## CSC 433/533 <br> Computer Graphics

## Recall: Light is Electromagnetic Radiation

- Visible spectrum is "tiny"
- Wavelength range: $380-740 \mathrm{~nm}$



## Recall: Color != Wavelength

- But rather, an integral over the wavelengths of the energy encoded of some power spectrum


Recall: We have three types of cones (Short, Medium, and Long)


## Hunters



## Trichromacy

- Our 3 cones cover the visible spectrum (theoretically, all we might are 2 though)
- Most birds, some fish, reptiles, and insects have 4 , some as many as 12 (e.g. the mantis shrimp)
- This is a "reason" why many of our acquisition devices and displays use 3 channels, and why many of our color spaces are three dimensional


## Key Idea: Perception of color



Ultimately, color is a perceptual phenomenon, we all perceive it differently

## Gatherers



## Color Models

## Color Terminology

## - Color Model

- Is an abstract mathematical system for representing color.
- Is often 3-dimensional, but not necessarily.
- Is typically limited in the range of colors they can represent and hence often can't represent all colors in the visible spectrum
- Gamut or Color Space
- The range of colors that are covered by a color model.


## Simultaneous Contrast



## Simultaneous Contrast



## Converting from RGB to CMY

- Assuming RGB values are normalized (all channels between $[0,1]$ ), the exact same color in CMY space can be found by inverting:


$$
\left[\begin{array}{c}
C \\
M \\
Y
\end{array}\right]=\left[\begin{array}{l}
1-R \\
1-G \\
1-B
\end{array}\right]
$$



## Color Spaces

## RGB Color Space

- Additive, useful for computer monitors
- Not perceptually uniform
- For example, more "greens" than "yellows"



## HSL, HSV Color Space

- Hue - what people think of as color (color, normalized by sensitivity)
- Saturation - purity, distance from grey
- Also called Chroma
- Lightness - from dark to light (how many photons, alternatively, add more sources of light)
- Also Brightness or Value


Hue wheel (credit: Wiki) (not a single frequency)
of the color and essentially serves as an offset after which the remaining amounts of cyan, magenta and yellow are 'added'

## Converting from CMY to CMYK

 (less relevant to us)- Assuming CMY values are normalized (all channels between $[0,1]$ ), the exact same color in CMYK is

$$
\langle C, M, Y, K\rangle=\left\{\begin{array}{ll}
\langle 0,0,0,1\rangle & \text { if } \min \left(C^{\prime}, M^{\prime}, Y^{\prime}\right)=1, \\
\left\langle\frac{C^{\prime}-K}{1-K}, \frac{M^{\prime}-K}{1-K}, \frac{Y^{\prime}-K}{1-K}, K\right\rangle & \text { otherwise where } K=\min \left(C^{\prime}, M^{\prime}, Y^{\prime}\right) \\
(3.2)
\end{array}\right]
$$

## Conversion from RGB to HSB

- Assuming RGB values are normalized (all channels between $[0,1]$ ), the exact same color in HSB space can be found by first figuring out which channel ( $\mathrm{R}, \mathrm{G}$, or B ) has the max intensity

(3.3)

Note: this method returns H as a value between $0^{\circ}$ and $360^{\circ}$

## Encoding Color Images

- Could encode 256 colors with a single unsigned byte. But what convention to use?
- One of the most common is to use 3 channels or bands
- Red-Green-Blue or RGB color is the most common -based on how color is represented by lights.
- Coincidentally, this just happens to be related to how our eyes work too.


# CSC 433/533 Computer Graphics 

Anti-Aliasing and
Signal Processing
Sampling, Smoothing and Convolutions

## Domains and Ranges

- All functions have two components, the domain and range. For the case of images, I: $\mathrm{R} \rightarrow \mathrm{V}$
- The domain is:
- $R$, is some rectangular area $\left(R \subseteq \mathbb{R}^{2}\right)$
- The range is:
- A set of possible values.
- ...in the space of color values we're encoding


## Concept for the Day: Pixels are Samples of Image Functions

## Image Samples

- Each pixel is a sample of what?
- One interpretation: a pixel represents the intensity of light at a single (infinitely small point in space)
- The sample is displayed in such a way as to spread the point out across some spatial area (drawing a square of color)


## Continuous vs. Discrete

- Key Idea: An image represents data in either (both?) of
- Continuous domain: where light intensity is defined at every (infinitesimally small) point in some projection
- Discrete domain, where intensity is defined only at a discretely sampled set of points.
- This seem like a philosophical discussions without clear practical applications. Surprisingly, it has very concrete algorithmic applications.


## Converting Between Image Domains

- When an image is acquired an image is sampled from some continuous domain to a discrete domain.
- Reconstruction converts digital back to continuous.
- The reconstructed image can then be resampled and quantized back to the
 discrete domain.
//scale factor
let $k=4$;
//create an output greyscale image that is both
$/ / k$ times as wide and $k$ times as tall
Uint8Array output $=$ new Uint8Array $((k * W) *(k * H))$;

```
//copy the pixels over
```

for (let row $=0$, row $<\mathrm{H}$; row ++ ) \{
for (let col $=0$; col < W; col++) \{
let index $=$ row*W + col;
let index $2=(\mathrm{k} *$ row $) * W+(k * \operatorname{col})$;
output[index2] = input[index];
\}
\}


## What's the Problem?

- The output image has gaps!
- Why: we skip a many of the pixels in the output.
- Why don't we fix this by changing the code to at least put some color at each pixel of the output?


## //scale factor

let $\mathrm{k}=4$;

## Naive Image Rescaling Code

//create an output greyscale image that is both
$/ / k$ times as wide and $k$ times as tall
Uint8Array output $=$ new Uint8Array (( $\mathbf{k} * \mathrm{~W}) *(\mathbf{k} * \mathrm{H}))$;

## //copy the pixels over

for (let row = 0, row < H; row++) \{
for (let col = 0; col < W; col++) \{ let index = row*W + col; let index2 $=(\mathrm{k} *$ row $) * \mathrm{~W}+(\mathrm{k} * \mathrm{col})$; output[index2] = input[index];
\}
\}

## Inverse Image Rescaling



Not great, but could become worse

$100 \times 100$ image

## What's the Problem?

- The output image is too "blocky"
- Why: because our image reconstruction rounds the index to the nearest integer pixel coordinates
- Rounding to the "nearest" is why this type of interpolation is called nearest neighbor interpolation


## Motivation: Digital Audio

- Acquisition of images takes a continuous object and converts this signal to something digital
- Two types of artifacts:
- Undersampling artifacts: on acquisition side
- Reconstruction artifacts: when the samples are interpreted




## S-N Theorem Illustrated

How many samples are enough to avoid aliasing?

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?


Undersampling Artifacts


## S-N Theorem Illustrated

How many samples are enough to avoid aliasing?

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?



## S-N Theorem Illustrated

How many samples are enough to avoid aliasing?

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?



## Aliasing in images

Two outcomes of under-sampling

## 1) Moire Pattern

2) Rasterization

## S-N Theorem Illustrated

How many samples are enough to avoid aliasing?

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?



## Moire Patterns



## Aliasing for edges



## Convolution



## An Example: Mean Filtering



## Convolution

- This process of adding up pixels multiplied by various weights is called convolution. We denote the result by (confusion warning) the symbol * See example below.



## Kernels

- Convolution employs a rectangular grid of coefficients, (that is, weights) known as a kernel
- Kernels are like a neighborhood mask, they specify which elements of the image are in the neighborhood and their relative weights.
- A kernel is a set of weights that is applied to corresponding input samples that are summed to produce the output sample.
- For smoothing purposes, the sum of weights must be 1 (convex combination)

$$
\frac{1}{9}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) \quad \frac{1}{13}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 5 & 1 \\
1 & 1 & 1
\end{array}\right) \quad \frac{1}{37}\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 2 & 2 & 1 \\
1 & 2 & 5 & 2 & 1 \\
1 & 2 & 2 & 2 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

## One-dimensional Convolution

- Can be expressed by the following equation, which takes a filter H and convolves it with G :

$$
\hat{G}[i]=(G * H)[i]=\sum_{j=i-n}^{i+n} G[j] H[i-j], i \in[0, N-1]
$$

- Equivalent to sliding a window




## 2-Dimensional Version

- Given an image a and a kernel $b$ with $(2 r+1)^{2}$ values, the convolution of $a$ with $b$ is given below as $a * b$ :
$(a \star b)[i, j]=\sum_{i^{\prime}=i-r}^{i+r} \sum_{j^{\prime}=j-r}^{j+r} a\left[i^{\prime}, j^{\prime}\right] b\left[i-i^{\prime}, j-j^{\prime}\right]$
- The (i-i') and (j-j') terms can be understood as reflections of the kernel about the central vertical and horizontal axes.
- The kernel weights are multiplied by the corresponding image samples and then summed together.


## Low-pass and high-pass filtering

The smoothing operation is always a low pass filter
Only lower frequencies could pass.
It removes higher frequencies from the input.
We convolved the original signa

$f(x)$ a smoothing kernel H . For example
$=\frac{f(x-1)+f(x)+f(x+1)}{3}$


Convolution is a Moving, Weighted Average

Getting used to the new notation:
$b[i]=\frac{1}{3}(a[i-1]+a[i]+a[i+1]) \quad \forall i$

- is similar to writing $b=a \star w$, where
$b[i]=(a \star w)[i]=\sum_{j=1} a[i-j+2] \cdot w[j]$ and
$w(1]=w[2]=w[3]=1 / 3$
- 

$\qquad$
$\qquad$
$\qquad$


## A Note on Indexing

- Convolution reflects the filter to preserve orientation.
- Correlation does not have this reflection.
- But we often use them interchangeably since most kernels are symmetric!

