
CSC 433/533
Computer Graphics

Rotations - more perspectives
Transforming from one coordinate system to another

• From Linear algebra: A basis is a set of vectors such that every point in a

space(plane/space…) could be expressed as a linear combination,
 … and the scalars are unique.

• The space is spanned by this basis.

• Multiplication by a matrix is a linear operation: That is

•

•

•

• We are all very familiar with the basis

• For example, if then , could be understood as

Start from Origin, walk 2 meters in the direction, followed by 3 meters in the direction.

{ ⃗v 1, ⃗v 2… ⃗v d} p

p = α1 ⋅ ⃗v 1 + α2 ⃗v 2 + … + αd ⋅ ⃗v d {α1…αd}

M

M ⋅ ⃗0 = ⃗0

M ⋅ (⃗u + ⃗v) = M ⃗u + M ⃗v

M(α ⃗u) = α(M ⃗u)

⃗X = (1
0) and ⃗Y = (0

1)
v = (2

3) v = 2 ⃗X + 3 ⃗Y

⃗X ⃗Y

North

South

West East

• To specify a rotation, it is sufficient to create a new coordinates system, and specify what is the correspondence
between the old and new basis.

• To be precise, create M, such that the it’s column of M is the vector (represented as a linear combination of the old
basis)

• The text above is probably very cryptic without multiple examples

• “Tricky” way to find rotation matrix. If are unit vectors in the old coordinate system, then we could think about the rotation

as rotating the coordinates systems as well, and after the rotation we expect

• . Let be the rotation matrix. This means: .

• But is just the first column of . And is the second column.

•
Lets try: Write .

• then for every data point , we could write (in a somehow obnoxious way) .

•

i′ th

⃗X , ⃗Y

⃗X Rotation

by θ
⃗X′ and ⃗Y Rotation

by θ
⃗Y′ Rθ Rθ ⋅ [1

0] = ⃗X′ and Rθ ⋅ [0
1] = ⃗Y′

Rθ ⋅ [1
0] = ⃗X′ Rθ Rθ ⋅ [0

1]
Rθ =

⋮ ⋮
⃗X ′ ⃗Y ′

⋮ ⋮
C = (α, β) C = α ⃗X + β ⃗Y

Rθ ⋅ C =
⋮ ⋮

⃗X ′ ⃗Y ′

⋮ ⋮
(α ⃗X + β ⃗Y) linearity= α

⋮ ⋮
⃗X ′ ⃗Y ′

⋮ ⋮
⃗X + β

⋮ ⋮
⃗X ′ ⃗Y ′

⋮ ⋮
⃗Y = α ⃗X ′ + β ⃗C ′

We can express rotation by creating a new basis of ℝ2

https://www.geogebra.org/m/upxwfnuc

We can express rotation by creating a new basis of ℝ2

• This is going to be extremely useful when discussing rotations in 3D

• To specify a rotation, it is sufficient to create a new coordinates system, and specify what is the correspondence between the old and new basis.

• To be precise, create M, such that the it’s column of M is the vector (represented as a linear combination of the old basis)

• The text above is probably very cryptic without multiple examples

• “Tricky” way to find rotation matrix. If are unit vectors in the old coordinate system, then we could think about the rotation as rotating the coordinates
systems as well, and after the rotation we expect

• . Let be the rotation matrix. This means .

• But is just the first column of . And is the second column.

•
Lets try: Write .

• then for every data point , we could write (in a somehow obnoxious way) .

•

• Important take home message: To find the rotation matrix, just create a matrix where each column is one of the new basis vector (written using coordinates
of the old coordinate system)

i′ th

⃗X , ⃗Y

⃗X Rotation

by θ
⃗X′ and ⃗Y Rotation

by θ
⃗Y′ Rθ Rθ ⋅ [1

0] = ⃗X′ and Rθ ⋅ [0
1] = ⃗Y′

Rθ ⋅ [1
0] = ⃗X′ Rθ Rθ ⋅ [0

1]
Rθ =

⋮ ⋮
⃗X ′ ⃗Y ′

⋮ ⋮

C = (α, β) C = α ⃗X + β ⃗Y

Rθ ⋅ C =
⋮ ⋮

⃗X ′ ⃗Y ′
⋮ ⋮

(α ⃗X + β ⃗Y) linearity= α
⋮ ⋮

⃗X ′ ⃗Y ′
⋮ ⋮

⃗X + β
⋮ ⋮

⃗X ′ ⃗Y ′
⋮ ⋮

⃗Y = α ⃗X ′ + β ⃗C ′ = C′

Hi Everyone!

Operations on Images
• Point (Range) Operations:

• Affect only the range of the image (e.g. brightness)

• Each pixel is processed separately, only depending on the color

Slides inspired from Fredo Durand

Operations on Images
• Domain Operations:

• Only move the pixels around

Slides inspired from Fredo Durand

• Neighborhood operations:

• Combine domain and range

• Each pixel evaluated by working with other pixels nearby

Operations on Images
Slides inspired from Fredo Durand

Concept for the Day:
Pixels are Samples of

Image Functions

Iam not a major sports fan. But there is one story from
the folklore of football that has always intrigued me.

The story goes that legendary football coach Vince
Lombardi was observing his new players, recruited
from the best college teams and all presumably excel-
lent players. He was, however, not pleased with their
performance. So he called them all to a meeting, which
he began by holding up the essential tool of their trade
and saying, “This is a football.” I was sufficiently
impressed by this back-to-basics attitude that, when I
taught computer graphics rendering classes, I used to
start the first lecture of the term by going to the black-
board (boards were black then, not white) and draw-
ing a little dot and saying, “This is a pixel.”

But was I right? Most computer graphicists would
agree that the pixel is the fundamental atomic element
of imaging. But what is a pixel really? As I have played
with various aspects of pixel mashing, it has occurred
to me that the concept of the pixel is really multifaceted
(to use a weird metaphor.) Perhaps a better metaphor
comes from the old story of the blind men describing an
elephant and basing their description on what part they
were touching: “An elephant is a … tree (leg), a wall
(side), a rope (tail), a snake (trunk), a spear (tusk).” In

that spirit I am going to list some possible meanings for
a pixel that I will expand on in some later columns.

A pixel is a little square
Early 2D windowing systems considered a pixel a lit-

tle square. This is perhaps the simplest possible defini-
tion, but it only works if you are mostly drawing
horizontal and vertical lines and rectangles that are inte-
gral numbers of pixels in size. Anything at fractional
pixel size or at an angle yields jaggies and other forms of
aliasing.

A pixel is a point sample of a continuous
function

A more enlightened signal processing approach
thinks of a pixel as a point sample of a continuous func-
tion (see the dots in Figure 1). (This approach was actu-
ally taken by the rendering community long before pixel
displays were used for user interfaces and windowing
systems.) Applying linear filtering theory to pixel manip-
ulation gives, among other things, an approach to
antialiasing. You start out with the ideal continuous
function you wish to display. Then you filter out the fre-
quencies that are too high to be represented by the given
pixel spacing. A theoretically ideal antialiasing filter
would be a low-pass filter with a cutoff at one-half cycle
per pixel spacing. One way to accomplish this is to con-
volve the image function with the function sinx/x (see
Figure 2) smoothing out the jaggies and giving Figure
3. Then you sample the result. This theoretical founda-
tion is the basis for various algorithms for zooming in
and out of images, warping images, and so forth.

James F. Blinn

Microsoft
Research

What Is a Pixel? ____________________________________

Jim Blinn’s Corner
http://www.research.microsoft.com/~blinn/

82 September/October 2005 Published by the IEEE Computer Society 0272-1716/05/$20.00 © 2005 IEEE

0.0

0.4

0.6

0.8

1.0

0.2

1 2 3 4 5 6 7 8
Position

Va
lu

e1 Point sample
of a continuous
function.

-4 -3 -2 -1 0

0

1

1

2 3 4

2 The ideal
antialiasing
filter.

0.0

0.4

0.6

0.8

1.0

0.2

1 2 3 4 5 6 7 8
Position

Va
lu

e

3 Point sampling after filtering.

Authorized licensed use limited to: Univ Rey Juan Carlos. Downloaded on February 9, 2010 at 04:11 from IEEE Xplore. Restrictions apply.

Image Samples

• Each pixel is a sample of what?

• One interpretation: a pixel represents the intensity of
light at a single (infinitely small point in space)

• The sample is displayed in such a way as to spread the
point out across some spatial area (drawing a square of
color)

Continuous vs. Discrete

• Key Idea: An image represents data in either (both?) of

• Continuous domain: where light intensity is defined at
every (infinitesimally small) point in some projection

• Discrete domain, where intensity is defined only at a
discretely sampled set of points.

Converting Between Image Domains

• When an image is acquired,
an image is sampled from
some continuous domain
to a discrete domain.

• Reconstruction converts
digital back to continuous.

• The reconstructed image
can then be resampled
and quantized back to the
discrete domain.

//scale factor
let k = 4;

//create an output greyscale image that is both

//k times as wide and k times as tall

Uint8Array output = new Uint8Array((k*W)*(k*H));

//copy the pixels over

for (let row = 0, row < H; row++) {

 for (let col = 0; col < W; col++) {
 let index = row*W + col;

 let index2 = (k*row)*W + (k*col);

 output[index2] = input[index];

 }

}

Naive Image
Rescaling Code

Naive Image Rescaling
• Consider resizing an image to a large resolution

• Simple approach: Take all the pixels in input and place
them in an output location.

100x100 image

What’s the Problem?

• The output image has gaps!

• Why: we skip a many of the pixels in the output.

• Why don’t we fix this by changing the code to at least put
some color at each pixel of the output?

//scale factor

let k = 4;

//create an output greyscale image that is both

//k times as wide and k times as tall

Uint8Array output = new Uint8Array((k*W)*(k*H));

//copy the pixels over
for (let row = 0, row < H; row++) {

 for (let col = 0; col < W; col++) {

 let index = row*W + col;

 let index2 = (k*row)*W + (k*col);

 output[index2] = input[index];

 }

}

Naive Image
Rescaling Code

//scale factor
let k = 4;

//create an output greyscale image that is both

//k times as wide and k times as tall

Uint8Array output = new Uint8Array((k*W)*(k*H));

//Loop over each output pixel instead.

for (let row = 0, row < k*H; row++) {

 for (let col = 0; col < k*W; col++) {
 let index = (row/k)*W + (col/k);

 let index2 = row*k*W + col;

 output[index2] = input[index];

 }

}

“Inverse” Image
Rescaling Code

Inverse Image Rescaling

100x100 image

•It is nice to transform the Source image Isou and the target image Itar, both, so all pixels are in the “canonical square”
.

•In general the image Is file has pixels Isou(i,j), where (number of rows), and .

•
Sift so center in (0,0) : .

Rotation by :

•Rotation for target Rescaing of rotated canonical square

x ∈ [−1,1], y ∈ [−1,1]
i = 1…Ny j = 1…Nx

TrTar =
1 0 − NxTarget − 1

2

0 1 − NyTarget − 1
2

0 0 1

⋅
j
i
1

ScaTarget =

− 2
NxTarget 0 0

0 2
NyTarget 0

0 0 1

⋅
j
i
1

β R =
cosβ −sinβ 0
sin β cos β 0

0 0 1

ScaleTarget

q′ = TrSource−1 ⋅ ScalSource−1 ⋅ Scale3 ⋅ R ⋅ ScaTarget ⋅ TrTarget ⋅ q

TrTarget

Rotate by and scale by bθ

b = 1/ 2 ⋅ cos(45∘ − Mod(θ,90∘)) ggb

Rotations in 3D

• In 2D, a rotation is about a point

• In 3D, a rotation is about an axis

• A rotation in 2D is around a point

• A rotation in 3D is around an axis

– so 3D rotation is w.r.t a line, not just a point
– there are many more 3D rotations than 2D

– a 3D space around a given point, not just 1D

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

2D 3D

General Rotation Matrices

30

convention: positive
rotation is CCW

when axis vector is
pointing at you

convention: positive
rotation is CCW

Rotations about 3D Axes
• In 3D, we need to pick an axis to rotate about

• And we can pick any of the three axes

Building Complex Rotations
from Axis-Aligned Rotations

• Rotations about x, y, z
are sometimes called
Euler angles

• Build a combined
rotation using matrix
composition

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 9

Euler angles in applications

32

Ish
ika

wa
 W

ata
na

be
 L

ab
or

ato
ry

W
iki

pe
dia

Arbitrary Rotations

• To rotate about any axis: we change the coordinate space
we are working in, using orthogonal matrices.

• Consider orthogonal matrix Ruvw, form by taking three
orthogonal vectors 𝐮, 𝐯, and 𝐰:

𝐮
𝐯
𝐰

Property of orthogonal vectors:

Arbitrary Rotations
• In multiple cases, we are have calculated the camera parameters, and Up

vectors , and want to rotate the camera, so perform a transformation a
transformation taking . (Assume camera =(0,0,0))

• Technique one: compute by how much we need to rotation around each axis - very
tedious.

• Technique two: Use the matrix where

⃗u , ⃗v , ⃗w

⃗u → ⃗x , ⃗v → ⃗y , ⃗w → ⃗z

Ruvw, Ruvw =
− ⃗u −
− ⃗v −
− ⃗w −

(Ruvw)−1 = transpose(Ruvw) =
| | |

⃗u ⃗v ⃗w
| | |

Arbitrary Rotations
• What happens when we apply Ruvw to any of the basis

vectors, e.g.:

• But this means that if we apply Ruvw𝐓 (the transpose of)
to the Cartesian coordinate vectors, e.g.:

Ruvw

Recall: Vector Multiplication

• Given two 3D vectors:

a = (xa, ya, za) b = (xb, yb, zb)

• So far, we’ve learned two forms for “multiplication”:

• Dot (inner) product (2 vectors in, 1 scalar out)

a・b = xaxb + yayb + zazb

• Cross product (2 vectors in, 1 vector out)

a ⨉ b = (yazb - zayb, zaxb - xazb, xayb - yaxb)

Determinants as Vector
Multiplication

• Usually thought of as an operation on a matrix (similar to
vector norms) that produces a scalar, but they can also be
considered a multiplication of vectors:

• For 2d vectors a and b, the
determinant, |ab|, is equal
to the signed area of the
parallelogram formed by a
and b

• Signed here means that 
|ab| = -|ba|

• Related: ||a ⨉ b||

Determinants as Vector
Multiplication

• For 3d vectors a, b, and c,
the determinant, |abc|, is
the signed volume of the
parallelepiped formed by
a, b, and c

• Sign refers to left-handed
or right-handed coordinate
system

