

Geometric Hashing - on the whiteboard
Binary Space Partitions (BSP)
BSP and the painter algorithm
Quad trees and R-trees

BSP tree

Given a set of triangles in 3D, a BSP , for is an tree where
1. Each leaf stores a triangle

1. Each internal (non-leaf) node stores a plane and pointers to two children

3. All triangles in the subtree are fully below , and all triangles in
are fully on or above

See further example on the board.

Sometimes we need to split triangles to construct the BSP

If a (perfect) BSP exist, then for any location of a viewer, we can use the painter
algorithm.

Numerous other applications in graphics. (e.g. combine with imposers/billboards)

If the number of triangles above and below are roughly the same, then the height is

S = {t1…tn} T S
ti

v hv
v . right, v . lef t

v . lef t hv v . right
hv

hv
O(log n)

Quad Trees

A data simple data structure for geometric objects(e.g. points, houses, an image, 3D scene)

Support efficiently a very wide variety of queries.

Hierarchical Partition of the scene

4

QuadTrees
Assume we are given a red/green picture
defined a 2h × 2h grid. E.g. pixels.
Each pixel is either green or red.

(more general and interesting examples –
soon)

Need to represent the shape “compactly”

Need a data structure that could answers multiple types of
queries. For example:
1.For a given point q, is q red or green ?

2.For a given query disk D, are there any green points in D ?

3.How many green points are there in D ?
4.Etc etc

D2

D1 D3

5

QuadTrees

• Assume we are given a red/green
picture defined on a 2h × 2h grid of
pixels.

• Each pixel has as a unique color
(Green or Red)

• Every node v ∈ T is associated
with a geometric region R(v) .

• This is the region that v is “in
charge of’’.

Alg ConstructQT for a shape S.
•input – a node v ∈ T, and a shape S.
•Output – a Quadtree Tv representing the shape of S within R(v)).

• If S is fully green in R(v), or S is fully red in R(v) – then
• v is a leaf, labeled Green or Red. Return ;
•Otherwise, divide R(v) into 4 equal-sized quadrants, corresponding to nodes
 v.NW, v.NE, v.SW, v.SE.
• Call ConstructQT recursively for each quadrant.

3

0
11

2

10

13
120 121

123122

NW

SW SE

NW SE

6

3D-Quadtess

There are no 3D Quadtrees. We call them
Oct-trees

Each node is either a leaf, or is split into 8
equal-volume octants.

credit for image: wikipedia.

7

QuadTrees

Consider a picture
stored on an 2h × 2h
grid. Each pixel is
either red or green.

We can represent the
shape “compactly”
using a QT.

Height – at most h.
Point location operation – given a point q, is it black or white
 – takes time O(h)
 - could it be much smaller ?

Many other operations are very simple to implement.

3

0
11

2

10

13
120 121

123122

NW SE

8

Storing the range R(v) of a node
Each node v is associated with a range R(v) – a square. The node v stores (in addition to
other info) 4 values

(MinX,MinY) – coordinates of the lower left corner of R(v)
(MaxX,MaxY) coordinates of the upper right corner of R(v)

3

0

11

2

10

13

120 121

123122

(0,0)

(15,0)

(15,15)
(0,15)

(7,15)

9

QuadTree for a set of points
Now consider a set of
points (red) but on a
2h × 2h grid.

Splitting policy: Split
until each quadrant
contains ≤1 point.

• Build a similar QT, but we stop splitting a quadrant when it contain ≤1 point (or some other
small constant).

• Could be easily built by inserting the points one after the other. A leaf is split if contains 2 points.
• Point location operation – given a point q, is it black or white
• – takes time O(h) (and less in practice)
• Many other splitting polices are very simple to implement. (eg. a leaf could contain contains ≤17

points)

a b

c

d

da

b

c

e

e
An example of Quadtree built for the set of points
S={a,b,c,d,e}

10

QuadTrees for a set of points
Report(Q,v) {

// Q – a query disk. v- node of a quad tree that stores
a set S of points (e.g. S={a,b,c,s}).
Prints all data point the points in stored at the subtree
rooted at v, which are also inside Q. */

1. If R(v) is disjoint from Q –return //no point to report
at v’s subtree

2. If R(v) is fully contained in Q – print all of S stores at
the subtree rooted at v.

3.Else // partially overlaps Q. {
• If v is a leaf – check each point in R(v) if inside Q

and print if yes.
• Else // v internal node

• Report(Q, NW(v)) and ..
• Report(Q, NE(v)) and ..
• Report(Q, SW(v)) and ..
• Report(Q, SE(v)) }

}

R(v)

a

c

d

da

b

c

Q b

R(v)Q

 is disjoint from QR(v)

R(v) Q

 is contained in QR(v)

R(v)

Q

 partially overlapQR(v)

11

QuadTrees for shape
Input: A set S of triangles S={t1…tn }.

Each leaf v stores a list v.TriangleList
of all triangles intersecting R(v).

Splitting policy: Split a quadrant if it
intersects more than 5 (say) triangle
of S.

c

d

da

b

cQ

a

a a

b

Note – a triangle might be stored in multiple leaves.
Some leaves might store no triangles.

Finding all triangles inside a query region Q. We essentially use the
function Report(Q,v) from the previous slide (with minor
modifications)

12

Ray tracing and QuadTrees

Consider a quadrant with corners LL=(x1,y1) and UR=(x2,y2).
To find if a ray intersects this quadrant

Find tmin_x, tmax_x, where the ray is in the x-span of the
quadrant (the vertical slab containing the quadrant). This is easy,
since we only need to check the x-component of . If
then this ray does not intersect
Find tmin_y, tmax_y, where the ray is in the y-span of the
quadrant
Set tmin=max(tmin_x, tmin_y)
Set tmax=min(tmax_x, tmax_y)
The ray is inside the quadrant only for (tmin,tmax)

In 3D, we also check tmin_z, tmax_z

R(v)
r = p0 + t ⋅ ⃗v

⃗v < 0
R(v)

t ∈

0

(x1,y1)

(x2,y2)

R(v)
tmin_x

tmax_x

tmin_y

13

Ray tracing and QuadTrees
Now, it is easy to find the first
triangle hit by a ray r:
Start from v=root. If empty, then
continue tracing the ray from the
point it leaves the quadrant.
If v is internal node, check which of
its quadrants is first hit by r, and
continue recursively.
If v=leaf, check each triangle in v

c

d

da

b

c
Q

a

a a

b

insert(triangle ti ,node v) {
// Inserting a new triangle ti into an existing node v of the Quadtree.
// v is not necessarily a leaf.
If v is NULL - Error
If R(v) is disjoint from ti (share no points)– Return. Nothing to do.
If v is not a leaf, then for each child u of v, call insert(ti,u);
Else // v is a leaf
Add ti to v.TrianglesList
If number of triangles in v.SegmentsList is too long (e.g. >5) Call Split(v)

}

Split(v){

// Assumption – v is a leaf, but has too many triangles in its list.
// Create 4 children for v (make sure they know which regions they cover.)
For each child u of v
 For each segment s in v.TrianglesList Call insert(s, u)
Empty v.TrianglesList

 }

Inserting a new triangle

Terrain representations and levels-of-details

Raw data – a grid of points (i,j,
 ,
 z

ij
)

For every grid point i,j, given the elevation z
ij

(TIN – Triangulated Irregular Network)

Each triangle approximately fits the surface below it

How to find good triangulation ?
◆ Input – a very large set of points S={ (i,j, zij) }.
◆ zij is the elevation at point (i,j) (latitude and longitude)
◆ Want to create a surface, consists of triangles, where each

triangle interpolates the data points underneath it.
◆ Idea: Build a QT T for the 2D points.
◆ (If want triangles: Each quadrant is split into 2 right-hand

triangles)
◆ Assign to each vertex the height of the terrain above it.
◆ The approximated elevation of the terrain at any point (x,y) is

the linear interpolation of its elevated vertices.

QT Split Policy: Splitting a quadrant into 4 sub-quadrants:
◆ split a node v if for some date point (xi , yi)∈R(v), the elevation

of zij is too far from the the corresponding triangle. If not,
leave v as a leaf.

◆ That is, for any point (i,j) on the plane, the elevation (i,j , zij) it
is too far from the interpolated elevation.

◆ Note: A quadrant might contain a huge number of points, but
they behave smoothly. E.g. all a the sloop of a mountain, but
this slope is more or less linear.

Level Of Details

▪ Idea – the same object is stored several times, but with a
different level of details

▪ Coarser representations for distant objects
▪ Decision which level to use is accepted `on the fly’

(eg in graphics applications, if we are far away from a
terrain, we could tolerate usually large error. E.g., sub pixels
error are not noticeable.)

R-trees
• Input: A set S of shapes (segments in this example. Triangles in graphics apps)
• Build a tree that could expedite

• (i) finding the segments intersecting a query region,
• (ii) answering ray tracing
• (iii) Emptiness queries. etc

1

2

3

4
5

6

7

8

• We compute for each segment its bounding box (rectangle).
• These are the leaves of T. Call them ``Level 1’’.
• Find the nearest pair of segments (say 7,8). Remove them from level 1, and replace them by a single BB encapsulate both. It corresponds to a

node of level 2.
• Repeat until no vertex is left in level 1.
• Next, pick the nearest two BBs from level 2, and replace them by a vertex at level 3.
• In general, each internal node v in level j is created by merging two children nodes of level j-1.

•
• Repeat until we are left with one bounding box.

BB(v) = BB(BB(v . r ight)⋃BB(v . lef t))

875 6

: 7+8u1: 5+6u2

: 5+6+7+8w1

Root: 1+..+8

431 2
Level 1

Level 2

Level 3
 3+4u3 :

: u1

: u2

 1+2u4 :

 u3
 u4

: 1+2+3+4w2

: 5+6+7+8
w

1: 1+2+3+4w2

R-trees
• Input: A set S of shapes (segments in this example. Triangles in graphics apps)
• Build a tree that could expedite

• (i) finding the segments intersecting a query region,
• (ii) answering ray tracing
• (iii) Emptiness queries. etc

1

2

3

4
5

6

7

8

875 6

7+85+6

5+6+7+8

Once a query region Q is given, we need to report the segments intersecting Q.
Check if Q intersects BB(root)
If not, we are done. If yes, check recursively if Q intersects BB(v.left) and BB(v.right)

Q

R-trees

1

2

3

4
5

6

7

8

875 6

7+85+6

5+6+7+8

Analogously for a query ray r

ray r

R-trees in practice. Memory Hierarchy, and advantages of multiple children
Large degree helps

• In practice, it is sometimes preferable to create trees with a very large degrees (instead of binary trees).
• For example, each internal node, will have between 100 to 500 children

example of a tree with degree =3

• Consider a very simplistic model of the computer memory - fast main memory, and slow secondary memory. (your computer
follows this model, probably with more than 2 types of memory, and probably SSD instead of disks, but this model still
applies.

• Only small portion of the tree could be stored in the main memory.
• Consider point location operation (find the segment containing a query point)

• We start the search by visiting the root, then one of its children, one of its grand-children … until we reach a leaf.
• The seek-time in disks, and even in SSD, is much slower than the seek-time for main memory. Therefor, once the head of

the disks is located in the correct place, we usually read a bucket - about 4KByte of memory.
• The bottleneck of the search/insert/delete operation is the number of seek operations (number of I/Os).
• The number of seek-operation is proportional to height of the tree.
• Say . The height of a tree of degree 2 with n leaves is , so 30 seek operations are needed.
• If each node contains about 1000 segments, or keys, then the height (and number of I/Os) is only
• The root and possibly its children are always in main memory, so this number of only 1 or 2.
• R-trees are the most popular and important data structures for very large spatial data.
• If the stored items are 1-dimensional (rather than multi-dim), then B-trees are used instead of R-trees. They are very convent

for insertion/deletion and other operations.

n = 109 log2(109) ≈ 30
log1000(109) = 3

23

 2D-Trees (and in higher dimension, kD-trees)
❑ Given a set of points in 2D.
❑ Bound the points by a rectangle.
❑ Split the points into two (almost) equal size

groups, using a horizontal line, or vertical line.
(first horizontal, then vertical, back to horizontal
etc)

❑ (in , split by a plane orthogonal to the
❑ axis,
❑ then orthogonal to axis,
❑ then axis,
❑ and back to etc

❑ Continue recursively to partition the subsets,
until they are small enough.

IR3

x−
y−

z−
x − axis

24

2D-Tree

❑ Partitions 2D space into axis-aligned
rectangular regions.

❑ Nodes stores partition lines. However
each node corresponds to a region

 in the plane. (the reasons that
nodes don’t need to store is that

 could be computed from by the
path from the root to and leaves
represent input points.

❑ Height:

v
R(v)

R(v)
R(v)

v

O(log n)

L1

L2 L3

L7L6L5L4

C D E F G HBA

L1

L3L2

L4

L5

L6

L7

B
A

C
D

E
F

G H

(1) 1
()

() 2 1
2

() (log)

O n
T n nO n T n

T n O n n

=⎧
⎪

= ⎨ ⎛ ⎞+ >⎜ ⎟⎪ ⎝ ⎠⎩
=

construction complexity:

R(root)

R(root)

v1 v2

u1 u2 u3 u4

25

We saw a family of hierarchical trees
Report(Q,v) {

// Q – a query disk. v- node of a quad tree that stores
a set S of points (e.g. S={a,b,c,s}).
Prints all data point the points in stored at the subtree
rooted at v, which are also inside Q. */

1. If R(v) is disjoint from Q –return //no point to report
at v’s subtree

2. If R(v) is fully contained in Q – print all of S stores at
the subtree rooted at v.

3.Else // partially overlaps Q. {
• If v is a leaf – check each point in R(v) if inside Q

and print if yes.
• Else // v internal node

• Report(Q, NW(v)) and ..
• Report(Q, NE(v)) and ..
• Report(Q, SW(v)) and ..
• Report(Q, SE(v)) }

}

R(v)

R(v)Q

 is disjoint from QR(v)

R(v) Q

 is contained in QR(v)

R(v)

Q

 partially overlapQR(v)

Def: Hirarchical tree tree T :
for every non-root noded v,
Where is the region of node v

Example, Quadtree, R-tree, kD-tree

Augmenting the tree: We can store at each
internal node of v of T additional information
that relates to data in the subtree of v. For
example:
1. The number of data points in its v’s subtree
2. Max,
3. Min,
4. sum-of-RGB
5. etc

R(v) ⊆ R(parent(v))

R(v)

Question: Which values should we maintain so we could find the average efficiently

A word about theoretical guaranties

• All these trees are very efficient for
realistic data and queries. Most
regions in the tree are either fully
inside the query or fully outside

• All works well in 3D and 4D

• As far as theoretical guaranties goes,
bounds are less striking Every
thouhWe can prove: In a kD-tree, a
query with axis-parallel query region
visits at most (in 2D) and

 (in 3D)
O(n)

O(n2/3)

