
▪▪ ▪
▪

▪

1

Hidden Surface Removal

▪▪ ▪
▪

▪

2

• In this dack of slides, we will assume that `depths’ is along the z-
axis. That is, camera is at (0,0,0), LookAt at (0,0,-1) and

• Furthermore, we assume that the projection is orthographic.

• That is, not a perspective projection
• Our hardware likes this assumptions.
• But if the camera’s parameters don’t agree - will discuss

transformations (later)

⃗w = (0,0,1)

(x, y, z) → (x, y,0) .

▪▪ ▪▪
▪

3

Hidden Surface Removal for
Polygonal Scenes

❑ Input: Set of polygons in three-dimensional space + a
viewpoint

❑ Output: A two-dimensional image of projected
polygons, containing only visible portions

▪
▪

▪

▪▪ ▪▪
▪

4

The Normal Vector

▪

v1

v2

v3
n = (v3-v1)x(v2-v1)

n(1,2,3) = n(2,3,1) = -n(2,1,3)

▪▪ ▪▪
▪

5

▪

V n

n

Back Face Culling (object space)

❑ In closed polyhedron you don’t
see object “back” faces

❑ Assumption
Normals of faces point out from the
object

❑ Object space algorithm

▪▪ ▪▪
▪

6

Back Face Culling
❑Determine back & front faces using sign of inner

product < n, V >

❑ In a convex object :
Invisible back faces

All front faces entirely visible ⇒ solves hidden
surfaces problem

❑ In non-convex object:
Invisible back faces

Front faces can be visible, invisible, or partially visible

▪▪ ▪▪
▪

7

Depth Sort (object space)
❑ Question: Given a set of polygons, is it possible to:

sort them by depth. The order is not necessarily unique.
Then paint them back to front (over each other) to remove the hidden
surfaces ?(each polygon fully rendered)
This is called the painter algorithm.

▪ ▪
▪

▪

❑ Answer: Usually not
❑ Works for special cases

▪ E.g. polygons with constant z
(where do we have polygons with
constant z!?)

▪

▪
▪

Painter’s Algorithm
• Draw one primitive at a time.

• Simplest way to do hidden surfaces

• Draw from back to front, use overwriting in framebuffer

© 2018 Steve Marschner • Cornell CS4620 Spring 2018 • Lecture 11

Painter’s algorithm

6

Painter’s Algorithm
• Draw one primitive at a time.

• Simplest way to do hidden surfaces

• Draw from back to front, use overwriting in framebuffer

© 2018 Steve Marschner • Cornell CS4620 Spring 2018 • Lecture 11

Painter’s algorithm

6

Painter’s Algorithm
• Draw one primitive at a time.

• Simplest way to do hidden surfaces

• Draw from back to front, use overwriting in framebuffer

© 2018 Steve Marschner • Cornell CS4620 Spring 2018 • Lecture 11

Painter’s algorithm

6

Painter’s Algorithm
• Draw one primitive at a time.

• Simplest way to do hidden surfaces

• Draw from back to front, use overwriting in framebuffer

© 2018 Steve Marschner • Cornell CS4620 Spring 2018 • Lecture 11

Painter’s algorithm

6

Painter’s Algorithm
• Draw one primitive at a time.

• Simplest way to do hidden surfaces

• Draw from back to front, use overwriting in framebuffer

© 2018 Steve Marschner • Cornell CS4620 Spring 2018 • Lecture 11

Painter’s algorithm

6

Painter’s Algorithm
• Draw one primitive at a time.

• Simplest way to do hidden surfaces

• Draw from back to front, use overwriting in framebuffer

© 2018 Steve Marschner • Cornell CS4620 Spring 2018 • Lecture 11

Painter’s algorithm

6

• Amounts to a topological sort of the graph of occlusions
– that is, an edge from A to B means A sometimes occludes B
– any sort is valid

• ABCDEF
• BADCFE

– if there are cycles  
there is no sort

© 2018 Steve Marschner • Cornell CS4620 Spring 2018 • Lecture 11

B

A

C

E

D

F AB

C

F

D

E

Painter’s algorithm

7

From

• Amounts to a topological sort of the graph of occlusions
– that is, an edge from A to B means A sometimes occludes B
– any sort is valid

• ABCDEF
• BADCFE

– if there are cycles  
there is no sort

© 2018 Steve Marschner • Cornell CS4620 Spring 2018 • Lecture 11

B

A

C

E

D

F AB

C

F

D

E

Painter’s algorithm

7

Cycles cannot be sorted

BSP (Binary Space Partition) Trees
•Partition a set of objects using a set of arbitrary half-spaces (for clarity, we only

show segments, and not the full line separating objects).

•Each internal node contains a halfplane (in 3D) or a line (in 2D).

• For each half-space, divide the objects into two groups, those above and those

below the half-space boundary

•Store the resulting divisions in a binary tree

• Arbitrarily oriented split planes

• Objects get fragmented into multiple pieces

• Example BSP of 5 objects in the plane

• The same object might Possibly objects might be ``split’’. They are not physically
split, but an object might be stored more than once in the tree (e.g. O4)

▪BSP has many other applications We will
revisit BSP when talking about accelerating
data structures

17

QuadTrees/OctTree for shape - also a BSP

c

d

da

c

a

 b

b
bf

a

f

Input: Set S of triangles S={t1…tn }

Splitting policy: Split quadrant if it intersects more than 1
triangle of S.

▪▪ ▪▪
▪

18

Depth Sort (object space)

❑ Will fail for:
Intersecting polygons
Mutually occluding polygons

▪
▪ ▪ ▪

▪

▪▪ ▪▪
▪ The Visibility Problem

a

b

c

d e

▪▪ ▪▪
▪ Binary Planar Partitions

a

b

c

d e

01

2

3

0

1 2

3a b c

d e

ab cde

de

Draw everything below the line 0 (farther from the eye) before drawing the ones
closer to the eye. Continue inside each subtree.
 (the drawing actually takes place when visiting leaves of tree)

This structure, as any other hierarchical decomposition, is useful for range
searching, point location etc.

▪▪ ▪▪
▪ Painter’s Algorithm

a

b

c

d e

01

2

3

0

1 2

3a b c

d e

Given the location of the camera (Eye), and a root of a BSP, the Eye is in one of the two half
spaces that the root separates.
1. Render the objects in the subtree that is more remote from Eye (recursively)
2. Render objects in the root
3. Render objects in the nearer subtree

▪▪ ▪▪
▪Creating a BSP might force splitting objects

22

▪Can you think of 3 non-intersecting segments, where you
cannot find a BSP without splitting?

▪ ▪ ▪
▪

▪

▪▪ ▪▪
▪

23

Z-Buffer Algorithm (image space)

❑ Basic Idea: resolve the visibility at the pixel level,
using depth sort.

❑ For each image pixel - store both the color and the
current z depth

❑ Instead of always painting the pixels while scan-
converting a polygon, do so only if polygon’s depth is
less than current z depth at that pixel

▪
▪

▪

▪ ▪
▪

▪

▪▪ ▪▪
▪

24

▪▪ ▪▪
▪

25

▪▪ ▪▪
▪

26

Z-Buffer

 Questions: How
can one compute
Project(P) and
Depth(Q,x,y)?

▪

ZBuffer(Scene)
For every pixel (x,y) do PutZ(x,y,MaxZ);
For each polygon P in Scene do
 Q := Project(P);
 For each pixel (x,y) in Q do
 z := Depth(Q,x,y);
 if (z < GetZ(x,y)) then
 PutZ(x,y,z);
 PutColor(x,y,Col(P,x,y));
 end;
 end;
end;

▪▪ ▪▪
▪

27

▪
▪

4
2

▪1

3

▪Depth buffer ▪Color buffer ▪Final image buffer

▪▪ ▪▪
▪

28

▪
▪

4
2

▪1

3

▪Depth buffer ▪Color buffer ▪Final image buffer

▪▪ ▪▪
▪

29

▪
▪

4
2

▪1

3

▪ ▪1

▪Depth buffer ▪Color buffer ▪Final image buffer

▪▪ ▪▪
▪

30

▪
▪

4
2

▪1

3
▪

▪

▪

▪1

2

▪Depth buffer ▪Color buffer ▪Final image buffer

▪▪ ▪▪
▪

31

Grey-level indicates z distance.
Darker = closer to camera

▪
▪

4
2

▪1

3 ▪
▪

▪

▪
▪

▪1

2

4

▪Depth buffer ▪Color buffer ▪Final image buffer

▪▪ ▪▪
▪

32

▪
▪

4
2

▪1

3 ▪
▪

▪

▪
▪

▪

4

1

3
2

▪Depth buffer ▪Color buffer ▪Final image buffer

▪▪ ▪▪
▪

33

Computing Depth(Q,x,y) efficiently

scanline Y=y

▪For a pixel p, its depth is the (weighted) linear interpolation (using barycentric coordinates) of
the depth of vertices
▪Depending on the level of parallelism we have: Three cases: num_processors num_pixels,
num_rows, or is a constant.

