
Convolusions and
Kernels

Convolution
Convolutions will be used for several applications in this course :
• Anti-Aliasing,
• Sharpening of images
• Dynamic Range (overcome limitations of monitor: We only have

levels of intensity, which is very far from sufficient - but we will
study how to display images

28

Big idea. Image could be improved, if when setting
the value of a pixel, we also take into account values of
nearby pixels

With HDR & tone mapping

Tuesday, March 6, 12

With HDR + Tone Mapping

Neighborhood Filtering (Schematic)
Aka mean filter, aka smoothing

f(Nj)=average color in this region
(neighborhood)=

((12 × 8)
9

,
(12 × 8)

9
,

255 + (12 × 8)
9)

≈ (10,10,39)

original image filtered image

neighborhood of pixel N(pj) pj

pixel pj

=Blue (for illustration)Cj = (0, 0, 255)

=GREY
Ck = (12, 12, 12)

• Let be the neighborhood of pixel
• Sum the RGB value of all these pixels
• The average is the new value of

N(pj) 3 × 3 pj

pj

Convolution

An Example: Mean Filtering

•Mean filters sum colors of the pixels in a local neighborhood of pixel , and
divide the by the total number (averaging)

•Where the is a square, and pixels have same weight, we call these box filter.

•Sometimes we give less weight to pixels farther from - tent filter , gaussian filter.
Weighted average

• The weights are convex combination. Meaning that they are all positive,

and thier sum . For example, .

• Important: the source image and target image has same number of pixels.

N(pi) pi

N(pi)
pi

w1…wk

w1 + w2 + …wk = 1 w1 = w2 = w3 =
1
3

f(pixel pi) = ∑
pk ∈ N(pi)

weight⏞wk ⋅
color⏞
Ck = ∑

pk ∈ N(pi)

1
9 Ck

pi

f(

origi filter

neighbo

https://www.geogebra.org/m/ta5cwm3a

pi

•
Imagine placing a mask (template) placed so its center on - the mask specifies

how much weight each pixel receives. This mask is called a Kernel.

•
Other possible Kernels for this operation:

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
12 (

1 1 1
1 3 1
1 1 1) or

1
25

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

f(pixel pi) = ∑
pk ∈ N(pi)

weight⏞wk ⋅
color⏞
Ck = ∑

pk ∈ N(pi)

1
9 Ck

pixel pi

f(pi)

original image filtered image

neighborhood Ni of

https://www.geogebra.org/m/ta5cwm3a

Kernels
pi

• Comparison In 1D - 2 box kernels, Tent and Gaussian. Note
that with tent and gaussians we could also interpolate
between the data points (e.g. if needed to increase the
resolution of the image)

https://www.geogebra.org/m/ta5cwm3a

Box Filtering

The matrix of weights is

 called a Kernel

Box Filtering

Kernels
• Convolution employs a rectangular grid of coefficients, (that is, weights)

known as a kernel

• Kernels are like a neighborhood mask, they specify which elements of
the image are in the neighborhood and their relative weights.

• A kernel is a set of weights that is applied to corresponding input
samples that are summed to produce the output sample.

• For smoothing purposes, the sum of weights must be 1 (convex
combination).

• Promo: Sometimes some input value are not available (e.g. near
boundaries) or we prefer not to be include them - we will have to adjust
the kernels weights so the remain convex combination.

1
9 (

1 1 1
1 1 1
1 1 1) 1

37

1 1 1 1 1
1 2 2 2 1
1 2 5 2 1
1 2 2 2 1
1 1 1 1 1

1
13 (

1 1 1
1 5 1
1 1 1)

One-dimensional Convolution
•Can be expressed by the following equation, which takes a kernel

(sometimes called ``filter’’) H and convolves it with G: (note notation of
convolution)

•
Ĝ[i] = (
input image⏞

G *
kernel⏞

H)[i] =
j=+1

∑
j=−1

G[i − j] ⋅ H[j]

The smoothing operation is always a low pass filter.

Only lower frequencies could pass.

It removes higher frequencies from the input.

0 10 20 30 40 50 60 70 80 90 100
-4

-2

0

2

4
original signal y

0 10 20 30 40 50 60 70 80 90 100
-4

-2

0

2

4
Low Pass filter. Signal y after convolution with gaussian

0 10 20 30 40 50 60 70 80 90 100
-4

-2

0

2

4
signal vs. High Pass Filter: y-conv(y,w)

We convolved the original signal
f(x) a smoothing kernel H.

For example

 g(x) =
f(x − 1) + f(x) + f(x + 1)

3

Low-pass and high-pass filtering

Input: y = f(x)

The output of the smoothing operation

The higher frequencies are less noticeable:
we need to move a lot (in x) to notice a large different in y

g(x) = f (x) * H

New idea: High-pass filter.

Only high frequencies pass
(shown: Original signal (blue) and the result of the high pass filter (red))

We remove (subtract) from the signal all lower frequencies

h(x) = f (x) − g(x)

Twitter - could move very
fast, but only small distances

Woofer - moves slowly but
cold cover large distances

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.002

0.004

0.006

0.008

0.01

0.012Low pass and hight pass filters - another example

We convolved the
original signal y with
this gaussian

0 10 20 30 40 50 60 70 80 90 100

0

2

4

6

original signal y

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6
Low Pass filter. Signal y after convolution with gaussian

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

4

6
 High Pass Filter: y-conv(y,w)

2-Dimensional Version
• Given an image a and a kernel b with (2r+1)2 values, the

convolution of a with b is given below as a*b:

• The (i-i’) and (j-j’) terms can be understood as reflections
of the kernel about the central vertical and horizontal axes.

• The kernel weights are multiplied by the corresponding
image samples and then summed together.

A Note on Indexing
• Convolution reflects the filter to preserve orientation.

• Correlation does not have this reflection.

• But we often use them interchangeably since most kernels are symmetric!!

G*H

Given kernel H =
Convolution reflects
and shifts the kernel

Convolution Can Also Convert
from Discrete to Continuous

• Discrete signal a

• Continuous filter f

• Output a*f defined
on positions x as
opposed to
discrete pixels i

Types of Filters:
Smoothing

Smoothing Spatial Filters
• Any weighted filter with positive values will smooth in some way, examples:

• Normally, we use integers in the filter, and then divide by the sum
(computationally more efficient)

• These are also called blurring or low-pass filters

Smoothing Kernels

Box Filter
Box filter

⌦

Thursday, February 16, 12

Note this brown strip

Gaussian Filter
Nice and smooth: Gaussian

⌦

Thursday, February 16, 12

Same brown strip

Gaussians
• Gaussian kernel is parameterized on the

standard deviation σ

• Large σ’s reduce the center peak and spread
the information across a larger area

• Smaller σ’s create a thinner and taller peak

• Gaussians are smooth everywhere.

• Gaussians have infinite support

• >0 everywhere

• But often truncate to 2σ or 3σ

• Volume =1 (sum of weights =1)

http://en.wikipedia.org/wiki/Gaussian_function

Smoothing Comparison

Types of Filters:
Sharpening

Sharpening (Idea)Sharpening

- =

=+k*

High pass

Sharpened
image

Input blurred

High passInput

Thursday, February 16, 12

Another example
Original Image, Imaged convolved

Left: difference (only boundaries are non-black)
Right Imaged minus differences convolved

Unsharp Masks
• Sharpening is often called “unsharp mask” because

photographers used to sandwich a negative with a blurry
positive film in order to sharpen

http://www.tech-diy.com/UnsharpMasks.htm

Edge Enhancement
• The parameter 𝛂 controls how much of the source image

is passed through to the sharpened image.

Defining Edges
• Sharpening uses negative weights to enhance regions where

the image is changing rapidly

• These rapid transitions between light and dark regions are
called edges

• Smoothing reduces the strength of edges, sharpening
strengthens them.

• Also called high-pass filters

• Idea: smoothing filters are weighted averages, or integrals.
Sharpening filters are weighted differences, or derivatives!

Edges (Review?) Derivatives via
Finite Differences

• We can approximate the derivative with a kernel w:

∂f(x, y)
∂x

≈
f(x + h, y) − f(x − h, y)

2h
≈

f(x + 1,y) − f(x − 1,y)
2

Lets convolves with one of the kernels
∂
∂x

f(x, y) = lim
Δx→0

1
Δx {f(x + Δx, y) − f(x, y)} = lim

Δx→0

1
2Δx {f(x + Δx, y) − f(x − Δx, y)} =

≈
1
2 {f(x + 1,y) − f(x − 1,y)} =

[−1 0 1]

[
−1
0
1]

Gradients with Finite Differences

• These partial derivatives approximate the image gradient, ∇I.

• Gradients are the unique direction where the image is changing the
most rapidly, like a slope in high dimensions

• We can separate them into components kernels Gx, Gy. ∇I = (Gx, Gy)

Gradients Gx, Gy
Gradient: finite difference

• horizontal gradient [[-1, 1]]
• vertical gradient: [[-1], [1]]

Horizontal
gradient
(absolute

value)

Vertical
gradient
(absolute

value)

Gradient
magnitude

Thursday, February 16, 12

|Gx| |Gy|

|G| = √(Gx2 + Gy2)

|G|

Second Derivatives
(Sharpening, almost)

• Partial derivatives in x and y lead to two kernels:

Compare with
Sharpening filter:
unbalanced counts!

-9

Back to smoothing (aka mean filter, averaging…)

Problem: It blurs boundaries between region

In non-bilateral kernel -
the smoothing operation blurs the boundaries between regions. How to smooth if some value are unwanted /unavailable

•

• First attempt: Define a useful neighbors.

• only if if is near i, and its intensity is close to intensity at .
For example, include only if :

•

• Problem: The sum of weights is much smaller than 1.

•
Idea: Define .

•

s(i) = ∑
j∈ nbr of i

w[i − j] ⋅ f(j) and∑ wj = 1 wj ≥ 0

j i
j ∈ N(i) | f(j) − f(j) | ≤ 10

s(i) = ∑
j ∈ nbr of i
j useful nbr

w[i − j] ⋅ f [j]

w′ [i − j] = w[i − j]/ ∑
j ∈ nbr of i
j useful nbr

w[i − j]

s(i) = ∑
j ∈ nbr of i
f(j) useful

w′ [i − j] ⋅ f [j]

Lets simplify (for box filter)

• Define

• Instead of

•Define

•

• where

•

g(i, j) = {1 if | f(i) − f(j) | ≤ 10
0 othewise(

s(i) = ∑
j∈ nbr of i

f(j)w[i − j]

s(i) = ∑
j∈ nbr of i

f(j) w′ [i − j] g(i, j)

w′ [i − j] = w[i − j]/ ∑
j ∈ nbr of i

w[i − j]g(i, j)

Example for box filter
• Define

• Instead of

• Define

•

• Note that the denominator
 is either 1,2

or 3

g(i, j) = {1 if | f(i) − f(j) | ≤ 10
0 othewise(

s(i) = (f(i − 1) + f(i) + f(i + 1))/3

s(i) =
f(j − 1)g(i, i − 1) + f(i) + f(i + 1)g(i, i + 1)

1 + g(i, i − 1) + g(i, i + 1)

1 + g(i, i − 1) + g(i, i + 1)

This will lead us to bilateral filters

This trick with normalizing the wights is very useful
if the number of terms is the summation is not
fixed (for example, near boundaries) or when

sliding a window

Boundaries

Handling Image Boundaries

• What should be done if the kernel falls off of the boundary
of the source image as shown in the illustrations below?

Handling Image Boundaries
• When pixels are near the edge of the image, neighborhoods

become tricky to define

• Choices:

1. Shrink the output image (ignore pixels near the
boundary)

2. Expanding the input image (padding to create values
near the boundary which are “meaningful”)

3. Shrink the kernel (skip values that are outside the
boundary, and reweigh accordingly)

Boundary Padding
• When one pads, they pretend the image is large and

either produce a constant (e.g. zero), or use circular /
reflected indexing to tile the image:

