CSC 433/533
Computer Graphics

Rotations - more perspectives
Transforming from one coordinate system to another

« From Linear algebra: A basis { V|, V',...V',;} is a set of vectors such that every point p in a
space(plane/space...) could be expressed as a linear combination,
p=a, - V,+aV,+...+a, V, .. andthe scalars {a;...a,} are unique.

* The space is spanned by this basis.

e Multiplication by a matrix M is a linear operation: That is

M- 0=0
orth
M- (W+V)=MT+MV West East
sMauw)=aMu
(@) = al) South

« We are all very familiar with the basis Y = <(l)> and ? = (?)

. Forexample, if v = (g) thenv = 2X + 37, could be understood as

Start from Origin, walk 2 meters in the Ydirection, followed by 3 meters in the 7direction.

We can express rotation by creating a new basis of R?

To specify a rotation, it is sufficient to create a new coordinates system, and specify what is the correspondence
between the old and new basis.

To be precise, create M, such that the it’s column of M is the i't/ vector (represented as a linear combination of the
basis)

The text above is probably very cryptic without multiple examples

“Tricky” way to find rotation matrix. If Y, 7 are unit vectors in the old coordinate system, then we could think about the rg
as rotating the coordinates systems as well, and after the rotation we expect

~~ Rotation 3, ~7 Rotation 33,

X——X and Y —Y

by 0 by 0

. Let Ry be the rotation matrix. This means: R, - [(1)] =X and Ry - [(1)] =Y.

But R, - [(1)] =X is just the first column of R;. And R, - [(1)] is the second column.

Letstry: Write Ry = | X' 77

then for every data point C = (a, /) , we could write (in a somehow obnoxious way) C = aX + ﬂ?.

Ry-C= |3 7|(aX+p7) " a|x 7| X4p|X 7|V =aX'+4C

VIOMNUW Systernl daier rowauor

(-sin(8), cos(8)) https://www.geogebra.org/m/upxwfnuc

C'=aX'+8Y
o C=aX+pY = (0.7,

(cos(), sin(B))

i

We can express rotation by creating a new basis of R?

This is going to be extremely useful when discussing rotations in 3D

To specify a rotation, it is sufficient to create a new coordinates system, and specify what is the correspondence between the old and new basis.
To be precise, create M, such that the it’s column of M is the i'th vector (represented as a linear combination of the old basis)

The text above is probably very cryptic without multiple examples

“Tricky” way to find rotation matrix. If Y, ? are unit vectors in the old coordinate system, then we could think about the rotation as rotating the coordinates
systems as well, and after the rotation we expect

<7 Rotation 3, <7 Rotation <,)) . - -
X KON X and Y 2ZUNY Let R, be the rotation matrix. This means R, [(l]} =X and Ry- m =Y.
by 6 by 6

1

ButR,- [0

] =X s just the first column of R, . And R, - m is the second column.

Letstry: Wiite Ry = | X7 Y

then for every data point C = (a, /) , we could write (in a somehow obnoxious way) C = aX + Y.

linearity | .,
= a

RyC=|% 7 <(1Y+/;7> v vIX+p|lw F|V=aXx+pc=C

Important take home message: To find the rotation matrix, just create a matrix where each column is one of the new basis vector (written using coordinates
of the old coordinate system)

¥/ DMUW SYSIEN dllel 1ulduur

(-sin(@), cos(8))

Y .("’ =aX'+ ‘});’ .
o | sy C=aX+08Y =(0.7,
9 o (cos(8), sin(B))
X!

, - ™)
5% —é '
i
‘ o

Hi Everyone!

é

—

Operations on Images

Slides inspired from Fredo Durand

* Point (Range) Operations:

|
il -l
o [|
-
[T

» Affect only the range of the image (e.g. brightness)
* Each pixel is processed separately, only depending on the color

Operations on Images

Slides inspired from Fredo Durand

* Domain Operations:

¢ Only move the pixels around

Operations on Images

Slides inspired from Fredo Durand

* Neighborhood operations:

QA
Q
S
N—
N—
=
-

<

e Combine domain and range
* Each pixel evaluated by working with other pixels nearby

Concept for the Day:
Pixels are Samples of

Image Functions

James F. Blinn

Microsoft
Research

Jim Blinn’s Corner

http://www.research.microsoft.com/~blinn/

What Is a Pixel?

