
CSC 433/533
Computer Graphics

Algebra and Ray Shooting

Alon Efrat

Credit: Joshua Levine

What is a Vector?
• A vector describes a length and a direction

• A vector is also a tuple of numbers

• But, it often makes more sense to think in terms of the
length/direction than the coordinates/numbers

• And, especially in code, we want to manipulate vectors
as objects and abstract the low-level operations

• Compare with a scalar, or just a single number

Properties
• Two vectors, a and b, are the same (written a = b) if they

have the same length and direction. (other notation:)

• A vector’s length is denoted with || ||, (sometimes we just

denote . When a =(x,y), then

• e.g. the length of a is ||a||

• A unit vector has length one

• The zero vector has length zero, and undefined direction

ā, ⃗a

|a | = a . x2 + a . y2

Vectors in Pictures
• We often use an arrow to represent a vector

• The length of the arrow indicates the length of the vector, the direction of the
arrow indicates the direction of the vector.

• The position of the arrow is irrelevant!

• However, we can use vectors to represent positions by describing
displacements from a common point

a

a

||a||

b
||b|| = 2||a||

The point p

a

The point a,
relative to p

Vector Operations
• Vectors can be added, e.g. for vectors a,b,

there exists a vector c = a+b

• Defined using the parallelogram rule: idea is
to trace out the displacements and
produced the combined effect

• Vectors can be negated (flip tail and head),
and thus can be subtracted

• Vectors can be multiplied by a scalar, which
scales the length but not the direction

a + b = (a . x + b . x, a . y + b . y)

βa = (βa . x, βa . y)

Vectors Decomposition

• By linear independence, any
2D vector can be written as a
combination of any two
nonzero, nonparallel vectors

• Such a pair of vectors is called
a 2D basis

Canonical (Cartesian) Basis

• Often, we pick two
perpendicular vectors, x and y,
to define a common basis

• Notationally the same,

• But we often don’t bother to
mention the basis vectors, and
write the vector as a = (xa,ya), or

Vector Multiplication: Dot Products
• Given two vectors a and b, the dot

product, relates the lengths of a
and b with the angle ϕ between
them:

a・b = ||a|| ||b|| cos ϕ

• Sometimes called the scalar
product, as it produces a scalar
value

• Also can be used to produce the
projection, a→b, of a onto b

a ⋅ b = (a . x ⋅ b . x + a . y ⋅ b . y)

Dot Products are
Associative and Distributive

• And, we can also define them directly if a and b are
expressed in Cartesian coordinates:

3D Vectors
• Same idea as 2D, except these vectors are defined

typically with a basis of three vectors

• Still just a direction and a magnitude

• But, useful for describing objects in three-dimensional
space

• Most operations exactly the same, e.g. dot products:

Assignment 3. Balls and Billboards
Input: JSON file describing locations of billboards and spheres.
Images placed on the billboards.
Output: scene showing what a viewer could see, and
A video showing camera movement

Billboards are extremely important for interactive
computer graphics

• They could use as texture

• They could use as “imposer” of a very detailed huge geometric scene
(e.g. the mountains at the background)

• The user could move (slightly) and not notice that the background
mountains don’t move properly. Very small errors.

Each tree is its own billboard

• But if we render a tree on a billboard, why are the billboard not occluding
each other ?

• We store at the data base a set of 2D images. Each shows the tree from a
different directions.

• If the camera moves slightly, Small errors are not noticeable. Sometimes we
need to switch with image with another

Cross Products
•In 3D, another way to “multiply” two vectors
is the cross product, a ⨉ b:
• ||a ⨉ b|| = ||a|| ||b|| sin ϕ

•||a ⨉ b|| is always the area of the
parallelogram formed by a and b, and a ⨉ b
is always in the direction perpendicular (two
possible answers).

