CSC 433/533 Computer Graphics Algebra and Ray Shooting

Alon Efrat
Credit: Joshua Levine

What is a Vector?

- A vector describes a length and a direction
- A vector is also a tuple of numbers
- But, it often makes more sense to think in terms of the length/direction than the coordinates/numbers
- And, especially in code, we want to manipulate vectors as objects and abstract the low-level operations
- Compare with a scalar, or just a single number

Properties

- Two vectors, \mathbf{a} and \mathbf{b}, are the same (written $\mathbf{a}=\mathbf{b}$) if they have the same length and direction. (other notation: \bar{a}, \vec{a})
- A vector's length is denoted with || ||, (sometimes we just denote. When $\mathbf{a}=(\mathrm{x}, \mathrm{y})$, then $|\mathbf{a}|=\sqrt{a \cdot x^{2}+a \cdot y^{2}}$
- e.g. the length of \mathbf{a} is $\|\mathbf{a}\|$
- A unit vector has length one
- The zero vector has length zero, and undefined direction

Vectors in Pictures

- We often use an arrow to represent a vector
- The length of the arrow indicates the length of the vector, the direction of the arrow indicates the direction of the vector.
- The position of the arrow is irrelevant!
- However, we can use vectors to represent positions by describing displacements from a common point

Vector Operations

- Vectors can be added, e.g. for vectors a,b, there exists a vector $\mathbf{c}=\mathbf{a}+\mathbf{b}$
$\mathbf{a}+\mathbf{b}=(a \cdot x+b \cdot x, a \cdot y+b \cdot y)$
- Defined using the parallelogram rule: idea is to trace out the displacements and produced the combined effect

- Vectors can be negated (flip tail and head), and thus can be subtracted
- Vectors can be multiplied by a scalar, which scales the length but not the direction
$\beta \mathbf{a}=(\beta a . x, \beta a . y)$

Vectors Decomposition

- By linear independence, any 2D vector can be written as a combination of any two nonzero, nonparallel vectors
- Such a pair of vectors is called a 2D basis

$$
\mathbf{c}=a_{c} \mathbf{a}+b_{c} \mathbf{b}
$$

Canonical (Cartesian) Basis

- Often, we pick two perpendicular vectors, \mathbf{x} and \mathbf{y}, to define a common basis
- Notationally the same,

$$
\mathbf{a}=x_{a} \mathbf{x}+y_{a} \mathbf{y}
$$

- But we often don't bother to mention the basis vectors, and write the vector as $\mathbf{a}=\left(\mathrm{x}_{\mathrm{a}}, \mathrm{y}_{\mathrm{a}}\right)$, or

$$
\mathbf{a}=\left[\begin{array}{l}
x_{a} \\
y_{a}
\end{array}\right]
$$

Vector Multiplication: Dot Products

- Given two vectors \mathbf{a} and \mathbf{b}, the dot
product, relates the lengths of a and \mathbf{b} with the angle ϕ between them:
$\mathbf{a} \cdot \mathbf{b}=(a \cdot x \cdot b \cdot x+a \cdot y \cdot b \cdot y)$

$$
\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \phi
$$

- Sometimes called the scalar

$\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|| | \mathbf{b} \| \cos \phi$ product, as it produces a scalar value
- Also can be used to produce the projection, $\mathbf{a} \rightarrow \mathbf{b}$, of \mathbf{a} onto \mathbf{b}

$$
\mathbf{a} \rightarrow \mathbf{b}=\|\mathbf{a}\| \quad \cos \phi=\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|}
$$

$$
\begin{gathered}
\text { Dot Products are } \\
\text { AsSOCiative and Distributive } \\
\qquad \begin{array}{c}
\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}, \\
\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}, \\
(k \mathbf{a}) \cdot \mathbf{b}=\mathbf{a} \cdot(k \mathbf{b})=k \mathbf{a} \cdot \mathbf{b}
\end{array}
\end{gathered}
$$

- And, we can also define them directly if \mathbf{a} and \mathbf{b} are expressed in Cartesian coordinates:

$$
\mathbf{a} \cdot \mathbf{b}=x_{a} x_{b}+y_{a} y_{b}
$$

3D Vectors

- Same idea as 2D, except these vectors are defined typically with a basis of three vectors
- Still just a direction and a magnitude
- But, useful for describing objects in three-dimensional space
- Most operations exactly the same, e.g. dot products:

$$
\mathbf{a} \cdot \mathbf{b}=x_{a} x_{b}+y_{a} y_{b}+z_{a} z_{b}
$$

Assignment 2. Balls and Billboards

Input: JSON file describing locations of billboards and spheres.
Images placed on the billboards.
Output: scene showing what a viewer could see, and A video showing camera movement

Billboards are extremely important for interactive computer graphics

- They could use as texture
- They could use as "imposer" of a very detailed huge geometric scene (e.g. the mountains at the background)
- The user could move (slightly) and not notice that the background mountains don't move properly. Very small errors.

Each tree is its own billboard

- But if we render a tree on a billboard, why are the billboard not occluding each other?
- We store at the data base a set of 2D images. Each shows the tree from a different directions.
- If the camera moves slightly, Small errors are not noticeable. Sometimes we need to switch with image with another

Cross Products

-In 3D, another way to "multiply" two vectors is the cross product, $\mathbf{a} \times \mathbf{b}$:

- $\quad\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\| \sin \phi$
- $\|\mathbf{a} \times \mathbf{b}\|$ is always the area of the parallelogram formed by \mathbf{a} and \mathbf{b}, and $\mathbf{a} \times \mathbf{b}$ is always in the direction perpendicular (two possible answers).
-A screw turned from \mathbf{a} to \mathbf{b} will progress in the direction $\mathbf{a} \times \mathbf{b}$
- Cross products distribute, but order matters:

$$
\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c}
$$

$\mathbf{a} \times(k \mathbf{b})=k(\mathbf{a} \times \mathbf{b})$
$\mathbf{a} \times \mathbf{b}=-(\mathbf{b} \times \mathbf{a})$
$\mathbf{a} \times \mathbf{b}=\left(\begin{array}{lll}y_{a} z_{b}-z_{a} y_{b} & , z_{a} x_{b}-x_{a} z_{b}, \quad x_{a} y_{b}-y_{a} x_{b}\end{array}\right)$
x component

Cross Products

- Since the cross product is always orthogonal to the pair of vectors, we can define our 3D Cartesian coordinate space with it:
- In practice though (and the book derives this), we use the following to compute cross products:

$$
\begin{array}{ll}
\mathbf{x}=(1,0,0) & \mathbf{x} \times \mathbf{y}=+\mathbf{z} \\
\mathbf{y}=(0,1,0) & \mathbf{y} \times \mathbf{x}=-\mathbf{z} \\
\mathbf{z}=(0,0,1) & \mathbf{y} \times \mathbf{z}=+\mathbf{x} \\
\mathbf{z} \times \mathbf{y}=-\mathbf{x} \\
& \mathbf{z} \times \mathbf{x}=+\mathbf{y} \\
\mathbf{x} \times \mathbf{z}=-\mathbf{y}
\end{array}
$$

$$
\mathbf{a} \times \mathbf{b}=-(\mathbf{b} \times \mathbf{a})
$$

Checking orientation
 Assume \mathbf{a}, \mathbf{b} are in $\mathbf{2 D}(\mathbf{z}=\mathbf{0})$. There are 3 possible scenarios.

 a might be counter-clockwise (ccw) of \mathbf{b} \mathbf{a} might be clockwise (cw) of \mathbf{b}
$x_{a} y_{b}-y_{a} x_{b}>0$
a is counter-clockwise (ccw) of b
\mathbf{a} is collinear with \mathbf{b}

$$
x_{a} y_{b}-y_{a} x_{b}<0
$$

\mathbf{a} is clockwise (cw) of \mathbf{b}

b
$x_{a} y_{b}-y_{a} x_{b}=0$
a, b collinear

This will provide a convenient way to check if a triangle with vertices u, v, w (when vertices are given to us in this order) is CCW or CW

What is Rendering?

