
Motivation: Digital Audio
• Acquisition of images takes a continuous object and converts 

this signal to something digital


• Two types of artifacts:


• Undersampling artifacts: on acquisition side


• Reconstruction artifacts: when the samples are interpreted 

Undersampling Artifacts

Image Reduction
• Consider reducing the high resolution image:

Shannon-
Nyquist 

Theorem 
(not needed for the 

exam)

• The sampling frequency must be double the highest 
frequency of the content.


• If there are any higher frequencies in the data, or the 
sampling rate is too low, aliasing, happens


• Named this because the discrete signal “pretends” to 
be something lower frequency

S-N Theorem IllustratedSampling Theory 
How many samples are enough to avoid aliasing? 

$ How many samples are required to represent 
a given signal without loss of information? 

$ What signals can be reconstructed without loss 
for a given sampling rate? 
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Temporal Aliasing: The Wagon Wheel Effect

http://youtu.be/0k2lhYk6Lfs?rel=0

Aliasing in images

Two outcomes of under-sampling 

1) Moire Pattern 
2) Rasterization 

Moire Patterns Aliasing for edges

Each pixel is effected by nearby pixels  
For example, even though the input image image is black/white,  
We allow grey values for output pixels. 



Convolution

Each pixel is effected by nearby pixels  
For example, even though the image is black/white,  
We allow grey values 

Neighborhood Filtering (Schematic)

f(Nj)=average color in this region (neighborhood)= 
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An Example: Mean Filtering
• Mean filters sum all of the pixels in a local neighborhood Ni and divide by the total number, computing the average pixel.


• Said another way, we replace each pixel as a linear combination of its neighbors (with equal weights!)


• To find  the  new color of a pixel j, we will look at  , defined as the (say)  neighborhood of the pixel ,  and set 


• Where the Ni is a square, we call these box filters


• Think  about  it  as  a weighted  average: 


• The weights  are convex combination. Meaning that they are all positive, and  . For  example,  

(convex combination) 

• Remember:  The input matrix and the output matrix have the same size  (in this  case).  This is not  rescaling. 


• Refer to the geogebra app https://www.geogebra.org/m/cetpvwaw


• The term filter is very common,  but might be very confusing. We  don’t necessarily filter out anything. 
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Box Filtering

The matrix of weights is

 called a Kernel

Box Filtering Convolution
• This process of adding up pixels multiplied by various weights is called 

convolution. We denote the result by (confusion warning) the symbol *   
See example below. 

1 3 2
1 2 2
3 1 2

kernel H

new pixel color = 30/16

original image G filtered image G*H

neighborhood Ni of i

1/16
1 2 1
2 4 2
1 2 1



Kernels
• Convolution employs a rectangular grid of coefficients,  (that 

is,  weights)  known as a kernel


• Kernels are like a neighborhood mask, they specify which 
elements of the image are in the neighborhood and their 
relative weights.


• A kernel is a set of weights that is applied to corresponding 
input samples that are summed to produce the output 
sample.


• For smoothing purposes, the sum of weights must be 1 
(convex combination)
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One-dimensional Convolution

• Can be expressed by the following equation, which takes a filter H and 
convolves it with G:


• Equivalent to sliding a window

The smoothing operation is always a low pass filter. 

Only lower frequencies could pass. 


It removes higher frequencies from the  input.
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We convolved the original signal 
f(x) a smoothing kernel H. 

For example 
 

 g(x) =
f(x − 1) + f(x) + f(x + 1)

3

Low-pass and high-pass filtering

Input: y = f(x)

The output of the smoothing operation 
  

The higher frequencies are less noticeable:  
we need to move a lot (in x) to notice a large different in y

g(x) = f (x) * H

New idea:  High-pass filter.  
 

Only high frequencies pass 
(shown: Original signal (blue) and the result of the high pass filter (red)) 

  
We remove (subtract) from the signal all lower frequencies

h(x) = f (x) − g(x)

Twitter - could move very 
fast, but only small distances

Woofer - moves slowly but 
cold cover large distances
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  High Pass Filter:  y-conv(y,w)

Convolution is a Moving, Weighted Average

• Getting used to the new notation:  




• is similar to writing   , where  

and 

w[1]=w[2]=w[3]=1/3 


• Commonly 


• For example, w[-1]=w[0]=w[1]=1/3


• Note that we did not define exactly what are the first 
and last values

b[i] =
1
3

( a[i − 1] + a[i] + a[i + 1] ) ∀i

b = a ⋆ w

b[i] = (a ⋆ w)[i] =
3

∑
j=1

a[i − j + 2] ⋅ w[ j]

(a ⋆ w)[i] =
j=i+r

∑
j=i−r

a[ j]w[i − j]

w

2-Dimensional Version
• Given an image a and a kernel b with (2r+1)2 values, the 

convolution of a with b is given below as a*b:


• The (i-i’) and (j-j’) terms can be understood as reflections 
of the kernel about the central vertical and horizontal axes.


• The kernel weights are multiplied by the corresponding 
image samples and then summed together.



A Note on Indexing
• Convolution reflects the filter to preserve orientation. 


• Correlation does not have this reflection.


• But we often use them interchangeably since most kernels are symmetric!!

G*H

Given kernel H = 
Convolution reflects 
and shifts the kernel

Convolution Can Also Convert 
from Discrete to Continuous

• Discrete signal a


• Continuous filter f


• Output a*f defined 
on positions x as 
opposed to 
discrete pixels i

Back to Image Rescaling

100x100 image

Filtering helps to reconstruct 
the signal better when rescaling

Reconstructed w/ Discrete-to-ContinuousInverse Rescaling

Types of Filters: 
Smoothing

Smoothing Spatial Filters
• Any weighted filter with positive values will smooth in some way, examples:


• Normally, we use integers in the filter, and then divide by the sum 
(computationally more efficient)


• These are also called blurring or low-pass filters



Smoothing Kernels Box Filter
Box filter

⌦

Thursday, February 16, 12

Note this brown strip

Gaussian Filter
Nice and smooth: Gaussian

⌦
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Same brown strip

Gaussians
• Gaussian kernel is parameterized on the 

standard deviation σ


• Large σ’s reduce the center peak and spread 
the information across a larger area


• Smaller σ’s create a thinner and taller peak


• Gaussians are smooth everywhere.


• Gaussians have infinite support


• >0 everywhere


• But often truncate to 2σ or 3σ


• Volume =1 (sum of weights =1)

http://en.wikipedia.org/wiki/Gaussian_function

Smoothing Comparison

Types of Filters: 
Sharpening



Sharpening (Idea)Sharpening

- =

=+k*

High pass

Sharpened 
image

Input blurred

High passInput
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Another example
Original Image,     Imaged convolved

Left: difference (only boundaries are non-black)  
Right   Imaged minus differences convolved

Unsharp Masks
• Sharpening is often called “unsharp mask” because 

photographers used to sandwich a negative with a blurry 
positive film in order to sharpen

http://www.tech-diy.com/UnsharpMasks.htm

Edge Enhancement
• The parameter 𝛂 controls how much of the source image 

is passed through to the sharpened image. 

Defining Edges
• Sharpening uses negative weights to enhance regions where 

the image is changing rapidly


• These rapid transitions between light and dark regions are 
called edges


• Smoothing reduces the strength of edges, sharpening 
strengthens them.


• Also called high-pass filters


• Idea: smoothing filters are weighted averages, or integrals.  
Sharpening filters are weighted differences, or derivatives!

Edges



Taking Derivatives with Convolution 
(just in case you studied calculus. Not required)

∂
∂x

f (x, y) ≈
1
2

f (x + 1) − f (x + 1)

Gradients with Finite Differences 
(just in case you studied calculus. Not required)
• These partial derivatives approximate the image gradient, ∇I.


• Gradients are the unique direction where the image is changing the 
most rapidly, like a slope in high dimensions 


• We can separate them into components kernels Gx, Gy.  ∇I = (Gx, Gy)

Gradients Gx, Gy
Gradient: finite difference

• horizontal gradient [[-1, 1]]
• vertical gradient:  [[-1], [1]]

Horizontal 
gradient
(absolute 

value)

Vertical 
gradient
(absolute 

value)

Gradient 
magnitude
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|Gx| |Gy|

|G| = √(Gx2 + Gy2)

|G|

Second Derivatives 
(Sharpening, almost)

• Partial derivatives in x and y lead to two kernels:

Compare with 
Sharpening filter: 
unbalanced counts!

-9 

Boundaries



Handling Image Boundaries 
• What should be done if the kernel falls off of the boundary 

of the source image as shown in the illustrations below?

Handling Image Boundaries 
• When pixels are near the edge of the image, neighborhoods 

become tricky to define


• Choices:


1. Shrink the output image (ignore pixels near the 
boundary)


2. Expanding the input image (padding to create values 
near the boundary which are “meaningful”) 


3. Shrink the kernel (skip values that are outside the 
boundary, and reweigh accordingly)

Boundary Padding
• When one pads, they pretend the image is large and 

either produce a constant (e.g. zero), or use circular / 
reflected indexing to tile the image:


