
CSC 433/533

Computer Graphics

Alon Efrat

Credit Joshua Levine

Lecture 28

Implicit Modeling

Dec. 9, 2019

Implicit Modeling of
Shapes

Recall: Shape Models That
We Have So Far

• Implicit Shapes (𝑓(𝐩) = 0 for all 𝐩 on shape):

• Sphere: 𝑓(𝐩) = (𝐩 - 𝐜)・(𝐩 - 𝐜) - 𝑅2 = 0

• Plane: 𝑓(𝐩) = (𝐩 - 𝐚)・𝐧 = 0

• Parametric Shapes (𝐩(𝑡) is a point on shape for all 𝑡):

• Rays: 𝐩(𝑡) = 𝐨 + 𝑡𝐝

• Triangles: 𝐩(𝛼,𝛽,𝛾) = 𝛼𝐚 + 𝛽𝐛 + 𝛾𝐜, and triangle meshes

• Splines: Hermite, Bézier, B-Splines, Catmull-Rom

• Subdivision Surfaces: Loop, Catmull-Clark

7

Implicit Surfaces

• Surface defined implicitly by function:
• f (x, y, z) = 0 (on surface)
• f (x, y, z) < 0 (inside)
• f (x, y, z) > 0 (outside)

f(x,y) = 0 on curve

f(x,y) < 0 inside

f(x,y) > 0 outside
Turk

Benefits of Implicit Shapes

• Many operations that can be simplified:

• Rendering: Can check intersections efficiently

• Collisions: Can check whether a point is inside/outside

• Design: Blending/Solid modeling

• Simulation: Can naturally represent certain simulation
techniques used in animation

Implicit Functions

Defining 𝑓(𝐱, 𝐲, 𝐳) = 0

• Methods to define implicit functions:

• Algebraic Equations

• Distance Functions

• Voxels

Algebraic Functions

• Can use any polynomial form

• e.g. sphere,  
𝑓(𝐱, 𝐲, 𝐳) = 𝐱2 + 𝐲2 + 𝐳2 - r2

https://en.wikipedia.org/wiki/Quadric

Quadric Surfaces
• More generally, can define 𝑓 as any order two polynomial 
𝑓(𝐱, 𝐲, 𝐳) = A𝐱2+B𝐲2+C𝐳2 + D𝐱𝐲+E𝐱𝐳+F𝐲𝐳 + G𝐱+H𝐲+I𝐳 + J

• Provides a family of shapes: ellipses, paraboloids,
hyperboloids, cylinders, cones

https://en.wikipedia.org/wiki/Quadric

Signed Distance Fields
• Idea: design a function that computes distance from some shape.

• Distance is signed: positive is outside, negative inside

https://buffy.eecs.berkeley.edu/PHP/resabs/images/2005/100895-0.jpg

f(x; y) = 0

Level set
(isocontour)

Building Implicit Functions
w/ Signed Distance Fields

• Simple example: working with point primitive

• Distance function:

• Let 𝐱 = (𝑥,𝑦,𝑧) and define 𝑑(𝑥,𝑦,𝑧) be the distance from 𝐱
to a point 𝐩, e.g. 𝑑(𝐱) = ||𝐱-𝐩||

• Consider the function 𝑓(𝐱) = 𝑑(𝐱) - 𝑟.

• This forms a collection of spherical shells of radius 𝑟

https://en.wikipedia.org/wiki/Quadric
https://en.wikipedia.org/wiki/Quadric

Composition
• Can combine multiple constraints additively.

http://paulbourke.net/geometry/implicitsurf/index.html

Fall-off Filters

• We compose the distance function with a fall-off filter, or
basis function to help limit its local effect

• Many potential choices for 𝑔i

Blinn’s Blobs
• Modeled after electron

density field using
Gaussians:

• 𝑟 based on target radius

• Can also multiply by a
constant to affect
“blobbiness” 40

Blobby Models

• Sum of two blobs

Turk

http://paulbourke.net/geometry/implicitsurf/index.html

41

Blobby Models

• Sum of four blobs

Turk
42

Blobby Model of Head

43

Blobby Model of Head

44

Blobby Model of Face

45

Blobby Model of Face

46

Blobby Model of Face

Metaballs: Nishimura et al.

• Offers finite support

• Commonly used in tools
like Blender

https://www.blender.org/conference/2017/presentations/359

Soft Objects: Wyvill and
Wyvill

• Truncated expansion of the exponential, defined for 𝑑 < 𝑟.

https://www.blender.org/conference/2017/presentations/359

Other Primitives
• Commonly used: distances to line segments

• Can be tricky to handle bulging

Defining Surface Normals
• Convention: use the gradient of the implicit function:

11

Implicit Surfaces

• Normals defined by partial derivatives
• Normal - 𝑁 𝑥, 𝑦, 𝑧 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝜕𝑓

𝜕𝑥
, 𝜕𝑓
𝜕𝑦

, 𝜕𝑓
𝜕𝑧

= 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(∇𝑓)
• Example: circle 𝑥2 + 𝑦2 − 32 = 0
• Proof: straight forward with an arbitrary curve Γ 𝑡 and the chain rule
• Intuition: Max change rate direction of 𝑓 must be

perpendicular to isosurface direction

Normals Tangents Curvatures

Bloomenthal

Approximating the Gradient

• Might be able to get this from a closed form.