▪If have a processor per pixel - they all compute their own barycentric coordinates.
▪If we have only one processor - do compute the interpolated depth along the edges AC,
AB
▪To find the value at p, create a segment parallel to BC, via p. Linearly interpolate the
values at its endpoint.
▪ To compute the depth at p’, only one addition operation

≈ ≤

pp

▪

▪gg

▪▪ ▪▪
▪

34

Z-Buffer Algorithm

❑ Image space algorithm

❑ Data structure: Array of depth values

❑ Common in hardware due to simplicity

❑ Scene may be updated on the fly, adding new
polygons

▪▪ ▪▪
▪

35

The Graphics Pipeline

❑Hardware implementation of screen Z-buffer:
Polygons sent through pipeline one at a time
Display updated to reflect each new polygon

▪

Geometry
 Processing

(Viewing
 transformation)

▪
Rasterizer

(scan-conversion
 Z-buffer)

▪ ▪▪▪▪
▪▪

▪▪ ▪▪
▪

36

Transparency Z-Buffer

How can we emulate transparent objects?

▪▪ ▪▪
▪

37

Transparency Buffer

❑ Extension to the basic Z-buffer algorithm
❑ Save all pixel values
❑ At the end – have list of polygons & depths (order)

for each pixel
❑ Simulate transparency
 by weighting the
 different list elements,
 in order

▪▪ ▪▪
▪

❑ For transparent surfaces and filter based anti-
aliasing:

❑ Algorithm (1): filling buffer
at each pixel, maintain a pointer to a list of
polygons sorted by depth. (only the few nearest
ones)
when filling a pixel:

if polygon is opaque and covers pixel, insert
into list, removing all polygons farther away
if polygon is opaque and only partially

covers pixel, insert into list, but don’t remove
farther polygons

▪
▪

▪

pixel

The A - buffer

▪▪ ▪▪
▪ The A - buffer

❑ Algorithm (2): rendering pixels

at each pixel, traverse buffer using
brightness values in polygons to fill.

values are used for either for calculations
involving transparency or for filtering for
aliasing

▪
▪

▪

pixel

Viewing

Coordinate
Transformations

Recall: Coordinate
Systems

• Points in space can be represented using an origin position and a set
of orthogonal basis vectors:

• Any point can be described in either coordinate system

Recall: Matrices for Converting
Coordinate Systems

• Using homogenous coordinates and affine transformations,
we can convert between coordinate systems:

• More generally, any arbitrary coordinate system transform:

•

Drawing by Transformation

• For now, we will consider drawing wireframe objects
(collections of 3D line segments)

Orthographic Perspective Perspective +
Hidden Line Removal

Step-by-Step Viewing Transformations
(Each arrow is a matrix)

We’ll Discuss Later

Viewport Transformation
• Goal: Transform from a canonical

2D space to pixel coordinates

• Canonical space: 
(xcanonical,ycanonical) ∈ [-1,1]×[-1,1]

• Pixel space: 
(xscreen,yscreen) ∈
[0.5,nx-0.5]×[0.5,ny-0.5]

• Initially, we will think of this as
transformation of a 2D to 2D space

Viewports as Windowing
A windowing operation
transforms a rectangle
[𝑥l,𝑥h]×[𝑦l,𝑦h] to another

rectangle [𝑥’l,𝑥’h]×[𝑦’l,𝑦’h]

Viewports as
Windowing

• Decompose
windowing
into three
steps

(xl, yl)

(xr, yr)(xh, yh)

(xh − xl , yh − yl)

(x′ h, y′ h)
(xh, yh)

Canonical View Volume
• In actuality, our viewport

transformation will work with the
canonical view volume

Orthographic Projection
• Orthographic view volume defined

by six scalars:

• Convention: 𝑛 > 𝑓, but note that
both are negative

Camera Coordinates

Changing Coordinates
• We need to both translate the origin and change coordinate

systems

Projective Transformations
(note: Transformation is

not a Projection)

Relative Size Based on Distance
• Key idea of perspective: the size of an

object on the screen is proportional to 1/z

Using Homogenious coord for Perspective
First attempt that will only partially work

• We can now replace:

• With:
d 0 0 0
0 d 0 0
0 0 1 0
0 0 1 0

x
y
z
1

= (dx, dy, z, z)

= (
x
z

,
y
z

,
z
z

,1)

Perspective Matrix
• Our matrix:

• Keeps near plane
fixed, maps far plane
to back of the box

• Effect on view rays / lines:

• Note that affine transformation cannot do this because it keeps parallel lines parallel
Perspective matrix effect on coordinates is nonlinear distortion in z:

• But it does, however, preserve order in the z-coordinate (which will become useful very
soon)

Perspective Distortion

▪GG

Putting it all together

construct M_vp
construct M_per
construct M_cam
M = M_vp * M_per * M_cam
for each 3D object O {
 O_screen = M * O
 draw(O_screen)
}

Equivalently:

For a given vertex 𝐚 = (𝑥,𝑦,𝑧), p =
𝐌𝐚 should result in drawing (𝑥p/
𝑤p,𝑦p/𝑤p,𝑧p/𝑤p) on the screen

Painter’s
Algorithm

• Simple way to do
hidden surfaces

• Draw from back-to-
front, overwriting
directly on the image

Painter’s Algorithm
• Draw one primitive at a time.

• Simplest way to do hidden surfaces

• Draw from back to front, use overwriting in framebuffer

© 2018 Steve Marschner • Cornell CS4620 Spring 2018 • Lecture 11

Painter’s algorithm

6

Painter’s Algorithm
• Draw one primitive at a time.

• Simplest way to do hidden surfaces

• Draw from back to front, use overwriting in framebuffer

© 2018 Steve Marschner • Cornell CS4620 Spring 2018 • Lecture 11

Painter’s algorithm

6

Painter’s Algorithm
• Draw one primitive at a time.

• Simplest way to do hidden surfaces

• Draw from back to front, use overwriting in framebuffer

© 2018 Steve Marschner • Cornell CS4620 Spring 2018 • Lecture 11

Painter’s algorithm

6

Painter’s Algorithm
• Draw one primitive at a time.

• Simplest way to do hidden surfaces

• Draw from back to front, use overwriting in framebuffer

© 2018 Steve Marschner • Cornell CS4620 Spring 2018 • Lecture 11

Painter’s algorithm

6

Painter’s Algorithm
• Draw one primitive at a time.

• Simplest way to do hidden surfaces

• Draw from back to front, use overwriting in framebuffer

© 2018 Steve Marschner • Cornell CS4620 Spring 2018 • Lecture 11

Painter’s algorithm

6

Painter’s Algorithm
• Draw one primitive at a time.

• Simplest way to do hidden surfaces

• Draw from back to front, use overwriting in framebuffer

© 2018 Steve Marschner • Cornell CS4620 Spring 2018 • Lecture 11

Painter’s algorithm

6

• Amounts to a topological sort of the graph of occlusions
– that is, an edge from A to B means A sometimes occludes B
– any sort is valid

• ABCDEF
• BADCFE

– if there are cycles  
there is no sort

© 2018 Steve Marschner • Cornell CS4620 Spring 2018 • Lecture 11

B

A

C

E

D

F AB

C

F

D

E

Painter’s algorithm

7

The painter algorithm

In this context, to ``render a triangle’’ ti means
``set the color of each the pixel that ti contains, to the color of ti

• Input - a set of triangles. Each with a different color

• Sort them, in decreasing distance from the viewer.

• (the order might not be unique)

• Render them, start from the one which is furthest away from the viewer, and

end with the one closest to the viewer

• When rendering a triangle, we ignore all other triangles.

• In general, the order must satisfies: If A occludes any part of B, then B

should be rendered earlier.

1

2

3

• Amounts to a topological sort of the graph of occlusions
– that is, an edge from A to B means A sometimes occludes B
– any sort is valid

• ABCDEF
• BADCFE

– if there are cycles  
there is no sort

© 2018 Steve Marschner • Cornell CS4620 Spring 2018 • Lecture 11

B

A

C

E

D

F AB

C

F

D

E

Painter’s algorithm

7

Cycles cannot be sorted

Using a z-Buffer for Hidden
Surfaces

• Most of the time, sorting the primitives in z is too expensive
and complex

• Solution: draw primitives in any order, but keep track of
closest at the fragment (pixel) level

• Method: use an extra data structure that tracks the
closest fragment in depth. (this is the depth buffer, or
Z-buffer)

• When drawing, compare fragment’s depth to closest
current depth and discard the one that is further away

