
CSC 433/533
Computer Graphics

Anti-Aliasing and
Signal Processing

Sampling, Smoothing and Convolutions

Recall:
Images are Functions

Domains and Ranges
• All functions have two components, the domain and

range. For the case of images, I: R → V

• The domain is:

• R, is some rectangular area (R ⊆ ℝ2)

• The range is:

• A set of possible values.

• …in the space of color values we’re encoding

Concept for the Day:
Pixels are Samples of

Image Functions

Image Samples

• Each pixel is a sample of what?

• One interpretation: a pixel represents the intensity of
light at a single (infinitely small point in space)

• The sample is displayed in such a way as to spread the
point out across some spatial area (drawing a square of
color)

Continuous vs. Discrete

• Key Idea: An image represents data in either (both?) of

• Continuous domain: where light intensity is defined at
every (infinitesimally small) point in some projection

• Discrete domain, where intensity is defined only at a
discretely sampled set of points.

• This seem like a philosophical discussions without clear practical
applications. Surprisingly, it has very concrete algorithmic
applications.

Converting Between Image Domains

• When an image is acquired,
an image is sampled from
some continuous domain
to a discrete domain.

• Reconstruction converts
digital back to continuous.

• The reconstructed image
can then be resampled
and quantized back to the
discrete domain.

//scale factor
let k = 4;

//create an output greyscale image that is both

//k times as wide and k times as tall

Uint8Array output = new Uint8Array((k*W)*(k*H));

//copy the pixels over

for (let row = 0, row < H; row++) {

 for (let col = 0; col < W; col++) {
 let index = row*W + col;

 let index2 = (k*row)*W + (k*col);

 output[index2] = input[index];

 }

}

Naive Image
Rescaling Code

Naive Image Rescaling
• Consider resizing an image to a large resolution

• Simple approach: Take all the pixels in input and place
them in an output location.

100x100 image

What’s the Problem?

• The output image has gaps!

• Why: we skip a many of the pixels in the output.

• Why don’t we fix this by changing the code to at least put
some color at each pixel of the output?

//scale factor
let k = 4;

//create an output greyscale image that is both

//k times as wide and k times as tall

Uint8Array output = new Uint8Array((k*W)*(k*H));

//copy the pixels over

for (let row = 0, row < H; row++) {

 for (let col = 0; col < W; col++) {
 let index = row*W + col;

 let index2 = (k*row)*W + (k*col);

 output[index2] = input[index];

 }

}

Naive Image
Rescaling Code

//scale factor

let k = 4;

//create an output greyscale image that is both

//k times as wide and k times as tall

Uint8Array output = new Uint8Array((k*W)*(k*H));

//Loop over each output pixel instead.
for (let row = 0, row < k*H; row++) {

 for (let col = 0; col < k*W; col++) {

 let index = (row/k)*W + (col/k);

 let index2 = row*k*W + col;

 output[index2] = input[index];

 }

}

“Inverse” Image
Rescaling Code

Inverse Image Rescaling

100x100 image

Not great, but could become worse

400x400 image

What’s the Problem?

• The output image is too “blocky”

• Why: because our image reconstruction rounds the index
to the nearest integer pixel coordinates

• Rounding to the “nearest” is why this type of
interpolation is called nearest neighbor interpolation

Sampling Artifacts /
Aliasing

Motivation: Digital Audio
• Acquisition of images takes a continuous object and converts

this signal to something digital

• Two types of artifacts:

• Undersampling artifacts: on acquisition side

• Reconstruction artifacts: when the samples are interpreted

Undersampling Artifacts

Image Reduction
• Consider reducing the high resolution image:

Shannon-
Nyquist
Theorem

(not needed for the
exam)

• The sampling frequency must be double the highest
frequency of the content.

• If there are any higher frequencies in the data, or the
sampling rate is too low, aliasing, happens

• Named this because the discrete signal “pretends” to
be something lower frequency

S-N Theorem IllustratedSampling Theory
How many samples are enough to avoid aliasing?

$ How many samples are required to represent
a given signal without loss of information?

$ What signals can be reconstructed without loss
for a given sampling rate?

S-N Theorem IllustratedSampling Theory
How many samples are enough to avoid aliasing?

$ How many samples are required to represent
a given signal without loss of information?

$ What signals can be reconstructed without loss
for a given sampling rate?

S-N Theorem IllustratedSampling Theory
How many samples are enough to avoid aliasing?

$ How many samples are required to represent
a given signal without loss of information?

$ What signals can be reconstructed without loss
for a given sampling rate?

S-N Theorem IllustratedSampling Theory
How many samples are enough to avoid aliasing?

$ How many samples are required to represent
a given signal without loss of information?

$ What signals can be reconstructed without loss
for a given sampling rate?