"Rendering is the task of taking three-dimensional objects and producing a 2D image that shows the objects as viewed from a particular viewpoint"

Two Ways to Think About How We Make Images

- Drawing

- Photography

Two Ways to Think About Rendering

- Object-Ordered
- Decide, for every object in the scene, its contribution to the image
- Image-Ordered
- Decide, for every pixel in the image, its contribution from every object

Two Ways to Think About Rendering

- Object-Ordered or Rasterization

```
for each object {
    for each image pixel {
            if (object affects pixel)
            {
                do something
            }
    }
}
```

- Image-Ordered or Ray Tracing

```
for each image pixel {
```



```
        {
            do something
        }
    }
}
```


Basics of Ray Tracing

Idea of Ray Tracing

- Ask first, for each pixel: what belongs at that pixel?
- Answer: The set of objects that are visible if we were standing on one side of the image looking into the scene

Key Concepts, in Diagram

viewer (eye)

objects
in scene

Idea: Using Paths of Light to Model Visibility

Using Paths of Light to Model Visibility

Using Paths of Light to Model Visibility

Using Paths of Light to Model Visibility

Using Paths of Light to Model Visibility

Forwarding vs Backward Tracing

- Idea: Trace rays from light source to image
- This is slow!
- Better idea: Trace rays from image to light source

Ray Tracing Algorithm

visible point

```
for each pixel {
```

 compute viewing ray
 intersect ray with scene
 compute illumination at intersection
 store resulting color at pixel
 \}

Ray Tracing Algorithm

Cameras and Perspective

```
If illumination is uniform and directional-free (ambient light): for each pixel \{
compute viewing ray
intersect ray with scene
copy the color of the object at this point to this pixel. \}
```

Commonly, we need slightly more involved

```
for each pixel {
    compute viewing ray
    intersect ray with scene
    compute illumination at intersection
    store resulting color at pixel
```


Linear Perspective

- Standard approach is to project objects to an image plane so that straight lines in the scene stay straight lines on the image
- Two approaches:
- Parallel projection: Results in orthographic views
- Perspective projection: Results in perspective views

Orthographic Views

- Points in 3D are moved along parallel lines to the image plane.
- Resulting view determined solely by choice of projection direction and orientation/position of image plane

Perspective Views

- But, objects that are further away should look smaller!
- Instead, we can project objects through a single viewpoint and record where they hit the plane.
- Lines which are paper in 3D might be non-parallel in the view

Pinhole Cameras

- Idea: Consider a box with a tiny hole. All light that passes through this hole will hit the opposite side
- Produced image inverts

Camera Obscura

- Gemma Frisius, 16th century

Simplified Pinhole Cameras

- Instead, we can place the eye at the pinhole and consider the eye-image pyramid (sometimes called view frustum)

Defining Rays

Mathematical Description of a Ray

- Two components:
- An origin, or a position that the ray starts from
- A direction, or a vector pointing in the direction the ray travels
- Not necessarily unit length, but it's sometimes helpful to think of these as normalized

Mathematical Description of a Ray

- Rays define a family of points, $\mathbf{p}(t)$, using a parametric definition
- $\mathbf{p}(t)=\mathbf{o}+t \mathbf{d}, \mathbf{o}$ is the origin and \mathbf{d} the direction
- Typically, $t \geq 0$ is a non-negative number

Vectors, lines and planes

$Q_{1} w=3$

Pick two points A, B.
The vector $\vec{w}=B-A$.
Lets s be some number $=3$.
Where could we find points (x, y) such that $(x, y) \cdot \vec{w}=s=3$?

They are all on a line which is orthogonal to \vec{w}.
Proof: Let Q_{1}, Q_{2} be two such points.
Then $\vec{w} \cdot Q_{1}=s$ and $\vec{w} Q_{2}=s$, or $\left(Q_{2}-Q_{1}\right) \cdot \vec{w}=0$
So the vector $Q_{2}-Q_{1}$ is orthogonal to \vec{w}.

