
  
Geometric Hashing  - on the whiteboard  
Binary Space Partitions (BSP) 
BSP and the painter algorithm  
Quad trees and R-trees  

BSP tree  

Given a set of triangles  in 3D, a BSP ,  for  is an tree where  
1. Each leaf stores a triangle  

1. Each internal (non-leaf) node   stores a plane   and pointers to two children 
  

3. All triangles in the subtree  are fully below , and all triangles in  
are fully on or above  

See further example on the board.  

Sometimes we need to split triangles to construct the BSP  

If a (perfect) BSP exist, then for any location of a viewer, we can use the painter 
algorithm.  

Numerous other applications in graphics. (e.g. combine with imposers/billboards)  

If the number of triangles above and below  are roughly the same, then the height is 
  

S = {t1…tn} T S
ti

v hv
v . right, v . lef t

v . lef t hv v . right
hv

hv
O(log n)

Quad Trees  
 
A data simple data structure for geometric objects(e.g. points, houses, an image, 3D scene)  
 
Support efficiently a very wide variety of queries.  

Hierarchical Partition of the scene  

4

QuadTrees 
Assume we are given a red/green picture 
defined a 2h × 2h grid. E.g. pixels. 
Each pixel is either green or red.  

(more general and interesting examples – 
soon)  

Need to represent the shape “compactly”  

Need a data structure that could answers multiple types of 
queries. For example:  
1.For a given point q, is q red or green ?  

2.For a given query disk D, are there any green points in D ? 

3.How many green points are there in D ?  
4.Etc etc 

D2

D1 D3
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QuadTrees 

• Assume we are given a red/green 
picture defined on a 2h × 2h grid of 
pixels. 

• Each pixel has as a unique color 
(Green or Red) 

• Every node v ∈ T  is associated 
with a geometric region R(v) .  

• This is the region that  v is “in 
charge of’’.

Alg ConstructQT for a shape S. 
•input – a node v ∈ T,  and a shape S.   
•Output – a Quadtree Tv representing the shape of S within R(v) ).   

• If  S is fully green in R(v), or S is fully red in R(v) – then  
•  v is a leaf,  labeled Green or Red. Return ;   
•Otherwise, divide R(v) into 4 equal-sized quadrants, corresponding to nodes    
 v.NW, v.NE, v.SW, v.SE.  
• Call ConstructQT recursively for each quadrant. 

3

0
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SW SE

NW SE
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3D-Quadtess 

There are no 3D Quadtrees. We call them 
Oct-trees  

Each node is either a leaf, or is split into 8 
equal-volume octants.  

credit for image: wikipedia. 
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QuadTrees 

Consider a  picture 
stored on an 2h × 2h 
grid. Each pixel is 
either red or green. 

We can represent the  
shape “compactly” 
using a QT.  

Height – at most h.  
Point location operation – given a point q, is it black or white  
 – takes time O(h)  
 - could it be much smaller ? 

Many other operations are very simple to implement. 

3

0
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Storing the range R(v) of a node 
Each node v is associated with a range R(v) – a square. The node v stores (in addition to 
other info) 4 values    

(MinX,MinY) – coordinates of the lower left corner of R(v) 
(MaxX,MaxY) coordinates of the upper right corner of R(v) 

3

0

11

2

10

13

120 121

123122

(0,0)

(15,0)

(15,15)
(0,15)

(7,15)
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QuadTree for a set of points  
Now consider a set of 
points (red)  but on a 
2h × 2h grid. 

Splitting policy: Split 
until each quadrant 
contains ≤1 point.

• Build a similar QT, but we stop splitting a quadrant when it contain ≤1 point (or some other 
small constant).  

• Could be easily built by inserting the points one after the other. A leaf is split if contains 2 points.  
• Point location operation – given a point q, is it black or white  
•  – takes time O(h) (and less in practice) 
• Many other splitting polices are very simple to implement. (eg. a leaf could contain contains ≤17 

points)

a b

c

d

da

b

c

e

e
An example of Quadtree built for the set of points 
S={a,b,c,d,e}
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QuadTrees for a set of points  
Report(Q,v) { 

// Q – a query disk. v- node of a quad tree that stores 
a set S of points (e.g. S={a,b,c,s}).  
Prints all data point the points in stored at the subtree 
rooted at v,  which are also inside Q. */ 

1. If R(v) is disjoint from Q –return  //no point to report 
at v’s subtree   

2. If R(v) is fully contained in Q – print all of S stores at 
the subtree rooted at v.   

3.Else //  partially overlaps Q.  { 
• If v is a leaf – check each point in R(v) if inside Q 

and print if yes. 
• Else  // v internal node  

• Report(Q, NW(v)) and ..  
• Report(Q, NE(v)) and ..  
• Report(Q, SW(v)) and ..  
• Report(Q, SE(v)) }  

}

R(v)

a

c

d

da

b

c

Q b

R(v)Q

 is disjoint from QR(v)

R(v) Q

 is contained in QR(v)

R(v)

Q

 partially overlapQR(v)
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QuadTrees for shape  
Input: A set S of triangles  S={t1…tn }.    

Each leaf v stores a list v.TriangleList 
of all triangles intersecting R(v). 

Splitting policy: Split a quadrant if it 
intersects more than 5 (say) triangle 
of S.

c

d

da

b

cQ

a

a a 

b

Note – a triangle might be stored in multiple leaves.  
Some leaves might store no triangles.  

Finding all triangles inside a query region Q.  We essentially use the 
function Report(Q,v) from the previous slide (with minor 
modifications)

12

Ray tracing and QuadTrees 

Consider a quadrant  with corners LL=(x1,y1) and UR=(x2,y2).   
To find if a ray   intersects this quadrant 

Find   tmin_x, tmax_x, where the ray is in the x-span of the 
quadrant (the vertical slab containing the quadrant). This is easy,  
since we only need to check the x-component of .    If  
then this ray does not intersect   
Find tmin_y, tmax_y, where the ray is in the y-span of the 
quadrant  
Set tmin=max(tmin_x, tmin_y) 
Set tmax=min(tmax_x, tmax_y) 
The ray is inside the quadrant only for (tmin,tmax) 

In 3D, we also check tmin_z, tmax_z

R(v)
r = p0 + t ⋅ ⃗v

⃗v < 0
R(v)

t ∈

0

(x1,y1)

(x2,y2)

R(v)
tmin_x

tmax_x

tmin_y
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Ray tracing and QuadTrees 
Now, it is easy to find the first 
triangle hit by a ray r: 
Start from v=root. If empty, then 
continue tracing the ray from the 
point it leaves the quadrant.   
If v is internal node, check which of   
its quadrants is first hit by r, and 
continue recursively. 
If v=leaf, check each triangle in v

c

d

da

b

c
Q

a

a a 

b

insert(triangle ti ,node v) { 
// Inserting a new triangle ti  into an existing node v of the Quadtree.   
// v is not necessarily a leaf.   
If v is NULL - Error 
If R(v) is disjoint from ti  (share no points)– Return.  Nothing to do.  
If v is not a leaf,  then for each child u of v, call insert(ti,u);  
Else // v is a leaf  
Add ti to v.TrianglesList   
If number of triangles in v.SegmentsList  is too long (e.g. >5) Call Split(v) 

} 
----------------- 
Split(v){ 

// Assumption – v is a leaf, but has too many triangles in its list. 
// Create 4 children for v (make sure they know which regions they cover.) 
For each child u of v 
  For each segment s in v.TrianglesList Call insert(s, u)  
Empty v.TrianglesList 

 }

Inserting a new triangle

Terrain representations and levels-of-details  

Raw data  – a grid of points (i,j,
 ,
 z

ij
) 

For every grid point i,j, given the elevation z
ij

 
(TIN – Triangulated Irregular Network)

Each triangle approximately fits the surface below it 

How to find good triangulation ? 
◆ Input – a very large set of points S={ (i,j, zij ) }.  
◆ zij is the elevation at  point  (i,j ) (latitude and longitude) 
◆  Want to create a surface, consists of triangles, where each 

triangle interpolates the data points underneath it.  
◆ Idea: Build a QT T for the 2D points.  
◆ (If want triangles:  Each quadrant is split into 2 right-hand 

triangles) 
◆ Assign to each vertex the height of the terrain above it.   
◆ The approximated elevation of the terrain at any point (x,y) is 

the linear interpolation of its elevated vertices. 

QT Split Policy: Splitting a quadrant into 4 sub-quadrants:  
◆ split a node v if for some date point (xi , yi )∈R(v),  the elevation 

of zij  is too far from the the corresponding triangle.      If not, 
leave v as a leaf.  

◆ That is, for any point (i,j) on the plane, the elevation  ( i,j ,  zij  ) it 
is too far from the interpolated elevation.  

◆ Note: A quadrant might contain a huge number of points, but 
they behave smoothly. E.g. all a the sloop of a mountain, but 
this slope is more or less linear. 

Level Of Details 

▪ Idea – the same object is stored several times, but with a 
different level of details 

▪ Coarser representations for distant objects 
▪ Decision which level to use is accepted `on the fly’  

(eg in graphics applications, if we are far away from a 
terrain, we could tolerate usually large error. E.g., sub pixels 
error are not noticeable.) 



R-trees   
• Input: A set S of shapes (segments in this example. Triangles in graphics apps)   
• Build a tree that could expedite 

• (i) finding the segments intersecting a query region, 
• (ii) answering ray tracing 
• (iii) Emptiness queries. etc  

1

2

3

4
5

6

7

8

• We compute for each segment its bounding box (rectangle). 
• These are the leaves of T.  Call them ``Level 1’’. 
• Find the nearest pair of segments (say 7,8). Remove them from level 1, and replace them by a single BB encapsulate both. It corresponds to a 

node of level 2.
• Repeat until no vertex is left in level 1. 
• Next, pick the nearest two BBs from level 2, and replace them by a vertex at level 3.  
• In general, each internal node v in level j is created by merging two children nodes of level j-1.   

•
• Repeat until we are left with one bounding box. 

BB(v) = BB(BB(v . r ight)⋃BB(v . lef t))

875 6

: 7+8u1:  5+6u2

:  5+6+7+8w1

Root: 1+..+8

431 2
Level 1

Level 2

Level 3
  3+4u3 :

:  u1

:  u2

 1+2u4 :

  u3
  u4

:  1+2+3+4w2

:  5+6+7+8
w

1:  1+2+3+4w2

R-trees   
• Input: A set S of shapes (segments in this example. Triangles in graphics apps)   
• Build a tree that could expedite 

• (i) finding the segments intersecting a query region, 
• (ii) answering ray tracing 
• (iii) Emptiness queries. etc  

1

2

3

4
5

6

7

8

875 6

7+85+6

5+6+7+8

Once a query region Q is given, we need to report the segments intersecting Q. 
Check if Q intersects BB(root)
If not, we are done. If yes, check recursively if Q intersects BB(v.left) and BB(v.right)

    
Q

R-trees   

1

2

3

4
5

6

7

8

875 6

7+85+6

5+6+7+8

Analogously for a query ray r 

ray r 

R-trees in practice.  Memory Hierarchy, and advantages of multiple children   
Large  degree helps  

• In practice, it is sometimes preferable to create trees with a very large degrees (instead of binary trees). 
• For example, each internal node, will have between 100 to 500 children

example of a tree with degree =3

• Consider a very simplistic model of the computer memory - fast main memory, and slow secondary memory.  (your computer 
follows this model, probably with more than 2 types of memory, and probably SSD instead of disks, but this model still 
applies. 