Iam not a major sports fan. But there is one story from
the folklore of football that has always intrigued me.
The story goes that legendary football coach Vince
Lombardi was observing his new players, recruited
from the best college teams and all presumably excel-
lent players. He was, however, not pleased with their
performance. So he called them all to a meeting, which
he began by holding up the essential tool of their trade
and saying, “This is a football.” I was sufficiently
impressed by this back-to-basics attitude that, when I
taught computer graphics rendering classes, I used to
start the first lecture of the term by going to the black-
board (boards were black then, not white) and draw-
ing a little dot and saying, “This is a pixel.”

But was I right? Most computer graphicists would
agree that the pixel is the fundamental atomic element
of imaging. But what is a pixel really? As I have played
with various aspects of pixel mashing, it has occurred
tome that the concept of the pixel is really multifaceted

that spirit I am going to list some possible meanings for
a pixel that I will expand on in some later columns.

A pixel is a little square

Early 2D windowing systems considered a pixel a lit-
tle square. This is perhaps the simplest possible defini-
tion, but it only works if you are mostly drawing
horizontal and vertical lines and rectangles that are inte-
gral numbers of pixels in size. Anything at fractional
pixelsize or at an angle yields jaggies and other forms of
aliasing.

A pixel is a point sample of a continuous
function

A more enlightened signal processing approach
thinks of a pixel as a point sample of a continuous func-
tion (see the dots in Figure 1). (This approach was actu-
ally taken by the rendering community long before pixel
displays were used for user interfaces and windowing

o 1

Image Samples

* Each pixel is a sample of what?

* One interpretation: a pixel represents the intensity of
light at a single (infinitely small point in space)

* The sample is displayed in such a way as to spread the
point out across some spatial area (drawing a square of
color)

Continuous vs. Discrete

» Key Idea: An image represents data in either (both?) of

* Continuous domain: where light intensity is defined at
every (infinitesimally small) point in some projection

e Discrete domain, where intensity is defined only at a
discretely sampled set of points.

Converting

Between Image Domains

* When an image is acquired,
an image is sampled from

some continuous domain
to a discrete domain.

* Reconstruction

digital back to continuous.

* The reconstructed image
can then be resampled

and quantized b
discrete domain.

Acquisition il
Scene > Digital Image

Reconstruction

coO nverts Reconstructed

Sampling/Quantizing Resampled
> Destination

Continous Domain Discrete Domain

Figure 7.7. Resampling.
ack to the

//scale factor
let k = 4;

//create an outpu
//k times as wide

Uint8Array output

//copy the pixels
for (let row = 0,
for (let col
let index =

let index2

output[inde

Naive Image
Rescaling Code

t greyscale image that is both
and k times as tall
new Uint8Array((k*W)*(k*H));

over
row < H; row++) {
0; col < W; col++) {
row*W + col;

= (k*row)*W + (k*col);

x2] = input[index];

What’s the Problem?

* The output image has gaps!
* Why: we skip a many of the pixels in the output.

 Why don’t we fix this by changing the code to at least put
some color at each pixel of the output?

//scale factor Nalve Image
let k = 4; Rescaling Code

//create an output greyscale image that is both
//k times as wide and k times as tall
new Uint8Array((k*W)*(k*H));

Uint8Array output

//copy the pixels over
for (let row = 0, row < H; row++) {
for (let col = 0; col < W; col++) {
let index = row*W + col;
let index2 = (k*row)*W + (k*col);

output[index2] = input[index];

117 ”)
//scale factor Inverse Image
let k = 4; Rescaling Code

//create an output greyscale image that is both
//k times as wide and k times as tall
Uint8Array output = new Uint8Array((k*W)*(k*H));

//Loop over each output pixel instead.
for (let row = 0, row < k*H; r
for (let col 0; col < k*W; col++) {
let index (row/k)*W + (col/k);

let index2 = row*k*W + col;

output[index2] = input[index];

eIt is nice to transform the Source image Isou and the target image ltar, both, so all pixels are in the “canonical square”
xe[-1,1],ye[-1,1].