This is true for every value of s , in particular for $s=\vec{W} \cdot Q_{1}$ So the line $\vec{w} \cdot(x, y)=\vec{w} \cdot Q_{1}$ contains Q_{1}

Rays, lines, Orthogonal Projections

The ray $\{t \cdot \vec{v} \mid t \geq 0\}$
The line that \vec{v} defines is $\ell=\{t \cdot \vec{v} \mid v \in \mathbb{R}\}$
(that is, t is any real value

The ray $\{O 1+t \cdot \vec{v} \mid t \geq 0\}$ This is the same ray, shifted by $O 1$ That is, the ray emerges from $O 1$

Rays and intersection of rays and planes

Orthogonal Projections

- Let P be a point not on the ray
- Need to find: The point P^{\prime} which is the orthogonal projection of P on $\ell=\{O 1+t \vec{v} \mid t \in \mathbb{R}\}$
- P^{\prime} is the closest point on ℓ to P
- Assume t start at zero, and slowly increases.
- Observe the angle $\angle\left(O, R, P^{\prime}\right)$. At some time t_{0}, this angle is $90^{\circ}, R$ and P^{\prime} coincide. This mean

Cross Products

-In 3D, another way to "multiply" two vectors is the cross product, $\mathbf{a} \times \mathbf{b}$:

- $\quad\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\| \sin \phi$
- $\|\mathbf{a} \times \mathbf{b}\|$ is always the area of the parallelogram formed by \mathbf{a} and \mathbf{b}, and $\mathbf{a} \times \mathbf{b}$ is always in the direction perpendicular (two possible answers).
-A screw turned from \mathbf{a} to \mathbf{b} will progress in the direction $\mathbf{a} \times \mathbf{b}$
- Cross products distribute, but order matters:

$$
\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c}
$$

$\mathbf{a} \times(k \mathbf{b})=k(\mathbf{a} \times \mathbf{b})$
$\mathbf{a} \times \mathbf{b}=-(\mathbf{b} \times \mathbf{a})$
$\mathbf{a} \times \mathbf{b}=\left(\begin{array}{lll}y_{a} z_{b}-z_{a} y_{b} & , z_{a} x_{b}-x_{a} z_{b}, \quad x_{a} y_{b}-y_{a} x_{b}\end{array}\right)$
x component

Cross Products

- Since the cross product is always orthogonal to the pair of vectors, we can define our 3D Cartesian coordinate space with it:
- In practice though (and the book derives this), we use the following to compute cross products:

$$
\begin{array}{ll}
\mathbf{x}=(1,0,0) & \mathbf{x} \times \mathbf{y}=+\mathbf{z} \\
\mathbf{y}=(0,1,0) & \mathbf{y} \times \mathbf{x}=-\mathbf{z} \\
\mathbf{z}=(0,0,1) & \mathbf{y} \times \mathbf{z}=+\mathbf{x} \\
\mathbf{z} \times \mathbf{y}=-\mathbf{x} \\
& \mathbf{z} \times \mathbf{x}=+\mathbf{y} \\
\mathbf{x} \times \mathbf{z}=-\mathbf{y}
\end{array}
$$

$$
\mathbf{a} \times \mathbf{b}=-(\mathbf{b} \times \mathbf{a})
$$

Checking orientation
 Assume \mathbf{a}, \mathbf{b} are in 2D ($\mathbf{z =} \mathbf{0}$). There are 3 possible scenarios.

 a might be counter-clockwise (ccw) of $\mathbf{b}$$\mathbf{a}$ might be clockwise (cw) of \mathbf{b}

$x_{a} y_{b}-y_{a} x_{b}>0$
\mathbf{a} is counter-clockwise (ccw) of b \mathbf{a} is collinear with \mathbf{b}

$$
x_{a} y_{b}-y_{a} x_{b}<0
$$

\mathbf{a} is clockwise (cw) of \mathbf{b}

b
$x_{a} y_{b}-y_{a} x_{b}=0$
a, b collinear

This will provide a convenient way to check if a triangle with vertices u, v, w (when vertices are given to us in this order) is CCW or CW

To specify the model we specify

Camera's coordinates system

- the $\overrightarrow{E y e}$ location of the camera
- A point in the scene Called LookAt. The always oriented toward the LookAt point. (in some text, LookAt is a vector), which is not changed when the camera moves)
- A vector $\overrightarrow{U p}$. When performing Pan and Tilt, and does not change, bit it is changed when Roll.
- Using these vectors, we could build a coordinate system $\vec{w}, \vec{u}, \vec{v}$. They must be orthonormal and create a left-hand system.

- Start from \vec{w} : Set $\overrightarrow{\mathbf{w}}=\frac{\text { Eye }- \text { LookAt }}{\| \text { Eye }- \text { LookAt } \|}$
- Next need $\overrightarrow{\mathbf{u}}$ (plays the rule of the x-direction). It is orthogonal to both $\overrightarrow{U p}, \vec{w}$. So $\overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{U} \mathbf{p}} \times \overrightarrow{\mathbf{w}}$. From the camera point of view, it points to the right.
- Next need $\overrightarrow{\mathbf{v}}$ (plays the rule of the y-direction). It is orthogonal to both \vec{u}, \vec{w}. So $\overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{w}} \times \overrightarrow{\mathbf{u}}$

The Camera Plan (high level)

- Given camera parameters (details later), and n_{x}, n_{y}, the number of pixels in a row, and in column, of the rendered image, we need to generate $n_{x} \times n_{y}$ rays, emerging from the camera.
- To create the rays, we will need a set of witness points $p_{i, j}$ All in the image plane. Each witness point is in a center of a pixel. Shoot a ray from the EYE to each witness point.

- For each ray, find what is the color of the first object it hits, and copy this color to the corresponding pixel.
https://www.geogebra.org/m/x6rarczz

Ray Generation in 2D

Pixel-to-Image Mapping

- Exactly where are pixels located? Must convert from pixel coordinates (i,j) to positions in 3D space (u,v,w)
- What should w be?

Camera Components

- Definition of an image plane
- Both in terms of pixel resolution AND position in 3D space or more frequently in field of view and/or distance
- Viewpoint
- View direction LookAt (in hw3, you are given a center that you are looking at. It is a point in the scene)
- Up vector (note that is not necessarily the "up" of the geometric scene

Building coordinates system

$. \overrightarrow{\text { LookAt }}=\frac{\overrightarrow{\text { Center }}-\text { Eye }}{\| \overrightarrow{\text { Center }- \text { Eye } \|}}$

- $\overrightarrow{\mathbf{w}}=-\overrightarrow{\text { LookAt }}$ - it is a unit vector pointing backward (toward the viewer)
- $\vec{u}=\overrightarrow{U p} \times \vec{w}$. Vector point right from the eye. Make sure to normalized
- $\vec{v}=\vec{w} \times \vec{u}$
- The segment (Eye, Center) is orthogonal to the image plane, and pass via the middle of the image plane

Where is the point Eye $-D \overrightarrow{\mathbf{w}}$?
Witness points (first in 2D):
$p_{j}=$ Eye $-D \overrightarrow{\mathbf{w}}+\left(2 \frac{j}{n_{x}}-1-\frac{0.5}{n_{x}}\right) \overrightarrow{\mathbf{u}}$

$j=1,2, \ldots \#$ columns
Ray r: $r=$ Eye $+t\left(p_{i}-\right.$ Eye $)$

$$
\begin{aligned}
& p_{j}=E y e-D \overrightarrow{\mathbf{w}}+\left(2 \frac{j}{n_{x}}-1-\frac{0.5}{n_{x}}\right) \overrightarrow{\mathbf{u}} \\
& j=1 \ldots n_{x}
\end{aligned}
$$

Now in 3D

Assume first $n_{x}=n_{y}$ (\#columns=\#rows)
Witness points (first in 2D):
$P_{i, j}=$ Eye $-D \overrightarrow{\mathbf{w}}$

$$
+\left(2 \frac{j}{n_{x}}-1-\frac{0.5}{n_{x}}\right) \overrightarrow{\mathbf{u}}
$$

$$
+\left(2 \frac{i}{n_{y}}-1-\frac{0.5}{n_{y}}\right) \overrightarrow{\mathbf{v}}
$$

$i, j=1,2, \ldots$ \#columns
Ray r: $r=E y e+t\left(P_{i, j}-E y e\right)$

Here is systematic way to develop these formulas (you will have multiple opportunities in this course to use similar tricks

