sim\left[\begin{array}{lll}
\boldsymbol{d} & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{y} \\
z \\
1
\end{array}\right] \quad\left(\begin{array}{llll}
d & 0 & 0 & 0 \\
0 & d & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)=\left(\begin{array}{c}
(d x, d y, z, z) \\
=\left(\frac{x}{z}, \frac{y}{z}, \frac{z}{z}, 1\right)
\end{array}\right.
$$

Perspective Matrix

- Our matrix:
$\mathbf{P}=\left[\begin{array}{cccc}n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -f n \\ 0 & 0 & 1 & 0\end{array}\right]$

- Keeps near plane fixed, maps far plane to back of the box

Perspective Distortion

 $$
\mathbf{P}=\left[\begin{array}{cccc} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -f n \\ 0 & 0 & 1 & 0 \end{array}\right]
$$

- Effect on view rays / lines:
- Note that affine transformation cannot do this because it keeps parallel lines parallel Perspective matrix effect on coordinates is nonlinear distortion in z :
- But it does, however, preserve order in the z-coordinate (which will become useful very soon)

Putting it all together

Equivalently: $\quad \mathbf{M}=\mathbf{M}_{\mathrm{vp}} \mathbf{M}_{\text {orth }} \mathbf{P} \mathbf{M}_{\text {cam }}$

```
construct M_vp
construct M_per
construct M_cam
M = M_vp * M_per * M_cam
for each 3D object O {
    O_screen = M * O
    draw(O_screen)
}
construct M_vp construct M_per construct M_cam


For a given vertex \(\mathbf{a}=(x, y, z), \mathbf{p}=\) Ma should result in drawing ( \(x_{\mathrm{p}}\) / \(w_{\mathfrak{p}}, y_{\mathbf{p}} / w_{\mathbf{p}}, z_{\mathbf{p}} / w_{\mathfrak{p}}\) ) on the screen

\section*{Painter's Algorithm}

- Simple way to do hidden surfaces
- Draw from back-tofront, overwriting directly on the image


\section*{Painter's Algorithm}
- Draw one primitive at a time.


\section*{Painter's Algorithm}
- Draw one primitive at a time.


\section*{Painter's Algorithm}
- Draw one primitive at a time.


\section*{Painter's Algorithm}
- Draw one primitive at a time.


\section*{Painter's Algorithm}
- Draw one primitive at a time.


\section*{Painter's Algorithm}
- Draw one primitive at a time.


\section*{Painter's algorithm}
- Amounts to a topological sort of the graph of occlusions
- that is, an edge from A to B means A sometimes occludes B
- any sort is valid
- ABCDEF
- BADCFE
- if there are cycles there is no sort



In this context, to "render a triangle" \(t_{i}\) means
"set the color of each the pixel that \(\boldsymbol{t}_{\mathbf{i}}\) contains, to the color of \(\mathbf{t}_{\mathbf{i}}\)
- Input - a set of triangles. Each with a different color
- Sort them, in decreasing distance from the viewer.
- (the order might not be unique)
- Render them, start from the one which is furthest away from the viewer, and end with the one closest to the viewer
- When rendering a triangle, we ignore all other triangles.
- In general, the order must satisfies: If A occludes any part of B, then B should be rendered earlier.

\section*{Painter's algorithm}
- Amounts to a topological sort of the graph of occlusions
- that is, an edge from A to B means A sometimes occludes B
- any sort is valid
- ABCDEF
- BADCFE
- if there are cycles there is no sort


\section*{Using a z-Buffer for Hidden Surfaces}
- Most of the time, sorting the primitives in \(z\) is too expensive and complex
- Solution: draw primitives in any order, but keep track of closest at the fragment (pixel) level
- Method: use an extra data structure that tracks the closest fragment in depth. (this is the depth buffer, or Z-buffer)
- When drawing, compare fragment's depth to closest current depth and discard the one that is further away```

