Motivation: Digital Audio

- Acquisition of images takes a continuous object and converts this signal to something digital
- Two types of artifacts:
 - Undersampling artifacts: on acquisition side
 - Reconstruction artifacts: when the samples are interpreted

- The sampling frequency must be **double** the highest frequency of the content.
- If there are any higher frequencies in the data, or the sampling rate is too low, **aliasing**, happens
 - Named this because the discrete signal "pretends" to be something lower frequency

S-N Theorem Illustrate

How many samples are enough to avoid aliasing?

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?

S-N Theorem Illustrate

How many samples are enough to avoid aliasing?

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?

Aliasing in images

Two outcomes of under-sampling

1) Moire Pattern 2) Rasterization

<section-header>

Aliasing for edges

Each pixel is effected by nearby pixels For example, even though the input image image is black/white, We allow grey values for output pixels.

One-dimensional Convolution

• Can be expressed by the following equation, which takes a filter H and convolves it with G:

$$\hat{G}[i] = (G * H)[i] = \sum_{i=i-n}^{i+n} G[j]H[i-j], \ i \in [0, N-1]$$

• Equivalent to sliding a window

A Note on Indexing

- Convolution reflects the filter to preserve orientation.
- Correlation does not have this reflection.

But we often use them interchangeably since most kernels are symmetric!!

Convo and sh	luti ifts	on i the	refi e ke	ect erne	is el				C	Giv	en	k	erı	nel	н	=	1 2 4 5 7 8	2 3 5 6 8 9	5			
19	8	71	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	5	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2	3	0
3	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	5	6	0
0	0	0	0	0	0	0	0	0	0	0	0	1	2	3	0	0	0	0	7	8	9	0
0	0	0	0	1	0	0	0	0	0	0	0	4	5	6	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	7	8	9	0	0	0		(G*I	н	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					

Convolution Can Also Convert from Discrete to Continuous Discrete signal a

- Continuous filter f
- Output a*f defined on positions x as opposed to discrete pixels i

Inverse Rescaling

Reconstructed w/ Discrete-to-Continuous

Types of Filters: Smoothing

Smoothing Spatial Filters

Any weighted filter with positive values will smooth in some way, examples:

	1	100	ourses 1	mart	1	2	1	
$\frac{1}{9} \times$	1	1 1	$\frac{1}{16}$ ×	2	4	2		
	1	1	1		1	2	1	

Normally, we use integers in the filter, and then divide by the sum (computationally more efficient)

· These are also called blurring or low-pass filters

Smoothing Comparison

Figure 6.10. Smoothing examples.

(c) 17×17 Gaussian.

Types of Filters: Sharpening

Thursday, February 16, 12

http://www.tech-diy.com/UnsharpMasks.htm

Edge Enhancement

• The parameter α controls how much of the source image is passed through to the sharpened image.

Figure 6.20. Image sharpening.

Defining Edges

- Sharpening uses negative weights to enhance regions where the image is changing rapidly
 - These rapid transitions between light and dark regions are called **edges**
- Smoothing reduces the strength of edges, sharpening strengthens them.
 - Also called high-pass filters
- Idea: smoothing filters are weighted averages, or integrals. Sharpening filters are weighted differences, or derivatives!

Gradients with Finite Differences

(just in case you studied calculus. Not required)

- These partial derivatives approximate the image gradient, ∇*I*.
- Gradients are the unique direction where the image is changing the most rapidly, like a slope in high dimensions
- We can separate them into components kernels G_x , G_y . $\nabla I = (G_x, G_y)$

$$\nabla I(x,y) = \begin{pmatrix} \delta I(x,y)/\delta x\\ \delta I(x,y)/\delta y \end{pmatrix}$$
$$G_x = [1,0,-1] \qquad G_y = \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix}$$
$$\nabla I = \begin{pmatrix} \delta I/\delta x\\ \delta I/\delta y \end{pmatrix} \simeq \begin{pmatrix} I \otimes G_x\\ I \otimes G_y \end{pmatrix}$$

Handling Image Boundaries

- When pixels are near the edge of the image, neighborhoods become tricky to define
- Choices:
 - 1. Shrink the output image (ignore pixels near the boundary)
 - 2. Expanding the input image (padding to create values near the boundary which are "meaningful")
 - 3. Shrink the kernel (skip values that are outside the boundary, and reweigh accordingly)

Boundary Padding

• When one pads, they pretend the image is large and either produce a constant (e.g. zero), or use circular / reflected indexing to tile the image:

Figure 6.5. (a) Zero padding, (b) circular indexing, and (c) reflected indexing.