Convolution reflects and shifts th


## Convolution Can Also Convert from Discrete to Continuous

- Discrete signal a
- Continuous filter f
- Output a*f defined on positions x as opposed to discrete pixels i

| ${ }_{a[i]}+i+i f_{\rightarrow j}$ |  |  |
| :---: | :---: | :---: |
|  |  |  |
| $a \star f \xlongequal[\cdot]{\bullet}$ |  |  |
| $(a \star f)(x)=\sum_{i=\lceil x-r\rceil}^{\lfloor x+r\rfloor} a[i] f(x-i)$ |  |  |

Filtering helps to reconstruct the signal better when rescaling



## Types of Filters: Smoothing

## Smoothing Spatial Filters

Any weighted filter with positive values will smooth in some way, examples:


- Normally, we use integers in the filter, and then divide by the sum (computationally more efficient)
- These are also called blurring or low-pass filters


## Smoothing Kernels

$f(x, y)=-\alpha \cdot \max (|x|,|y|)$
$G(x, y)=\frac{1}{2 \pi \sigma^{2}} e^{\frac{-\left(x^{2}+y^{2}\right)}{2 \sigma^{2}}}$

$f(x, y)=-\alpha \cdot \sqrt{x^{2}+y^{2}}$



Gaussians $G(x, y)=\frac{1}{2 \pi \sigma^{2}} \frac{e^{-\left(a^{2}\right)}}{2 z^{2}}$

- Gaussian kernel is parameterized on the standard deviation $\sigma$
- Large o's reduce the center peak and spread the information across a larger area
- Smaller o's create a thinner and taller peak
- Gaussians are smooth everywhere.
- Gaussians have infinite support


## - >0 everywhere

- But often truncate to $2 \sigma$ or $3 \sigma$

- Volume $=1$ (sum of weights $=1$ )
http://en.wikipedia.org/wiki/Gaussian_function


## Types of Filters: Sharpening

## Smoothing Comparison


(b) $17 \times 17$ Box.

(c) $17 \times 17$ Gaussian.

Figure 6.10. Smoothing examples.


## Another example

Original Image, Imaged convolved


Left: difference (only boundaries are non-black) Right Imaged minus differences convolved

## Unsharp Masks

- Sharpening is often called "unsharp mask" because photographers used to sandwich a negative with a blurry positive film in order to sharpen

http://www.tech-diy.com/UnsharpMasks.htm


## Edge Enhancement

- The parameter $\boldsymbol{\alpha}$ controls how much of the source image is passed through to the sharpened image.

(a) Source image.

(b) $\alpha=.5$.

(c) $\alpha=2.0$.

Figure 6.20. Image sharpening.

## Edges


(a)

(b)

(c)

[^0]
## Defining Edges

- Sharpening uses negative weights to enhance regions where the image is changing rapidly
- These rapid transitions between light and dark regions are called edges
- Smoothing reduces the strength of edges, sharpening strengthens them
- Also called high-pass filters
- Idea: smoothing filters are weighted averages, or integrals. Sharpening filters are weighted differences, or derivatives!




## Gradients $\mathrm{G}_{\mathrm{x}}, \mathrm{G}_{\mathrm{y}}$


$\left|G_{y}\right|$

|G|

$$
|G|=\sqrt{\left(\mathbf{G}_{x}{ }^{2}+\mathbf{G}_{y^{2}}\right)}
$$


| $\mathbf{G}_{\mathbf{x}}$

(a) Source Image.

(d) Center sample gradient.

(b) $\delta I / \delta x$.

(e) Gradient.

(c) $\delta I / \delta y$.

(f) Magnitude of gradient.

## Second Derivatives (Sharpening, almost)

- Partial derivatives in x and y lead to two kernels:

$$
\frac{\partial^{2} f}{\partial x^{2}}=f(x+1, y)+f(x-1, y)-2 f(x, y)
$$

and, similarly, in the $y$-direction we have

$$
\frac{\partial^{2} f}{\partial y^{2}}=f(x, y+1)+f(x, y-1)-2 f(x, y)
$$

| 0 | 1 | 0 |
| :--- | :--- | :--- |
| 1 | -4 | 1 |
| 0 | 1 | 0 |
| 1 | -8 | 1 |
| 1 | 1 | 1 | Compare with

Sharpening filter:
unbalanced counts!


## Handling Image Boundaries

- What should be done if the kernel falls off of the boundary of the source image as shown in the illustrations below?

(a) Kernel at $I(0,0)$.

(b) Kernel larger than the source.

Figure 6.4. Illustration of the edge handling problem.

## Handling Image Boundaries

- When pixels are near the edge of the image, neighborhoods become tricky to define
- Choices:

1. Shrink the output image (ignore pixels near the boundary)
2. Expanding the input image (padding to create values near the boundary which are "meaningful")
3. Shrink the kernel (skip values that are outside the boundary, and reweigh accordingly)

## Boundary Padding

- When one pads, they pretend the image is large and either produce a constant (e.g. zero), or use circular / reflected indexing to tile the image:

(a)



[^0]:    Figure 6.11. (a) A grayscale image with two edges, (b) row profile, and (c) first derivative