- Canonical representation:
- Each point in the image could be represented by coordinates (α, β). The lower left (LL) is $\alpha=\beta=0$, That is $L L=O-\vec{u}=\vec{v}$
- And the lower right (LR) is $\alpha=1, \beta=0$.
- By linear interpolation $P(\alpha, \beta)=O+(2 \alpha-1) \vec{u}+(2 \beta-1) \vec{v}$
- Observe that $|\vec{u}|=|\vec{v}|=1$, and the size of a pixel is $\frac{2}{n_{x}} \times \frac{2}{n_{y}}$
- At this point, we remember that the image consists of $n_{x} \times n_{y}$ pixels. Referring to the LL corner of each pixel, we could transform the canonical representation to image representation by setting $\alpha=j / n_{x}, \beta=i / n_{y}$. Substitute, we obtain
- $P(i, j)=O+\left(\frac{2 j}{n_{x}}-1\right) \vec{u}+\left(\frac{2 i}{n_{y}}-1\right) \vec{v}$

- Finally, if you index the image $p_{1}, p_{2} \ldots p_{n}$, then subtract half a pixel. $P(i, j)=E y e-D \vec{w}+\left(\frac{2 j-1}{n_{x}}-1\right) \vec{u}+\left(\frac{2 i-1}{n_{y}}-1\right) \vec{v}$
- If you index $p_{0}, p_{2} \ldots p_{n-1}$, the add a half a pixel $P(i, j)=E y e-D \vec{w}+\left(\frac{2 j+1}{n_{x}}-1\right) \vec{u}+\left(\frac{2 i+1}{n_{y}}-1\right) \vec{v}$

Now in 3D - the case $n_{x}>n_{y}$

 Assume that each pixel is still a square. So the generated image, width $>$ height. Let $s=n_{y} / n_{x}$$$
\begin{aligned}
P(\alpha, \beta) & =O+(-1+2 \alpha) \vec{u}-s(-1+2 \beta) \vec{v} \\
P(i, j) & =O+\left(-1+2 \frac{j}{n_{x}}\right) \vec{u}+S\left(-1+2 \frac{i}{n_{y}}\right) \vec{v}
\end{aligned}
$$

Intersecting Objects

```
for each pixel {
    compute viewing ray
    intersect ray with scene
    compute illumination at intersection
    store resulting color at pixel
}
```


Defining a Sphere

- We can define a sphere of radius R, centered at position \mathbf{c}, using the implicit form

$$
f(\mathbf{p})=(\mathbf{p}-\mathbf{c}) \cdot(\mathbf{p}-\mathbf{c})-R^{2}=0
$$

- Any point \mathbf{p} that satisfies the above lives on the sphere

Ray-Sphere Intersection

- Two conditions must be satisfied:
- Must be on a ray: $\mathbf{p}(t)=\mathbf{o}+t \mathbf{d}$
- Must be on a sphere: $f(\mathbf{p})=(\mathbf{p}-\mathbf{c}) \cdot(\mathbf{p}-\mathbf{c})-R^{2}=0$
- Can substitute the equations and solve for t in $f(\mathbf{p}(t))$:

$$
(\mathbf{o}+t \mathbf{d}-\mathbf{c}) \cdot(\mathbf{o}+t \mathbf{d}-\mathbf{c})-R^{2}=0
$$

- Solving for t is a quadratic equation

Ray-Sphere Intersection

- Solve $(\mathbf{o}+t \mathbf{d}-\mathbf{c}) \cdot(\mathbf{o}+t \mathbf{d}-\mathbf{c})-R^{2}=0$ for t :
- Rearrange terms:

$$
(\mathbf{d} \cdot \mathbf{d}) t^{2}+(2 \mathbf{d} \cdot(\mathbf{o}-\mathbf{c})) t+(\mathbf{o}-\mathbf{c}) \cdot(\mathbf{o}-\mathbf{c})-R^{2}=0
$$

- Solve the quadratic equation $\mathrm{A} t^{2}+\mathrm{B} t+\mathrm{C}=0$ where
- $\mathrm{A}=(\mathbf{d} \cdot \mathbf{d})$
- $B=2 \mathbf{d}(\mathbf{o}-\mathbf{c})$

Discriminant, $\Delta=B^{2}-4 A C$ Solutions must satisfy:

- $\mathrm{C}=(\mathbf{o}-\mathbf{c}) \cdot(\mathbf{o}-\mathbf{c})-R^{2} \quad t=\left(-B \pm \sqrt{B^{2}-4 A C}\right) / 2 A$

Ray-Sphere Intersection

- Number of intersections dictated by the discriminant
- In the case of two solutions, prefer the one with lower t

Orthogonal Projections

- Let P be a point not on the ray
- Need to find: The point P^{\prime} which is the orthogonal projection of P on $\ell=\{O 1+t \vec{v} \mid t \in \mathbb{R}\}$
- P^{\prime} is the closest point on ℓ to P
- Assume t start at zero, and slowly increases.
- Observe the angle $\angle\left(O, R, P^{\prime}\right)$. At some time t_{0}, this angle is $90^{\circ}, R$ and P^{\prime} coincide. This mean

Defining a Plane

- Let h be a plane with normal \mathbf{n}, and containing a point \mathbf{a}. Let p be some other point. Then p is on this plane if and only if (iff)
$\mathbf{p} \cdot \mathbf{n}=\mathbf{a} \cdot \mathbf{n}$
- Proof. Consider the segment $p-a$. p is on the plane iff $p-a$ is orthogonal to n. Using the property of dot product $(\mathbf{p}-\mathbf{a}) \cdot \mathbf{n}=|\mathbf{p}-\mathbf{a}||\mathbf{n}| \cos \alpha$
- Here α is the angle between them. Now $\cos (90)=0$. So if p on this plane then $\mathbf{p} \cdot \mathbf{n}=\mathbf{a} \cdot \mathbf{n} \quad$ implying
- If $\mathbf{p} \mathbf{n}>\mathbf{a} \mathbf{n}$ then \mathbf{p} lives on the "front" side of the plane (in the direction pointed to by the normal
- p n-an <0 means that \mathbf{p} lives on the "back" side.
- Sometimes used as $\mathbf{f}(\mathbf{p})=\mathbf{0}$ iff " p on the plane". So the function $f(p)$ is $f(p)=(p-a) n$
- If we have 3 points a, p, q all on the plane, then we can compute a normal $\mathbf{n}=(\mathbf{p}-\mathbf{a}) \times(\mathbf{q}-\mathbf{a})$. (cross product).

- Warning: The term "normal" does not mean that it was normalized.

From corners of billboard to plane equation.

- Given LL,UP,UR, need to construct a plane \boldsymbol{h} containing them:
- $\mathrm{LR}=\mathrm{UR}+(\mathrm{LL}-\mathrm{UL})$
- We'd like to have the plane using a point on the plane, and a normal \vec{n}
- Define $\vec{u}=U L-U R$, and to $\vec{v}=U R-U L$.
- \vec{n} is orthogonal to both vectors: \vec{u} and to \vec{v}.
- Lets normalize them: $\overrightarrow{\mathbf{u}}^{\prime}=\vec{u} /|\vec{u}|, \quad \overrightarrow{\mathbf{v}}^{\prime}=\vec{v} /|\vec{v}|$
- Easy solution: $\overrightarrow{\mathbf{n}}=\vec{u}^{\prime} \times \vec{v}^{\prime}$.
- The equation of $h: \quad h=\{(x, y, z) \mid \vec{n} \cdot(x, y, z)=\vec{n} \cdot U R\}$
- Or for short: $h: \vec{n} \vec{x}=\vec{n} \cdot U R$
- Now we can find Q, the intersection point of h with a ray.
- Question: Is \vec{n} points to the viewer or away from viewer?

Expressing intersection point in its own coordinate system

- Two problems - is Q in the billboard, and if yes, what is the relevant pixel of the image on the billboard?
- We will answer both questions by expressing Q using the coordinate system that \vec{u}, \vec{v} (not normalized), creates, assuming that LL is the origin. That is $Q=L L+\alpha \vec{u}+\beta \vec{v}$
- Let $\vec{f}=Q-L L$. Set $\alpha=(f \cdot \vec{u}) /\left|\vec{u}^{\prime}\right|$ and $\beta=(f \cdot \vec{v}) /\left|\vec{v}^{\prime}\right|$
- Q is inside the billboard iff $0 \leq \alpha \leq 1$ and $0 \leq \beta \leq 1$

gg
 gg