• Only small portion of the tree could be stored in the main memory.  
• Consider point location operation (find the segment containing a query point) 

• We start the search by visiting the root,  then one of its children, one of its grand-children … until we reach a leaf.
• The seek-time in disks, and even in SSD, is much slower than the seek-time for main memory. Therefor,  once the head of 

the disks is located in the correct place, we usually read a bucket - about 4KByte of memory.
• The bottleneck of the search/insert/delete operation is the number of seek operations (number of I/Os).
• The number of seek-operation is proportional to height of the tree.
• Say . The height of a tree of degree 2 with n leaves is , so 30 seek operations are needed. 
• If each node contains about 1000 segments, or keys, then the height (and number of I/Os) is only 
• The root and possibly its children are always in main memory, so this number of only 1 or 2. 
• R-trees are the most popular and important data structures for very large spatial data. 
• If the stored items are 1-dimensional (rather than multi-dim), then B-trees are used instead of R-trees. They are very convent 

for insertion/deletion and other operations. 

n = 109 log2(109) ≈ 30
log1000(109) = 3
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 2D-Trees (and in higher dimension, kD-trees)
❑ Given a set of points in 2D.
❑ Bound the points by a rectangle.
❑ Split the points into two (almost) equal size 

groups, using a  horizontal line,  or vertical line. 
(first horizontal, then vertical, back to horizontal 
etc)

❑ (in , split by a plane orthogonal to the 
❑ axis, 
❑ then orthogonal to  axis, 
❑ then axis, 
❑ and back to  etc

❑ Continue recursively to partition the subsets, 
until they are small enough.

IR3

x−
y−

z−
x − axis
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2D-Tree

❑ Partitions 2D space into axis-aligned 
rectangular regions.

❑ Nodes stores partition lines. However 
each node  corresponds to a region 

 in the plane.  (the reasons that 
nodes don’t need to store  is that 

 could be computed from by the 
path from the root to and leaves 
represent input points.

❑ Height: 

v
R(v)

R(v)
R(v)

v

O(log n)

L1

L2 L3

L7L6L5L4

C D E F G HBA

L1

L3L2

L4

L5

L6

L7

B
A

C
D

E
F

G H

(1) 1
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( ) 2 1
2

( ) ( log )

O n
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T n O n n

=⎧
⎪
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=

construction complexity:

R(root)

R(root)

v1 v2

u1 u2 u3 u4



25

We saw a family of hierarchical trees
Report(Q,v) { 

// Q – a query disk. v- node of a quad tree that stores 
a set S of points (e.g. S={a,b,c,s}).  
Prints all data point the points in stored at the subtree 
rooted at v,  which are also inside Q. */ 

1. If R(v) is disjoint from Q –return  //no point to report 
at v’s subtree   

2. If R(v) is fully contained in Q – print all of S stores at 
the subtree rooted at v.   

3.Else //  partially overlaps Q.  { 
• If v is a leaf – check each point in R(v) if inside Q 

and print if yes. 
• Else  // v internal node  

• Report(Q, NW(v)) and ..  
• Report(Q, NE(v)) and ..  
• Report(Q, SW(v)) and ..  
• Report(Q, SE(v)) }  

}

R(v)

R(v)Q

 is disjoint from QR(v)

R(v) Q

 is contained in QR(v)

R(v)

Q

 partially overlapQR(v)

Def: Hirarchical tree tree T :  
for every non-root noded v, 
Where  is the region of node v 

Example, Quadtree, R-tree, kD-tree 

Augmenting the tree: We can store at each 
internal node of v of  T additional information 
that relates to data in the subtree of v.    For 
example: 
1. The number of data points in its v’s subtree  
2. Max,  
3. Min,  
4. sum-of-RGB 
5. etc

R(v) ⊆ R(parent(v))

R(v)

Question: Which values should we maintain so we could find the average efficiently  

A word about theoretical guaranties  

• All these trees are very efficient for 
realistic data and queries. Most 
regions in the tree are either fully 
inside the query or fully outside 

• All works well in 3D and 4D 

• As far as theoretical guaranties goes, 
bounds are less striking Every 
thouhWe can prove: In a kD-tree, a 
query with axis-parallel query region 
visits at most  (in 2D) and 

 (in 3D) 
O( n)

O(n2/3)