«In general the image s file has pixels Isou(i,j), where i = 1...Ny (number of rows), and j = 1...Nx.
NxTarget — 1 2

1 0 - B J _N)(Target 0 0
Sift so center in (0,0): TrTar = 0 | _MTarger—1 -], ScaTarget = 0 _2 i
. 2 1 NyTarget
0 1 0 0 1
cosp —sinfp 0
Rotation by f: R=| sinf cospp O
0 0 1
«Rotation for taraet Rescaing of rotated canonical square
Rotate by 6 and scale by 9/\
\ 16|{[0 000000 0] D) (1)
00000000
/ o e N °
‘22222t YscateTarget s \ N ENE S
12{je 0000000 g lﬁl. N
TrTaI' e :000 e o eCenhy i @ 0 b L .
g to Pﬁ:: ., o o ? o o c"' i 'A,t. ._’.e /
R 5 IILILIL S P A i
b A 2 [ewee 2 4 B . IPe ol
o ols sleegies s I SRS AR
o oo op® 9906 SNIJR
XX :::;l LI
(N J “1,-1) H
L]
3%, ¥ Y
00090000
sasaiais b=1/V2 - cos(45 — Mod(©.90)
00 0000 00 ggb
eoe0ecee
0000000

q = TrSource T - ScalSource™" - Scale3 - R - ScaTarget - TrTarget - q

Rotations in 3D

* |n 2D, a rotation is about a point

¢ In 3D, a rotation is about an axis

|

convention: positive
convention: positive rotation is CCW
rotation is CCW when axis vector is
pointing at you
2D 3D

Rotations about 3D Axes

* In 3D, we need to pick an axis to rotate about

cos¢p —sing 0
[sin¢ cos ¢ 0]
0 0 1

rotate-z(¢) =

* And we can pick any of the three axes

1 0 0
rotate-x(¢) = |0 cos¢ —sin¢

|0 sing cos¢ |

[cos¢p 0 sing¢]
rotate-y(¢) = 0 1 0

| —sin¢ 0 cos ¢ |

Building Complex Rotations
from Axis-Aligned Rotations

Pan Tilt Roll

* Rotations about x,y, z
are sometimes called

Euler angles

Ishikawa Watanabe Laboratory

e Build a combined
rotation using matrix
composition

Wikipedia

Arbitrary Rotations

* To rotate about any axis: we change the coordinate space
we are working in, using orthogonal matrices.

e Consider orthogonal matrix Ruvw, form by taking three
orthogonal vectors u, v, and w:

Property of orthogonal vectors: u
uru=v-v=w-w=1 _
Ruvw = v
u-v=v-w=w-u=20

Arbitrary Rotations

* In multiple cases, we are have calculated the camera parameters, u’, v’
vectors , and want to rotate the camera, so perform a transformation a

transformation taking ' — x, VvV =y, W — Z. (Assume camera =(0,0,0))

, Wand Up

e Technique one: compute by how much we need to rotation around each axis - very
tedious.

—
— 0 -
. _ _ B w
 Technique two: Use the matrix R, where wa —1_ >
—
I - W -
(R,,)"" = transposeR,,)=| @ v W
I
VIOMNUW Systernl daier rowauor
(-sin(8), cos(8))
Y C'=aX'+ Y
% A C=aX +8Y = (0.7,
By o C T ATt =00
(cos(8), sin())
0 1~
X
° 0 05 U (1 1.5 2

Arbitrary Rotations

* What happens when we apply Ruw to any of the basis

vectors, e.g.:
u-u 1
Ruku = v-u = O = X
w-u 0

« But this means that if we apply RuwT (the transpose of R)
to the Cartesian coordinate vectors, e.g.:

. Ty Ty Ty 0 Ty
RowY=|Y% Y Yu 1=y | =V
Zu 2y 2w 0 Zy

Recall: Vector Multiplication

e Given two 3D vectors:

a-= (Xa, Ya, Za) b = (Xb, Yb, Zb)
* So far, we’ve learned two forms for “multiplication”:

* Dot (inner) product (2 vectors in, 1 scalar out)

a - b =XxaXp + Yayp + Zazb

* Cross product (2 vectors in, 1 vector out)

a X b = (Yazb - ZaYb, ZaXb - XaZb, Xayb - YaXb)

Determinants as Vector
Multiplication

* Usually thought of as an operation on a matrix (similar to
vector norms) that produces a scalar, but they can also be
considered a multiplication of vectors:

e For 2d vectors a and b, the
determinant, |ab|, is equal b
to the signed area of the
parallelogram formed by a
and b

* Signed here means that
|ab| = -|bal

e Related: ||a x b||

Determinants as Vector
Multiplication

For 3d vectors a, b, and c,
the determinant, |abc|, is
the signed volume of the
parallelepiped formed by
a,b,andc

Sign refers to left-handed b
or right-handed coordinate
system