•A screw turned from a to b will progress in
the direction a ⨉ b

•Cross products distribute, but order matters:

a × b = (yazb − zayb

x component

, zaxb − xazb, xayb − yaxb

z component

)

Cross Products
• Since the cross product is always orthogonal to the pair

of vectors, we can define our 3D Cartesian coordinate
space with it:

• In practice though (and the book derives this), we use the
following to compute cross products:

Checking orientation

b

a

b

ab

Assume a, b are in 2D (z=0). There are 3 possible scenarios.

a might be counter-clockwise (ccw) of b

a might be clockwise (cw) of b
a is collinear with b

xayb − yaxb > 0 xayb − yaxb < 0 xayb − yaxb = 0

a

a is counter-clockwise
(ccw) of b

a is clockwise (cw) of b a, b collinear

This will provide a convenient way to check if a triangle with vertices u,v,w

(when vertices are given to us in this order) is CCW or CW

b

u

v

w

u

v w

Rays, lines, Orthogonal Projections

The ray
The line that defines is

(that is, is any real value

{t ⋅ ⃗v | t ≥ 0}
⃗v

ℓ = {t ⋅ ⃗v | v ∈ ℝ}
t

The ray
This is the same ray, shifted by
That is, the ray emerges from

{O1 + t ⋅ ⃗v | t ≥ 0}
O1

O1

Orthogonal Projections

• Let be a point not on the ray

• Need to find: The point which is the orthogonal projection

of on

• is the closest point on to

• Assume start at zero, and slowly increases. Let

. Monitor the angle . At some time this angle
is , and and coincide, and . This
means:

P
P′

P ℓ = {t ⃗v | t ∈ ℝ}
P′ ℓ P

t R = t ⋅ ⃗v
∠(O, R, P′) t0,

0 R P′ ∠(O, R, P′) = 0

(t0 ⋅ ⃗v) ⊥ (P − t0 ⃗v) ⇒
(t0 ⋅ ⃗v) ⋅ (P − t0 ⃗v) = 0
t0v ⋅ P = t2

0(⃗v ⋅ ⃗v)
⇔ t0 = P ⋅ ⃗v
⇒ P′ = (P ⃗v) ⃗v

Rendering

What is Rendering?

“Rendering is the task of taking three-dimensional objects
and producing a 2D image that shows the objects as viewed
from a particular viewpoint”

Two Ways to Think About
How We Make Images

• Drawing  • Photography

Two Ways to Think About
Rendering

• Object-Ordered

• Decide, for every object in
the scene, its contribution
to the image 

• Image-Ordered

• Decide, for every pixel in
the image, its contribution
from every object

Two Ways to Think About
Rendering

• Object-Ordered or  
Rasterization

for each object {

 for each image pixel {

 if (object affects pixel)

 {

 do something

 }

 }

}  

• Image-Ordered or  
Ray Tracing

for each image pixel {

 for each object {

 if (object affects pixel)

 {

 do something

 }

 }

}

TODAY

Basics of Ray Tracing

Idea of Ray Tracing
• Ask first, for each pixel: what belongs at that pixel?

• Answer: The set of objects that are visible if we were
standing on one side of the image looking into the scene

• Start with a pixel—what belongs at that pixel?
• Set of points that project to a point in the image: a ray

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 4

Ray tracing idea

4

Key Concepts, in Diagram

Idea: Using Paths of Light
to Model Visibility

Using Paths of Light to
Model Visibility

Light Source

Using Paths of Light to
Model Visibility

Emits Light Rays

Using Paths of Light to
Model Visibility

https://software.intel.com/file/37491

Some arrive at 
 the image plane

Using Paths of Light to
Model Visibility

But Most Do Not!

?

Forwarding vs Backward
Tracing

• Idea: Trace rays from light source to image

• This is slow!