Temporal Aliasing: The Wagon Wheel Effect

http://youtu.be/0k2lhYk6Lfs?rel=0

Aliasing in images

Two outcomes of under-sampling

1) Moire Pattern
2) Rasterization

Moire Patterns

Aliasing for edges

Each pixel is effected by nearby pixels
For example, even though the input image image is black/white,
We allow grey values for output pixels.

Convolution

Each pixel is effected by nearby pixels
For example, even though the image is black/white,
We allow grey values

Neighborhood Filtering
(Schematic)

pixel i

f(Ni)

original image filtered image

neighborhood Ni of i

An Example: Mean Filtering
• Mean filters sum all of the pixels in a local neighborhood Ni and divide by the total number, computing the average pixel.

• Said another way, we replace each pixel as a linear combination of its neighbors (with equal weights!)

• To find the new color of a pixel j, we will look at , defined as the (say) neighborhood, and set

• Where the Ni is a square, we call these box filters

• Think about it as a weighted average:

• The weights are convex combination. Meaning that they are all positive, and . For

example,

Nj 3 × 3

w1…wk w1 + w2 + …wk = 1

w1 = w2 = w3 =
1
3

f(Nj) =
1

|Nj | ∑
pk∈Nj

Ck

f(Ni) = ∑
pixel j in the rergion N i

wjCj

Box Filtering

Box Filtering

Convolution
• This process of adding up pixels multiplied by various

weights is called convolution

1 3 2
1 2 2
3 1 2

kernel H

new pixel color = 30/16

original image G filtered image G*H

neighborhood Ni of i

1/16
1 2 1
2 4 2
1 2 1

Kernels
• Convolution employs a rectangular grid of coefficients,

known as a kernel

• Kernels are like a neighborhood mask, they specify which
elements of the image are in the neighborhood and their
relative weights.

• A kernel is a set of weights that is applied to
corresponding input samples that are summed to
produce the output sample.

• For smoothing purposes, the sum of weights must be 1

1
9 (

1 1 1
1 1 1
1 1 1) 1

37

1 1 1 1 1
1 2 2 2 1
1 2 5 2 1
1 2 2 2 1
1 1 1 1 1

1
13 (

1 1 1
1 5 1
1 1 1)

One-dimensional Convolution

• Can be expressed by the following equation, which takes a filter H and
convolves it with G:

• Equivalent to sliding a window

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.002

0.004

0.006

0.008

0.01

0.012Low pass and hight pass filters

0 10 20 30 40 50 60 70 80 90 100
-4

-2

0

2

4
original signal y

0 10 20 30 40 50 60 70 80 90 100
-4

-2

0

2

4
Low Pass filter. Signal y after convolution with gaussian

0 10 20 30 40 50 60 70 80 90 100
-4

-2

0

2

4
signal vs. High Pass Filter: y-conv(y,w)

We convolved the
original signal y with
this gaussian

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.002

0.004

0.006

0.008

0.01

0.012Low pass and hight pass filters - another example

We convolved the
original signal y with
this gaussian

0 10 20 30 40 50 60 70 80 90 100

0

2

4

6

original signal y

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6
Low Pass filter. Signal y after convolution with gaussian

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

4

6
 High Pass Filter: y-conv(y,w)

Convolution is a
Moving, Weighted

Average

• Mathematically, this is
equivalent to
integrating the product
of a and b with a shift
in the domain

• Compare a to a*b on
the right

Box Filters (Animated)

• The above is continuous, but a discrete version could be imagined as:

H = 111

G = ...0000011100000...

G*H = ...0000012100000...
http://en.wikipedia.org/wiki/Convolution

More examples: http://math.mit.edu/daimp/ConvFlipDrag.html

2-Dimensional Version
• Given an image a and a kernel b with (2r+1)2 values, the

convolution of a with b is given below as a*b:

• The (i-i’) and (j-j’) terms can be understood as reflections
of the kernel about the central vertical and horizontal axes.

• The kernel weights are multiplied by the corresponding
image samples and then summed together.

A Note on Indexing
• Convolution reflects the filter to preserve orientation.

• Correlation does not have this reflection.

• But we often use them interchangeably since most kernels are symmetric!!

