Geometric Hashing - on the whiteboard
Binary Space Partitions (BSP)
BSP and the painter algorithm
Quad trees and R-trees

BSP tree Given a set of triangles $S=\left\{t_{1} \ldots t_{n}\right\}$ in 3D, a BSP T, for S is an tree where 1. Each leaf stores a triangle t_{i} 1. Each internal (non-leaf) node v stores a plane h_{v} and pointers to two children v.right, v.left 3. All triangles in the subtree v. left are fully below h_{v}, and all triangles in v.right are fully on or above h_{v}
See further example on the board. Sometimes we need to split triangles to construct the BSP If a (perfect) BSP exist, then for any location of a viewer, we can use the painter algorithm. Numerous other applications in graphics. (e.g. combine with imposers/billboards) If the number of triangles above and below h_{v} are roughly the same, then the height is $O(\log n)$

QuadTrees

Assume we are given a red/green picture

Need a data structure that could answers multiple types of queries. For example:

1. For a given point q , is q red or green ?
2.For a given query disk D, are there any green points in D ?
2. How many green points are there in D ?
4.Etc etc

3D-Quadtess
There are no 3D Quadtrees. We call them
Oct-trees
Each node is either a leaf, or is split into 8
equal-volume octants.
credit for image: wikipedia.

QuadTrees

Consider a picture stored on an $2^{h \times 2 h}$ grid. Each pixel is either red or green.

We can represent the shape "compactly" using a QT.
Height - at most h.
Point location operation - given a point q, is it black or white - takes time O(h)

- could it be much smaller ?

Many other operations are very simple to implement.

QuadTree for a set of points

Now consider a set of
 points (red) but on a $2 \mathrm{~h} \times 2^{\mathrm{h}}$ grid.

Splitting policy: Split until each quadrant contains ≤ 1 point.

- Build a similar QT, but we stop splitting a quadrant when it contain ≤ 1 point (or some other small constant).
- Could be easily built by inserting the points one after the other. A leaf is split if contains 2 points.
- Point location operation - given a point q , is it black or white
- \quad - takes time $\mathrm{O}(\mathrm{h})$ (and less in practice)
- Many other splitting polices are very simple to implement. (eg. a leaf could contain contains ≤ 17 points)

QuadTrees for a set of points

Report((\mathbf{i}, v) \{
 Q a set S of points (e.g. $S=\{a, b, c, s\}$ Prints all data point the points in stored at the subtree $\mathrm{R}(\mathrm{V}$ is disiont from Q retule Q . */
. If $\mathrm{R}(\mathrm{v})$ is disjoint from Q -return //no point to report
at V's subtree
2. If $R(v)$ is fully contained in Q - print all of S stores at the subtree rooted at v .
3. Else // $R(v)$ partially overlaps Q . \{ $\quad \mathrm{B}(\mathrm{v})$ if inside

- If v is a leaf -
and print if yes.
- Else // v internal node - Report(Q, NW(v)) and - Report(Q, NE(v)) and .. - Report(Q, SW(v)) and. - Report(Q, SE(v)) \}

$R(v)$ is disjoint from Q

QuadTrees for shape

- Input: A set S of triangles $S=\left\{t_{1 \ldots} t_{n}\right\}$.
- Each leaf v stores a list v.TriangleList of all triangles intersecting $R(v)$.
- Splitting policy: Split a quadrant if it intersects more than 5 (say) triangle of S.

Note - a triangle might be stored in multiple leaves.
Some leaves might store no triangles.
Finding all triangles inside a query region Q . We essentially use the function Report(Q, v) from the previous slide (with minor modifications)

Ray tracing and QuadTrees

How to find good triangulation ?

- Input - a very large set of points $\boldsymbol{S}=\left\{\left(i, j, z_{i j}\right)\right\}$.
- z_{ij} is the elevation at point (i, j) (latitude and longitude)
- Want to create a surface, consists of triangles, where each triangle interpolates the data points underneath it.
- Idea: Build a QT T for the 2D points.
- (If want triangles: Each quadrant is split into 2 right-hand triangles)
- Assign to each vertex the height of the terrain above it.
- The approximated elevation of the terrain at any point (x, y) is the linear interpolation of its elevated vertices.

QT Split Policy: Splitting a quadrant into 4 sub-quadrants:

- split a node v if for some date point $\left(x_{i}, y_{i}\right) \in R(v)$, the elevation of z_{ij} is too far from the the corresponding triangle. If not, leave \boldsymbol{v} as a leaf.

That is, for any point (i, j) on the plane, the elevation $\left(i, j, z_{i j}\right)$ it is too far from the interpolated elevation.

- Note: A quadrant might contain a huge number of points, but they behave smoothly. E.g. all a the sloop of a mountain, but this slope is more or less linear.

Level Of Details

- Idea - the same object is stored several times, but with a different level of details
- Coarser representations for distant objects
- Decision which level to use is accepted 'on the fly' (eg in graphics applications, if we are far away from a terrain, we could tolerate usually large error. E.g., sub pixels error are not noticeable.)

R-trees

- Input: A set S of shapes (segments in this example. Triangles in graphics apps)

Build a tree that could expedite

- (i) finding the segments intersecting a query region,
((ii) Emptiness queries.

We compute for each segment its bounding box (rectangle)

- These are the leaves of T. Call them "Level 1 ". node of level 2 .
- eepeat, pick the nearest two BBS from level 2 , and replace them by a vertex at level 3 .
- In general, each internal node v in level j is created by merging two children nodes of level $j-1$ $B B(v)=B B(B B(v . r i g h t) \bigcup B B(v . l e f t))$
Repeat until we are left with one bounding box.
-

R-trees

Analogously for a query ray r

2D-Trees (and in higher dimension, kD-trees)

\square Given a set of points in 2D.
Bound the points by a rectangle.

- Split the points into two (almost) equal size groups, using a horizontal line, or vertical line. (first horizontal, then vertical, back to horizontal etc)
(in \mathbb{R}^{3}, split by a plane orthogonal to the
- x-axis,
then orthogonal to y-axis,
\square then z-axis,
and back to x - axis etc
Continue recursively to partition the subsets until they are small enough.

R-trees

- Input: A set S of shapes (segments in this example. Triangles in graphics apps) - Build a tree that could expedite
(i) finding the segments intersecting a query region,
(ii) answering day $_{2}$ tracing $_{f}$
(iii) Emptines queries. etc

Once a query region Q is given, we need to report the segments intersecting Q.
Check if Q intersects B (root) Check if Q intersects BB (root)
If not, we are done. If yes, check recursively if Q intersects BB (v.left) and BB (v.right)

R-trees in practice. Memory Hierarchy, and advantages of multiple children Large degree helps
In practice, it is sometimes preferable to create trees with a very large degrees (instead of binary trees).
For example, each internal node, will have between 100 to 500 children

Consider a very simplistic model of the computer memory - fast main memory, and slow secondary memory. (your computer follows this model, probably with more than 2 types of memory, and probably SSD instead of disks, but this model stil applie
Only small portion of the tree could be stored in the main memory
Consider point location operation (find the segment containing a query point)
We start the search by visiting the root, then one of its children, one of its grand-children ... until we reach a leaf.
The seek-time in disks, and even in SSD, is much slower than the seek-time for main memory. Therefor, once the head of The seek-ime in disks, and even in SSD, is much slower than the seek-time for main memory
the disks is located in the correct place, we usually read a bucket - about 4 KByte of memor The bottleneck of the search/insert/delete operation is the number of seek operations (number of I/Os).
The number of seek-operation is proportional to height of the tree.
Say $n=10^{9}$. The height of a tree of degree 2 with n leaves is $\log _{2}\left(10^{9}\right) \approx 30$, so 30 seek operations are needed
. If each node contains about 1000 segments, or keys, then the height (and number of $/ / O s$) is only $\log _{1000}\left(10^{\circ}\right)=$ The root and possibly its children are always in main memory, so this number of only 1 or 2.
R-trees are the most popular and important data structures for very large spatial data.
If the stored items are 1 -dimensional (rather than mult-dim) then B -tee for insertion/deletion and other operations.

2D-Tree

Partitions 2D space into axis-aligned rectangular regions.
Nodes stores partition lines. However each node v corresponds to a region $R(v)$ in the plane. (the reasons that nodes don't need to store $R(v)$ is that $R(v)$ could be computed from by the path from the root to vand leaves represent input points.
construction complexity:

$$
T(n)= \begin{cases}O(1) & n=1 \\ O(n)+2 T\left(\frac{n}{2}\right) & n>1\end{cases}
$$

$T(n)=O(n \log n)$

Height: $O(\log n)$

We saw a family of hierarchical trees

Report(\mathbf{Q}, \mathbf{v}) \{
// Q - a query disk. v - node of a quad tree that stores a set S of points (e.g. $S=\{a, b, c, s\})$.

Def: Hirarchical tree tree $\mathrm{T}: R(v) \subseteq R($ parent $(v))$
for every non-root noded v ,
Where $R(v)$ is the region of node v
Example, Quadtree, R-tree, kD-tree
Augmenting the tree: We can store at each internal node of v of T additional information that relates to data in the subtree of v. For example:

1. The number of data points in its v 's subtree 2. Max,
2. Min,
3. sum-of-RG
4. etc Prints all data point the points in stored
rooted at v , wh 1. If $\mathrm{R}(\mathrm{v})$ is disjoint from Q -return //no point to report at v's subtree
. If $\mathrm{R}(\mathrm{v})$ is fully contained in Q - print all of S stores at the subtree rooted at v .
5. Else // $R(v)$ partially overlaps Q . \{

- If v is a leaf - check each point in $\mathrm{R}(\mathrm{v})$ if inside Q and print if yes.

Else //v internal node

- Report(Q, NW(v)) and
- Report(Q, NE(v)) and
- Report(O, SE(v)) \}

Q \qquad
$R(v)$
$R(v)$ is disjoint from Q

Question: Which values should we maintain so we could find the average efficiently

A word about theoretical guaranties

- All these trees are very efficient for

 realistic data and queries. Most visits at most $O(\sqrt{n})$ (in 2D) and $O\left(n^{2 / 3}\right)($ in 3D)