• Better idea: Trace rays from image to light source

Ray Tracing Algorithm

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 4

Ray tracing algorithm

for each pixel {
 compute viewing ray
 intersect ray with scene
 compute illumination at visible point
 put result into image
}

6

for each pixel {
 compute viewing ray
 intersect ray with scene
 compute illumination at intersection
 store resulting color at pixel
}

Ray Tracing Algorithm

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 4

Ray tracing idea

5

Cameras and
Perspective

If illumination is uniform and directional-free (ambient light):
for each pixel {
 compute viewing ray
 intersect ray with scene

copy the color of the object at this point to this pixel.
}

for each pixel {
 compute viewing ray
 intersect ray with scene
 compute illumination at intersection
 store resulting color at pixel
}

Commonly, we need slightly more involved

Linear Perspective

• Standard approach is to project objects to an image
plane so that straight lines in the scene stay straight lines
on the image

• Two approaches:

• Parallel projection: Results in orthographic views

• Perspective projection: Results in perspective views

Orthographic Views
• Points in 3D are moved along parallel lines to the image

plane.

• Resulting view determined solely by choice of projection
direction and orientation/position of image plane

Perspective Views
• But, objects that are further away should look smaller!

• Instead, we can project objects through a single viewpoint and record
where they hit the plane.

• Lines which are paper in 3D might be non-parallel in the view

Pinhole Cameras
• Idea: Consider a box with a tiny hole. All light that passes

through this hole will hit the opposite side

• Produced image inverts

���

3LQKROH�&DPHUD�
� %R[�ZLWK�D�WLQ\�KROH�
� ,QYHUWHG�LPDJH�
� 6LPLODU�WULDQJOHV�

� 3HUIHFW�LPDJH�LI�KROH�
LQILQLWHO\�VPDOO�

� 3XUH�JHRPHWULF�RSWLFV�
� 1R�GHSWK�RI�ILHOG�LVVXH�
�HYHU\WKLQJ�LQ�IRFXV��

Camera Obscura
• Gemma Frisius, 16th century

https://en.wikipedia.org/wiki/Camera_obscura

� (\H�LPDJH�S\UDPLG��YLHZ�IUXVWXP��
� 1RWH�WKDW�WKH�GLVWDQFH�VL]H�RI�LPDJH�DUH�DUELWUDU\�

���

6LPSOLILHG�3LQKROH�&DPHUD�

same image
will result on
this image plane

Simplified Pinhole Cameras
• Instead, we can place the eye at the pinhole and consider

the eye-image pyramid (sometimes called view frustum)

Defining Rays

Mathematical Description of a Ray

• Two components:

• An origin, or a position that the ray starts from

• A direction, or a vector pointing in the direction the ray travels

• Not necessarily unit length, but it’s sometimes helpful to
think of these as normalized

origin direction

Mathematical Description of a Ray

• Rays define a family of points, 𝐩(𝑡), using a parametric
definition

• 𝐩(𝑡) = 𝐨 + 𝑡𝐝, 𝐨 is the origin and 𝐝 the direction

• Typically, 𝑡 ≥ 0 is a non-negative number

𝐨 𝐝

𝐩(1)

𝐩(0.5)

𝐩(1.5)

𝐩(-0.1)

The Plan (high level)
• Given camera parameters (details later), and

 , the number of pixels in a row, and in
column, of the rendered image, we need to
generate rays, emerging from the
camera.

• To create the rays, we will need a set of
witness points All in the image plane.
Each witness point is in a center of a pixel.
Shoot a ray from the EYE to each witness
point.

• For each ray, find what is the color of the
first object it hits, and copy this color to the
corresponding pixel.

nx, ny

nx × ny

pi,j

Ray Generation in 2D

���

ILHOG�RI�YLHZ�Į�

LPDJH�SODQH�
�����[�����

'�

��

ULJKW�u

YLHZ�GLUHFWLRQ�w

5D\�*HQHUDWLRQ�LQ��'�

7KLV�LPDJH�LV�LQ�WKH�SXEOLF�GRPDLQ��6RXUFH��RSHQFOLSDUW

View Direction: − ⃗w

Camera Components
• Definition of an image plane

• Both in terms of pixel resolution AND position in 3D space
or more frequently in field of view and/or distance

• Viewpoint

• View direction LookAt (in hw3, you are given a center that
you are looking at. It is a point in the scene)

• Up vector (note that is not necessarily the “up” of the
geometric scene

Building coordinates system
•

• - it is a unit vector pointing backward (toward the viewer)

• . Vector point right from the eye. Make sure to normalized

•

• The segment is orthogonal to the image plane, and pass via
the middle of the image plane

LookAt =
⃗Center − Eye

∥ ⃗Center − Eye∥

⃗w = − LookAt

⃗u = ⃗Up × ⃗w

⃗v = ⃗w × ⃗u

(Eye, Center)

Where is the point ?

Witness points (first in 2D):

Ray r:

Eye − D ⃗w

pj = Eye − D ⃗w + (2
j

nx
− 1 −

0.5
nx

) ⃗u

j = 1,2,…#columns

r = Eye + t(pi − Eye)

Now in 3D
Assume first (#columns=#rows)
Witness points (first in 2D):

Ray r:

nx = ny

Pi,j = Eye − D ⃗w

+(2
j

nx
− 1 −

0.5
nx

) ⃗u

+(2
i

ny
− 1 −

0.5
ny

) ⃗v

i, j = 1,2,…#columns

r = Eye + t(Pi,j − Eye)

P1,1

P1,nx

Pny, nx

Here is systematic way to develop these formulas
(you will have multiple opportunities in this

course to use similar tricks
• Canonical representation:

• Each point in the image could be represented by coordinates . The lower left
(LL) is , That is

• And the lower right (LR) is .

• By linear interpolation

• Observe that , and the size of a pixel is

• At this point, we remember that the image consists of pixels. Referring to
the LL corner of each pixel, we could transform the canonical representation to
image representation by setting . Substitute, we obtain

•

• Finally, if you index the image , then subtract half a pixel.

(α, β)
α = β = 0 LL = O − ⃗u = ⃗v

α = 1, β = 0

P(α, β) = O + (2α − 1) ⃗u + (2β − 1) ⃗v

| ⃗u | = | ⃗v | = 1
2
nx

×
2
ny

nx × ny

α = j /nx, β = i /ny

P(i, j) = O + (2j
nx

−1) ⃗u + (2i
ny

−1) ⃗v

p1, p2…pn

• Finally, if you index the image , then subtract half a pixel.

• If you index , the add a half a pixel

p1, p2…pn P(i, j) = Eye − D ⃗w + (2j − 1
nx

−1) ⃗u + (2i − 1
ny

−1) ⃗v

p0, p2…pn−1 P(i, j) = Eye − D ⃗w + (2j + 1
nx

−1) ⃗u + (2i + 1
ny

−1) ⃗v

Now in 3D - the case nx > ny
Assume that each pixel is still a square. So the generated
image, . Let

width > height s = ny/nx

s

Intersecting Objects
for each pixel {
 compute viewing ray
 intersect ray with scene
 compute illumination at intersection
 store resulting color at pixel
}

Defining a Sphere

• We can define a sphere of radius 𝑅,
centered at position 𝐜, using the
implicit form

𝑓(𝐩) = (𝐩 - 𝐜)・(𝐩 - 𝐜) - 𝑅2 = 0

• Any point 𝐩 that satisfies the above
lives on the sphere

𝑅
𝐜

Ray-Sphere Intersection
• Two conditions must be satisfied:

• Must be on a ray: 𝐩(𝑡) = 𝐨 + 𝑡𝐝

• Must be on a sphere: 𝑓(𝐩) = (𝐩 - 𝐜)・(𝐩 - 𝐜) - 𝑅2 = 0

• Can substitute the equations and solve for 𝑡 in 𝑓(𝐩(𝑡)):

(𝐨 + 𝑡𝐝 - 𝐜)・(𝐨 + 𝑡𝐝 - 𝐜) - 𝑅2 = 0

• Solving for 𝑡 is a quadratic equation

Ray-Sphere Intersection
• Solve (𝐨 + 𝑡𝐝 - 𝐜)・(𝐨 + 𝑡𝐝 - 𝐜) - 𝑅2 = 0 for 𝑡:

• Rearrange terms:

(𝐝・𝐝)𝑡2+ (2𝐝・(𝐨 - 𝐜))𝑡 + (𝐨 - 𝐜)・(𝐨 - 𝐜) - 𝑅2 = 0

• Solve the quadratic equation A𝑡2 + B𝑡 + C = 0 where

• A = (𝐝・𝐝)

•

• C = (𝐨 - 𝐜)・(𝐨 - 𝐜) - 𝑅2

B = 2d(o − c)
Discriminant,
Solutions must satisfy:

Δ = B2 − 4AC

t = (−B ± B2 − 4AC)/2A

Ray-Sphere Intersection
• Number of intersections dictated by the discriminant

• In the case of two solutions, prefer the one with lower 𝑡

Ray-object intersection
CS 148, fall 2011

Defining a Plane
• Let h be a plane with normal n, and containing a point a. Let p be

some other point. Then p is on this plane if and only if (iff)

• Proof. Consider the segment p-a. p is on the plane iff p-a is
orthogonal to n. Using the property of dot product

• Here is the angle between them. Now cos(90)=0. So if p on this
plane then implying

• If p n > a n then p lives on the “front” side of the plane (in the
direction pointed to by the normal

• p n-an < 0 means that p lives on the “back” side.

• Sometimes used as f(p)=0 iff ``p on the plane’’. So the function f(p)
is f(p)=(p-a)n

• If we have 3 points a,p,q all on the plane, then we can compute a
normal . (cross product).

• Warning: The term “normal’’ does not mean that it was normalized.

p ⋅ n = a ⋅ n

(p − a) ⋅ n = |p − a | |n |cos α

α
p ⋅ n = a ⋅ n

n = (p − a) × (q − a)

𝐧

p
a

q

Ray-Plane Intersection
• A ray 𝐩(𝑡) = 𝐨 + 𝑡𝐝

• Two conditions must be satisfied:

• Must be on a ray: 𝐩(𝑡) = 𝐨 + 𝑡𝐝

• Must be on the plane: 𝑓(𝐩) = (𝐩 - 𝐚)・𝐧 = 0

• Can substitute the equations and solve for 𝑡 in 𝑓(𝐩(𝑡)):

(𝐨 + 𝑡𝐝 - 𝐚)・𝐧 = 0

• This means that 𝑡hit = ((𝐚 - 𝐨)・𝐧) / (𝐝・𝐧). The intersection point is o + thitd

Finding the color of a point on a billboard
• For each billboard, you will be given 3 corners

(UL,UR,LL)

• Let u’,v’ be orthonormal vectors (orthogonal

and unit length).

• Let be a point on the plane containing the
billboard. Let .

• Let

• is the length of the projection of r on u' .
• Other words. “shadow” that r casts on the line

containing u’

• We can use to determine if is in the
billboard, (how), and if yes, find the pixel of the
image of the billboard at .

u′ = UR − UL
∥UR − UL∥

P
r = P − UL

α = r ⋅ u′

α

α, β P

P

rv′

u′

UL UR

LL

P

α = r ⋅ u′

P = UL + (r ⋅ u′)

α

u′ + (r ⋅ v′)

β

v′

β

Constructing Orthonormal
Bases from a Pair of Vectors

• Given two vectors a and b, which might not be
orthonormal to begin with:

• In this case, w will align with a and v will be the closest
vector to b that is perpendicular to w