• Alternatively, use numerical differentiation to compute:

https://youtu.be/XuSnLbB1j6E

Rendering Implicit
Functions

https://youtu.be/XuSnLbB1j6E

Rendering Methods
• Raytracing:

• Given a ray, we can test whether or not the ray
intersects the surface by plugging into the implicit
equation and finding roots of 𝑓(𝐩(𝑡)) = 0

• Rasterization:

• Implicit functions do not come with geometry (i.e.
triangles) to draw. To render we first construct
geometry and then apply standard rasterization
primitives.

Finding Intersections Between
Rays and Implicit Functions

• Intermediate Value Theorem:

• If a continuous function 𝑓
defined on an interval [a,b]
takes on values 𝑓(a) and 𝑓(b),
it also takes on any value
between 𝑓(a) and 𝑓(b)

• Can use root-find techniques
like Newton’s method

Kalra and Barr, Guaranteed Ray Intersections with Implicit Surfaces

Newton’s Method

• Use 𝑓ʹ to take a
step towards the
root.

• 𝑡1 = 𝑡0-𝑓(𝑡0)/𝑓ʹ(t0)

• Numerous
variations, regula
falsi, secant
method, etc.

https://en.wikipedia.org/wiki/Newton%27s_method

Marching along Rays
• Naive approach:

findRoot(t_min, t_max) {
 dt = 0.01
 t = t_min
 while(t < t_max and f(t) > 0) {
 t += dt
 }
 return t
}

• Many alternatives:

• Binary search for where the sign changes, varying the dt

• If 𝑓 is a distance function, can take a step equal to the value of 𝑓(𝑡)

https://en.wikipedia.org/wiki/Newton%27s_method

If 𝑓 is a distance function, can take a
step equal to the value of 𝑓(𝑡)

Distance-aided ray marching

Images due to Iñigo Quilez: http://www.iquilezles.org/www/material/nvscene2008/nvscene2008.htm
Idea is called “Sphere Tracing” from John C. Hart, The Visual Computer 1996

If 𝑓 is a distance function, can take a
step equal to the value of 𝑓(𝑡)

Distance-aided ray marching

Images due to Iñigo Quilez: http://www.iquilezles.org/www/material/nvscene2008/nvscene2008.htm
Idea is called “Sphere Tracing” from John C. Hart, The Visual Computer 1996

If 𝑓 is a distance function, can take a
step equal to the value of 𝑓(𝑡)

Distance-aided ray marching

Images due to Iñigo Quilez: http://www.iquilezles.org/www/material/nvscene2008/nvscene2008.htm
Idea is called “Sphere Tracing” from John C. Hart, The Visual Computer 1996

If 𝑓 is a distance function, can take a
step equal to the value of 𝑓(𝑡)

Distance-aided ray marching

Images due to Iñigo Quilez: http://www.iquilezles.org/www/material/nvscene2008/nvscene2008.htm
Idea is called “Sphere Tracing” from John C. Hart, The Visual Computer 1996

http://www.iquilezles.org/www/material/nvscene2008/nvscene2008.htm
http://www.iquilezles.org/www/material/nvscene2008/nvscene2008.htm
http://www.iquilezles.org/www/material/nvscene2008/nvscene2008.htm
http://www.iquilezles.org/www/material/nvscene2008/nvscene2008.htm

If 𝑓 is a distance function, can take a
step equal to the value of 𝑓(𝑡)

Distance-aided ray marching

Images due to Iñigo Quilez: http://www.iquilezles.org/www/material/nvscene2008/nvscene2008.htm
Idea is called “Sphere Tracing” from John C. Hart, The Visual Computer 1996

If 𝑓 is a distance function, can take a
step equal to the value of 𝑓(𝑡)

Distance-aided ray marching

Images due to Iñigo Quilez: http://www.iquilezles.org/www/material/nvscene2008/nvscene2008.htm
Idea is called “Sphere Tracing” from John C. Hart, The Visual Computer 1996

If 𝑓 is a distance function, can take a
step equal to the value of 𝑓(𝑡)

Distance-aided ray marching

Images due to Iñigo Quilez: http://www.iquilezles.org/www/material/nvscene2008/nvscene2008.htm
Idea is called “Sphere Tracing” from John C. Hart, The Visual Computer 1996

Skipping Space

• Precompute a set of bounding
boxes that pinpoint areas
where the sign of 𝑓 changes

• First intersect ray with box,
and then search for the root
within the box

• Can also build a bounding
hierarchy for this, e.g. an octree

Kalra and Barr, Guaranteed Ray Intersections with Implicit Surfaces

http://www.iquilezles.org/www/material/nvscene2008/nvscene2008.htm
http://www.iquilezles.org/www/material/nvscene2008/nvscene2008.htm
http://www.iquilezles.org/www/material/nvscene2008/nvscene2008.htm

Using Voxels for
Representing Implicit

Functions

3 Methods for Defining and
Implicit Function 𝑓(𝐱, 𝐲, 𝐳) = 0

• Methods to define implicit functions:

• Algebraic Equations

• Distance Functions

• Voxels

Voxels
• Can represent any volumetric function by sampling 𝑓 at a finite

set of positions

• Each sample is called a voxel (volume element)

• Similar to images: analogy is pixels are picture elements

• Replace the functional representation with grid-based sample

© Weiskopf/Machiraju/Möller 16

Volume Visualization

• Representation of scalar
3D data set

• Analogy: pixel (picture element)
• Voxel (volume element), with two interpretations:

– Values between grid points are resampled by
interpolation

• Collection of voxels
• Uniform grid

� ⇥ R3 � R

© Weiskopf/Machiraju/Möller 16

Volume Visualization

• Representation of scalar
3D data set

• Analogy: pixel (picture element)
• Voxel (volume element), with two interpretations:

– Values between grid points are resampled by
interpolation

• Collection of voxels
• Uniform grid

� ⇥ R3 � R

Interpolating Voxel Data
• Linear interpolation (lerp) extended

into three dimensions:

• Find the nearest 8 values to C:

• First do four linear interpolations in
one direction, e.g. 
C00 = lerp(C000,C100)

• Next do two linear interpolations in
the next direction, e.g. 
C0 = lerp(C00,C10)

• Finally, do one more linear
interpolation in third direction, e.g. 
C = lerp(C0,C1)

https://en.wikipedia.org/wiki/Trilinear_interpolation

https://en.wikipedia.org/wiki/Trilinear_interpolation

Raytracing Voxel Grids

• Similar to our method for raytracing implicit functions, but
why not just replace the root finding for hit points with
trilinear interpolation to find the root?

• See more on this in CSC 444/544, e.g. volume
rendering

• Potential problems? Trilinear function only approximates
the original implicit function, and they might disagree

Constructing Geometry
for Rasterization

Using Voxels to Construct
Geometry

• Instead of raytracing voxel-based data, can we using the
voxels to build a geometric approximation of the implicit
surface?

• Idea: for each cell in the voxel grid, define a piece of the
surface.

• Advantages: potentially much faster to render

Contouring in 2D
• Idea: Assign geometric primitives to individual cells

• In 2D, we will use line segments

• Method: Consider the sign of the values at vertices
relative to if they are above or below 0

• Intersections MUST occur on edges with sign change
by Intermediate Value Theorem

• Determine exact position of intersection by interpolation
along grid edges

Approach to Contouring in 2D
• Contour must cross every grid line connecting two

grid points of opposite sign

CS530 - Introduction to Scientific Visualization Oct 7, 2014,

• Idea: primitives must cross every grid line
connecting two grid points of opposite sign

Interpolate
along grid lines

Contours in 2D

+ -

x

x
Get cell Identify grid

lines w/cross
Find crossings

Primitives naturally chain together

Only Need to Track Cells that Have a
Sign Change

Ambiguities Occur when the Bilinear
Interpolant Has Both Hyperbolic Arcs in

the Grid Cell

Nielson, Hamann, The Asymptotic Decider, 1991

Contouring in 3D
• Uses a similar approach to 2D, but considers cells of 8

nearby voxels

Bloomenthal, Polygonization of implicit surfaces, 1988

Ambiguities in 3D can be
more complex

Bloomenthal, Polygonization of implicit surfaces, 1988

15,576 Citations on Google Scholar
Related (earlier) paper: Wyvill et al. "Soft objects." Advanced

Computer Graphics. Springer Japan, 1986. 113-128.

Case
Table

8 Above
0 Below

1 case

7 Above
1 Below

1 case

6 Above
2 Below

3 cases

5 Above
3 Below

3 cases

4 Above
4 Below

7 cases

Building a Mesh from Cell
Data

• After computing the geometric piece for each cell, you can
render this geometric as is.

• Adjacent cells agree on the placement of vertices because
they interpolate the same values

• But, can also group vertices and build a manifold mesh by
tracking shared edges

One Can Also Resolve
Ambiguities by Tetrahedralization

Splitting a cube into six tetrahedra

Control the resolution of surface
based on the resolution of the grid

Bloomenthal, Polygonization of implicit surfaces, 1988

Some Final Thoughts
on Implicit Shapes

Signed Distance Fields from
Triangle Meshes

• Given a triangle mesh, could also construct a distance
field stored as a voxel grid

• Interpolating on this would approximate the surface

• Distance to a triangle? Project to the plane of the triangle
and then check barycentric coordinates (this can be made
faster as well)

• Implicit function is minimum distance over all triangles

Implicits in Animation
• Numerous methods use

level set techniques to
perform animation

• Basic idea: each animation
step updates the implicit
function (and other
information too).

• Rendering by techniques
described today

Enright, Marschner, Fedkiw. Animation and Rendering of Complex Water Surfaces, SIGGRAPH 2002
http://physbam.stanford.edu/~fedkiw/

https://youtu.be/aNR4n0i2ZlM

http://physbam.stanford.edu/~fedkiw/
https://youtu.be/aNR4n0i2ZlM