G*H

Given kernel H =
Convolution reflects
and shifts the kernel

Convolution Can Also Convert
from Discrete to Continuous

• Discrete signal a

• Continuous filter f

• Output a*f defined
on positions x as
opposed to
discrete pixels i

Back to Image Rescaling

100x100 image

Filtering helps to reconstruct
the signal better when rescaling

Reconstructed w/ Discrete-to-ContinuousInverse Rescaling

//scale factor

let k = 4;

//create an output greyscale image that is both

//k times as wide and k times as tall

Uint8Array output = new Uint8Array((k*W)*(k*H));

//Loop over each output pixel instead.

for (let row = 0, row < k*H; row++) {

 for (let col = 0; col < k*W; col++) {

 let x = col/k;

 let y = row/k;

 let index = row*k*W + col;

 output[index] = reconstruct(input,x,y);

 }

}

Discrete-Continuous
Image Rescaling Code

Types of Filters:
Smoothing

Smoothing Spatial Filters
• Any weighted filter with positive values will smooth in some way, examples:

• Normally, we use integers in the filter, and then divide by the sum
(computationally more efficient)

• These are also called blurring or low-pass filters

Smoothing Kernels

Box Filter
Box filter

⌦

Thursday, February 16, 12

Note this brown strip

Gaussian Filter
Nice and smooth: Gaussian

⌦

Thursday, February 16, 12

Same brown strip

Gaussians
• Gaussian kernel is parameterized on the

standard deviation σ

• Large σ’s reduce the center peak and spread
the information across a larger area

• Smaller σ’s create a thinner and taller peak

• Gaussians are smooth everywhere.

• Gaussians have infinite support

• >0 everywhere

• But often truncate to 2σ or 3σ

• Volume =1 (sum of weights =1)

http://en.wikipedia.org/wiki/Gaussian_function

Smoothing Comparison

Types of Filters:
Sharpening

Sharpening (Idea)Sharpening

- =

=+k*

High pass

Sharpened
image

Input blurred

High passInput

Thursday, February 16, 12

Another example
Original Image, Imaged convolved

Left: difference (only boundaries are non-black)
Right Imaged minus differences convolved

Why does it work

Credit: Wikipedia

Sharpening is a Convolution
• This procedure can then expressed as a single kernel

• Assume is the intensity at pixel .

• We create its smoothed (low-pass) averaging by convolving it with a kernel K. So

• For example

• As usual, we obtain the high-frequencies by removing the low frequencies from . That is,

• User picks a value . To corrected image

•

I(p) p

S = I ⊗ K .

K =
1
9 (

1 1 1
1 1 1
1 1 1) Lets define: 1 = (

1 0 0
0 1 0
0 0 1)

I
H = I − (I ⊗ K) .

α > 0

Isharp = I + α ⋅ H
I + α(I − S)
= I + α(I − (I ⊗ K))
= I(1 + α) − α(I ⊗ K)
= I ⊗ = Ksharp

Ksharp =
1
9 (

−α −α −α
−α 9 + 8α −α
−α −α −α)

Ksharp = [−α 1 + 2α −α]

 If our image has only one raw

Sharpening is a Convolution
Note: could also

define d as

0 0 0

0 1 0

0 0 0

Edge Enhancement
• The parameter 𝛂 controls how much of the source image

is passed through to the sharpened image.

Defining Edges
• Sharpening uses negative weights to enhance regions where

the image is changing rapidly

• These rapid transitions between light and dark regions are
called edges

• Smoothing reduces the strength of edges, sharpening
strengthens them.

• Also called high-pass filters

• Idea: smoothing filters are weighted averages, or integrals.
Sharpening filters are weighted differences, or derivatives!

Edges

(Review?) Derivatives via
Finite Differences

• We can approximate the derivative with a kernel w:

∂f(x, y)
∂x

≈
f(x + h, y) − f(x − h, y)

2h
≈

f(x + 1,y) − f(x − 1,y)
2

Taking Derivatives with Convolution

Gradients with Finite Differences
• These partial derivatives approximate the image gradient, ∇I.

• Gradients are the unique direction where the image is changing the
most rapidly, like a slope in high dimensions

• We can separate them into components kernels Gx, Gy. ∇I = (Gx, Gy)

Gradients Gx, Gy
Gradient: finite difference

• horizontal gradient [[-1, 1]]
• vertical gradient: [[-1], [1]]

Horizontal
gradient
(absolute

value)

Vertical
gradient
(absolute

value)

Gradient
magnitude

Thursday, February 16, 12

|Gx| |Gy|

|G| = √(Gx2 + Gy2)

|G|

Second Derivatives
(Sharpening, almost)

• Partial derivatives in x and y lead to two kernels:

Compare with
Sharpening filter:
unbalanced counts!

-9

Examples

Boundaries

Handling Image Boundaries
• What should be done if the kernel falls off of the boundary

of the source image as shown in the illustrations below?

Handling Image Boundaries
• When pixels are near the edge of the image, neighborhoods

become tricky to define

• Choices:

1. Shrink the output image (ignore pixels near the
boundary)

2. Expanding the input image (padding to create values
near the boundary which are “meaningful”)

3. Shrink the kernel (skip values that are outside the
boundary, and reweigh accordingly)

Boundary Padding
• When one pads, they pretend the image is large and

either produce a constant (e.g. zero), or use circular /
reflected indexing to tile the image:

