
Convolusions and 
Kernels

Convolution 
Convolutions will be used for several applications in this course :  
• Anti-Aliasing,  
• Sharpening of images  
•  Dynamic Range (overcome limitations of monitor: We only have  

levels of intensity, which is very far from sufficient -  but we will 
study how to display images  
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Big idea.   Image could be improved, if when setting 
the value of a pixel, we also take into account values of 
nearby pixels  

With HDR & tone mapping
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With HDR + Tone Mapping

Neighborhood Filtering (Schematic) 
Aka mean filter, aka smoothing

f(Nj)=average color in this region 
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pixel pj

=Blue (for  illustration)Cj = (0, 0, 255)

=GREY 
Ck = (12, 12, 12)

• Let  be the  neighborhood of pixel  
• Sum the RGB value of all these pixels   
• The average is the new value of  

N(pj) 3 × 3 pj

pj

Convolution 

An Example: Mean Filtering

•Mean filters sum colors of the pixels in a local neighborhood  of pixel ,  and 
divide the by the total number (averaging) 


•Where the   is a square, and pixels have same weight, we call these box filter. 


•Sometimes we give less weight to pixels farther from   - tent filter , gaussian filter. 
Weighted average 


• The weights  are convex combination. Meaning that they are all positive, 

and thier sum . For  example,  . 

• Important: the source image and target image has same number of pixels. 
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•
Imagine placing a mask  (template) placed so its center on   - the mask specifies 

how much weight each pixel receives. This mask is called a Kernel.  

•
Other possible Kernels for this operation: 

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
12 (

1 1 1
1 3 1
1 1 1)    or   

1
25

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

f(pixel pi) = ∑
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Kernels
pi

• Comparison In 1D - 2 box kernels, Tent and Gaussian. Note 
that with tent and gaussians we could also interpolate 
between the data points (e.g. if needed to increase the 
resolution of the image)

https://www.geogebra.org/m/ta5cwm3a



Box Filtering

The matrix of weights is

 called a Kernel

Box Filtering

Kernels
• Convolution employs a rectangular grid of coefficients,  (that is,  weights)  

known as a kernel


• Kernels are like a neighborhood mask, they specify which elements of 
the image are in the neighborhood and their relative weights.


• A kernel is a set of weights that is applied to corresponding input 
samples that are summed to produce the output sample.


• For smoothing purposes, the sum of weights must be 1 (convex 
combination). 


• Promo: Sometimes some input value are not available (e.g. near 
boundaries) or we prefer not to be include them - we will have to adjust 
the kernels weights so the remain convex combination. 
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One-dimensional Convolution
•Can be expressed by the following equation, which takes a kernel 

(sometimes called ``filter’’)  H and convolves it with G:  (note notation of 
convolution)


• 
Ĝ[i] = (
input image⏞

G *
kernel⏞

H )[i] =
j=+1

∑
j=−1

G[i − j] ⋅ H[ j]

The smoothing operation is always a low pass filter. 

Only lower frequencies could pass. 


It removes higher frequencies from the  input.
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We convolved the original signal 
f(x) a smoothing kernel H. 

For example 
 

 g(x) =
f(x − 1) + f(x) + f(x + 1)

3

Low-pass and high-pass filtering

Input: y = f(x)

The output of the smoothing operation 
  

The higher frequencies are less noticeable:  
we need to move a lot (in x) to notice a large different in y

g(x) = f (x) * H

New idea:  High-pass filter.  
 

Only high frequencies pass 
(shown: Original signal (blue) and the result of the high pass filter (red)) 

  
We remove (subtract) from the signal all lower frequencies

h(x) = f (x) − g(x)

Twitter - could move very 
fast, but only small distances

Woofer - moves slowly but 
cold cover large distances
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We convolved the 
original signal y with 
this gaussian
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2-Dimensional Version
• Given an image a and a kernel b with (2r+1)2 values, the 

convolution of a with b is given below as a*b:


• The (i-i’) and (j-j’) terms can be understood as reflections 
of the kernel about the central vertical and horizontal axes.


• The kernel weights are multiplied by the corresponding 
image samples and then summed together.

A Note on Indexing
• Convolution reflects the filter to preserve orientation. 


• Correlation does not have this reflection.


• But we often use them interchangeably since most kernels are symmetric!!

G*H

Given kernel H = 
Convolution reflects 
and shifts the kernel

Convolution Can Also Convert 
from Discrete to Continuous

• Discrete signal a


• Continuous filter f


• Output a*f defined 
on positions x as 
opposed to 
discrete pixels i

Types of Filters: 
Smoothing

Smoothing Spatial Filters
• Any weighted filter with positive values will smooth in some way, examples:


• Normally, we use integers in the filter, and then divide by the sum 
(computationally more efficient)


• These are also called blurring or low-pass filters

Smoothing Kernels



Box Filter
Box filter

⌦

Thursday, February 16, 12

Note this brown strip

Gaussian Filter
Nice and smooth: Gaussian

⌦
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Same brown strip

Gaussians
• Gaussian kernel is parameterized on the 

standard deviation σ


• Large σ’s reduce the center peak and spread 
the information across a larger area


• Smaller σ’s create a thinner and taller peak


• Gaussians are smooth everywhere.


• Gaussians have infinite support


• >0 everywhere


• But often truncate to 2σ or 3σ


• Volume =1 (sum of weights =1)

http://en.wikipedia.org/wiki/Gaussian_function

Smoothing Comparison

Types of Filters: 
Sharpening

Sharpening (Idea)Sharpening

- =

=+k*

High pass

Sharpened 
image

Input blurred

High passInput
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Another example
Original Image,     Imaged convolved

Left: difference (only boundaries are non-black)  
Right   Imaged minus differences convolved

Unsharp Masks
• Sharpening is often called “unsharp mask” because 

photographers used to sandwich a negative with a blurry 
positive film in order to sharpen

http://www.tech-diy.com/UnsharpMasks.htm

Edge Enhancement
• The parameter 𝛂 controls how much of the source image 

is passed through to the sharpened image. 

Defining Edges
• Sharpening uses negative weights to enhance regions where 

the image is changing rapidly


• These rapid transitions between light and dark regions are 
called edges


• Smoothing reduces the strength of edges, sharpening 
strengthens them.


• Also called high-pass filters


• Idea: smoothing filters are weighted averages, or integrals.  
Sharpening filters are weighted differences, or derivatives!

Edges (Review?) Derivatives via 
Finite Differences

• We can approximate the derivative with a kernel w:

∂f(x, y)
∂x

≈
f(x + h, y) − f(x − h, y)

2h
≈

f(x + 1,y) − f(x − 1,y)
2



Lets convolves with one of the kernels 
∂
∂x

f(x, y) = lim
Δx→0

1
Δx {f(x + Δx, y) − f(x, y)} = lim

Δx→0

1
2Δx {f(x + Δx, y) − f(x − Δx, y)} =

≈
1
2 {f(x + 1,y) − f(x − 1,y)} =

[−1 0 1]

[
−1
0
1 ]

Gradients with Finite Differences 
 

• These partial derivatives approximate the image gradient, ∇I.


• Gradients are the unique direction where the image is changing the 
most rapidly, like a slope in high dimensions 


• We can separate them into components kernels Gx, Gy.  ∇I = (Gx, Gy)

Gradients Gx, Gy
Gradient: finite difference

• horizontal gradient [[-1, 1]]
• vertical gradient:  [[-1], [1]]

Horizontal 
gradient
(absolute 

value)

Vertical 
gradient
(absolute 

value)

Gradient 
magnitude
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|Gx| |Gy|

|G| = √(Gx2 + Gy2)

|G|

Second Derivatives 
(Sharpening, almost)

• Partial derivatives in x and y lead to two kernels:

Compare with 
Sharpening filter: 
unbalanced counts!

-9 

Back to smoothing (aka mean filter, averaging…) 

Problem: It blurs boundaries between region



In non-bilateral kernel -  
the smoothing operation blurs the boundaries  between regions. How to smooth if some value are unwanted /unavailable 

•    


• First attempt: Define a useful neighbors. 


•    only if if is near i, and its intensity is close to intensity at .  
For example, include  only if : 


•
   


• Problem: The sum of weights is much smaller than 1. 


•
Idea: Define .


•
  

s(i) = ∑
j∈ nbr of i

w[i − j] ⋅ f( j) and∑ wj = 1 wj ≥ 0

j i
j ∈ N(i) | f( j) − f( j) | ≤ 10

s(i) = ∑
j ∈  nbr of i
j useful nbr

w[i − j] ⋅ f [ j]

w′ [i − j] = w[i − j]/ ∑
j ∈  nbr of i
j useful nbr

w[i − j]

s(i) = ∑
j ∈  nbr of i
f(j) useful

w′ [i − j] ⋅ f [ j]

Lets simplify (for box filter)

• Define 


• Instead of 


•Define 


•    


• where  


•  

g(i, j) = {1 if | f(i) − f( j) | ≤ 10
0 othewise(

s(i) = ∑
j∈ nbr of i

f( j)w[i − j]

s(i) = ∑
j∈ nbr of i

f( j) w′ [i − j] g(i, j)

w′ [i − j] = w[i − j]/ ∑
j ∈  nbr of i

w[i − j]g(i, j)

Example for box filter
• Define 




• Instead of 



• Define 


•    


• Note that the denominator 
 is either 1,2 

or 3 

g(i, j) = {1 if | f(i) − f( j) | ≤ 10
0 othewise(

s(i) = (f(i − 1) + f(i) + f(i + 1))/3

s(i) =
f( j − 1)g(i, i − 1) + f(i) + f(i + 1)g(i, i + 1)

1 + g(i, i − 1) + g(i, i + 1)

1 + g(i, i − 1) + g(i, i + 1)



This will lead us to bilateral filters  

This trick with normalizing the wights is very useful 
if the number of terms is the summation is not 
fixed (for example, near boundaries) or when 

sliding a window

Boundaries

Handling Image Boundaries 

• What should be done if the kernel falls off of the boundary 
of the source image as shown in the illustrations below?

Handling Image Boundaries 
• When pixels are near the edge of the image, neighborhoods 

become tricky to define


• Choices:


1. Shrink the output image (ignore pixels near the 
boundary)


2. Expanding the input image (padding to create values 
near the boundary which are “meaningful”) 


3. Shrink the kernel (skip values that are outside the 
boundary, and reweigh accordingly)

Boundary Padding
• When one pads, they pretend the image is large and 

either produce a constant (e.g. zero), or use circular / 
reflected indexing to tile the image:


