
  
Ray Tracing 2

Shading 
Last Time

Quick reminder how to 
transform the image plane 

into canonical representation

Now in 3D 
Assume first   (#columns=#rows) 
Witness points (first in 2D):  




 

Ray r:  

nx = ny

Pi,j = Eye − D ⃗w

+(2
j

nx
− 1 −

0.5
nx

) ⃗u

+(2
i

ny
− 1 −

0.5
ny

)v⃗

i, j = 1,2,…#columns

r = Eye + t(Pi,j − Eye)

P1,1

P1,nx

Pny, nx



Assume first   (#columns=#rows) 
Witness points (first in 2D):  
If you prefer to aligned the cameras’ coordinate system with xyz,


Use the matrix 





nx = ny

M = Rotation ⃗u, ⃗v. ⃗w ⋅ Trans(−Eye) ⋅ p

Rotation ⃗u, ⃗v. ⃗w =
− ⃗u −
− ⃗v −
− ⃗w −

https://www.geogebra.org/m/jdqhhwku

Ray Tracing Algorithm
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Ray tracing algorithm

for each pixel { 
    compute viewing ray 
    intersect ray with scene 
    compute illumination at visible point 
    put result into image 
}

6

for each pixel {
  compute viewing ray 
  intersect ray with scene
  compute illumination at intersection
  store resulting color at pixel
}   

Intersecting Objects
for each pixel {
  compute viewing ray 
  intersect ray with scene
  compute illumination at intersection
  store resulting color at pixel
}   
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Intersection with Many Types of Shapes

• In a given scene, we also need to track 
which shape had the nearest hit point 
along the ray.


• This is easy to do by augmenting our 
interface to track a range of possible 
values for 𝑡, [𝑡min, 𝑡max]:


intersect(eye, dir, t_min, t_max);

• After each intersection, we can then 
update the range

https://www.geogebra.org/m/jdqhhwku


Intersection with Many Types of Shapes
for each pixel p in Image {

  let [eye, dir] = camera.compute_ray(p);

  let hit_surf = undefined;   let hit_rec = undefined;

  let t_min = 0;   let hit_t = Infinity; 

  scene.surfaces.forEach( function(surf) {

    let intersect_rec = surf.intersect(eye, dir, t_min, hit_t);

    if (intersect_rec.hit) {

      hit_surf = surf;

      hit_t = intersect_rec.t;

      hit_rec = intersect_rec;

    }

  });

  //Compute a color c

  image.update(p, c);

} 

for each pixel of the output image {
  compute viewing ray 
  intersect ray with scene
  compute illumination at intersection
  store resulting color at pixel
}   

Illumination
for each pixel {
  compute viewing ray 
  intersect ray with scene
  compute illumination at intersection
  store resulting color at pixel
}   

Our images so far
• With only eye-ray generation and scene intersection

for each pixel p in Image {
  let hit_surf = undefined;
  ...
 
  scene.surfaces.forEach( function(surf) {
    if (surf.intersect(eye, dir, ...)) {
      hit_surf = surf;
      ...
    }
  });

  c = hit_surf.ambient;
  Image.update(p, c);
} 

Each surface 
storing a single 
ambient color

Today: shading

https://en.wikipedia.org/wiki/Phong_shading

From this 
(ambient shading)  

Diffuse 
Shading

Specular 
Shading this + + ⇒

https://en.wikipedia.org/wiki/Phong_shading


Shading
• Goal: Compute light reflected 

toward camera


• Inputs: 


• eye direction 


• light direction 
(for each of many lights) 


• surface normal 


• surface parameters  
(color, shininess, ...)  

Light Sources
• There are many types of 

possible ways to model light, 
but for now we’ll focus on point 
lights


• Point lights are defined by a 
position 𝐩 that irradiates equally 
in all directions


• Technically, illumination from 
real point sources falls off 
relative to distance squared, but 
we will ignore this for now.
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Light falloff

5

Intensity: 𝐼 
(𝑟 = 1)

Intensity: 𝐼/𝑟2

𝑟

Shading Models
Just to be sure: 


Shading  Shadows 


• Shadows are casted by occluding sources of light. 


• Shading of a surface  - changing of intensity of the 
reflected light due to surface properties ad geometry, 
and its locations in 3D with respect to locations of 
viewer and light source. 


 

We will cover Diffuse shading and Specular Shading. We 
will study a trick that is easy to program, and ``looks’’ like 
physical diffuse shading. 

≠

Ambient coefficient  Albedo coefficient≠
• Albedo coefficient - 

percentage of white 
light reflected by the 
object


• White light -might 
contains all visible 
frequencies, not only 
RGB. 


• No attention to color. 




Ambient ``shading’’  and  Albedo 
• Ambient light - has no particular direction.


• Every material has 3 coefficients .


•   specifies  the percentage of blue light that the surface reflects 
(obviously, as blue light).  


•  The location of viewer and the location of the light-source are irrelevant. 


• If a sphere has Ambient coefficient  it 
looks very dim in Red light, but bright in Blue or Green light. 


• If illuminated by while light, then the sphere color is cyan.  


• When describing a scene to (say) OpenGL, WebGL, processing.org etc, we 
could specify for every light source how much intensity it emits (in RGB). 


• In reality, there is no ambient light.  


• In OpenGL, we could specify 3 sets of coefficients (for ambient, for diffuse, 
and for specular. We can also specify the scene ambient RGB. 


• E.g. specifying the ambient light in the scene as (0.3, 0.1, 0.9), and a 
sphere with =(0, 0, 0.5), will be seen with 

(kd . r, kd . g, , kd . b)
kd . b

(kd . r, kd . g, kd . b) = (0.1, 0.9, 0.9)

kd RGB = (0, 0, 0.45)

Lambertian (Diffuse) Shading
• Consider a door illuminated by a flashlight (see below). 

• Lets think about the intensity reflected from the door as the door rotates.  

• I denotes the intensity.   Think about I as #photons 


• Let  be a portion of the door with area . The number of photons falling on 
e is  I. 


•  Now open the door (without moving . Let  be the area of the shadow that 
 casts on the door.  The area of f is  (where  is the angle of the 

door) 

• The same amount of photos that are passing via e are falling on a large area

/inch2

e 1in2

e) f
e 1in2/cos α α

e f

door after

αflashlight ⃗L

Intensity of the light on #photons falling on   


The number of photons on  and on  is the same, but the area


increases to , so intensity now is

f = 1in2

e f

1in2/cos α I/f = I/ 1
cos α = I cos α

door 
before

Lambertian (Diffuse) Shading

f

door after

flashlight 

Intensity of the light on #photons falling on   

The number of photons on  and on  is the same, but the area

increases to , so intensity now is 


Let  be a unit vector from   toward the light source, and let  be the normal 
to the door. 




The intensity of light reflected from  is intensity of light hitting f times  


Conclusion: To create diffuse shading,  render f with RGB= 

f = 1in2

e f
1in2/cos α I/f = I/ 1

cos α = I cos α

⃗L f ⃗n

cos α = ⃗L ⋅ ⃗n
f kd

kd I ⃗L ⋅ ⃗n

⃗L
⃗n

∢
∢

α

α

Lambertian (Diffuse) Shading
• Simple model: amount of energy 

from a light source depends on 
the direction at which the light 
ray hits the surface


• Results in shading that is 
view independent


𝐿d = 𝑘d𝐼 max(0,𝐧・𝐥)

diffuse 
coefficient

cos 𝜃
intensity/color 

of light

http://processing.org


Lambertian Shading
• 𝑘d  is a property of the surface itself (3 constants - one per 

each color channel)  


• Produces matte appearance of varying intensities

• Produces matte appearance

[F
ol

ey
 e

t 
al

.]

kd
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Lambertian shading

7

The moon paradox
• why don’t we see this gradual shading when looking at 

the moon ? 

VS

Toward Specular Shading:  
Perfect Mirror 

• Many real surfaces show some 
degree of shininess that 
produce specular reflections


• These effects move as the 
viewpoint changes (as oppose 
to diffuse and ambient shading)


• Idea: produce reflection when 𝐯 
and 𝐥 are symmetrically 
positioned across the surface 
normal

Imaginary light source

light source

d

d

p

Reflected 
 light source

Mirrors - perfect reflections
•Before talking about specular reflection, lets see 

how to render a scene that contains mirror. 

•Ray tracing: For each pixel on the image plane, trace 

a ray d  from the eye via this pixel, till hits an object. 
If this object is a mirror, we need to continue this ray 
in the deflected direction r. 

•How could find find  r ? 


•Claim:  𝐫 = 𝐝 - 2(𝐝・𝐧)𝐧,       n is a unit vector 
orthogonal to the mirror. 

•Proof 

•Assume wlog that n=(0,1) (vertical upward). 

• Look at the components: d=(d.x,d.y),    r=(r.x, r.y)   

• 𝐫 and 𝐝 have the same x-value, but opposite y-

value:   

• r.x=d.x  and 

• r.y= -d.y = r.y+ (-2r.y) = r.y -2 (n・r) 


• (𝐝・𝐧)𝐧=(0, r.y).  

lamp

mirror



Application: mirror sphere

•  A ray d that hits the sphere B. We find the intersection point P, find 

the normal  to B at  P,         ,  

• and bounced in the direction  

n =
P − c

|P − c |
r = d − 2(n ⋅ d)d

r

Blinn-Phong (Specular) Shading
• Many real surfaces show some 

degree of shininess that produce 
specular reflections


• These effects move as the 
viewpoint changes (as oppose to 
diffuse and ambient shading)


• Idea: produce reflection when 𝐯 
and 𝐥 are symmetrically positioned 
across the surface normal

Blinn-Phong (Specular) Shading
•For any two unit vectors  , the vector  

  is a bisector of the angle between 
these vectors. 


•Normalize 𝐯 + 𝐥  

𝐡 = (𝐯 + 𝐥) / ‖𝐯 + 𝐥‖


• In a perfect mirror, the 100% of the 
reflection occurs at the surface point 
where h is the normal n 


•Diffuse reflection. Reflect large value for 
points where h is ``almost’’ n 


•Phong heuristic:   

𝐿s = 𝑘s𝐼 max(0,   (𝐧・𝐡)p.   )

⃗v, ⃗l
v + l

specular 
coefficient Phong 

exponent

Note: shadows are 
additional effort, 
not a specular effect   

Blinn-Phong Decomposed

https://en.wikipedia.org/wiki/Phong_shading

Ambient Diffuse Specular Phong Reflection+ + =

https://en.wikipedia.org/wiki/Phong_shading


Blinn-Phong Shading
• Increasing 𝑝 narrows the lobe


• This is kind of a hack, but it does look good
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Specular shading
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Putting it all together
• Usually include ambient, diffuse, and specular in one 

model 

𝐿 = 𝐿a + 𝐿d + 𝐿s


𝐿 = 𝑘a𝐼a + 𝑘d𝐼 max(0,𝐧・𝐥) + 𝑘s𝐼 max(0,𝐧・𝐡)p


• And, the final result accumulates for all lights in the scene

𝐿 = 𝑘a𝐼a + Σi ( 𝑘d𝐼i max(0,𝐧・𝐥i) + 𝑘s𝐼i max(0,𝐧・𝐡i)p )


• Be careful of overflowing!  You may need to clamp colors, 
especially if there are many lights.

Simple Ray Tracer
function ray_cast(eye, dir, near, far) {
  let hit_surf = undefined;   let hit_rec = undefined;
  let t_min = 0;   let hit_t = Infinity;
  let color = background;    //default background color

  scene.surfaces.forEach( function(surf) {
    let intersect_rec = surf.hit(eye, dir, t_min, hit_t);
    if (intersect_rec.hit) {
      hit_surf = surf;
      hit_t = intersect_rec.t;
      hit_rec = intersect_rec;
    }
  });

  if (hit_surf !== undefined) {
    color = hit_surf.kA * Ia;
    scene.lights.forEach( function(light) {
      //compute 𝐥i, 𝐡i

      color = color + hit_surf.kD*𝐼i*max(0,𝐧・𝐥i) + hit_surf.kS*𝐼i*max(0,𝐧・
𝐡i)p;

    });
  }

  return color;
} 

for each pixel p in Image {

  let [eye, dir] = camera.compute_ray(p);

  let c = ray_cast(eye, dir, 0, Infinity);

  image.update(p, c);

}

Refraction and Snell Law
• When light passes from one medium to another, (say air

glass or glass air, its direction might change. 


• This happens when the speed of light in the two mediums are 
different 

→
→

Credit: Wikipedia



Following the wavefront 

•
Credit: Wikipedia 

 For the wavefronts to stay connected at the boundary 
the wave must change direction.

• Make sure you know whether you’re entering or leaving 
the transmissive material: 
 
 
 
 
 
 
 

• Note: We won’t ask you to trace rays through 
intersecting transparent objects :-) 

Refraction & Sidedness of Objects 

T 

ηT = material  
        index 

ηi=1 

N 

T 

ηT= 1 

ηi = material  
       index 

N 

I 
I 
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  nwater = 1.3

Refraction and Snell Law
• When ray of light traverses from one medium (e.g. from air 

to water) it might bend. This is called refraction.    

Examples of refractions 

Total Internal Reflection 

No transmission 

26 

Image courtesy of Frazzydee on Wikimedia Commons. License: CC-BY-SA. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

camera lense

Fiber optics

credit: wikipedia

Refraction and Snell’s Law
• Governs the angle at which a refracted ray 

bends when traversing from air to glass, water 
etc. 


• Computation based on refraction index 
(confusingly denoted nt  ) of the mediums. 
The mediums here are air and glass. 


• Typical air has  refraction indexed 


•
 


•Snell law: nt sin 𝜃 = n sin 𝜙

nair = 1
nglass = 1.5
nwater = 1.3
nfiber optics = 1.46

air

Water 
Glass

ϕ = arcsin(
1

1.3
sin θ)

Air



Snell’s Law and vector 
calculus  

• Working with cosine’s are 
easier because we can use 
dot products


• Can derive the vector for the 
refraction direction 𝐭 as 


•

Careful: 
don’t confuse  (a normal vector) with  (1.3  for water) and with  (=1 for air)n nt n

Water 

Total Internal Reflection

Total Internal Reflection 

No transmission 
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Image courtesy of Frazzydee on Wikimedia Commons. License: CC-BY-SA. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Recursive Ray 
Tracing

Shadows
• Idea: after finding the closest 

hit, cast a ray to each light 
source to determine if it is 
visible


• Be careful not to intersect with 
the object itself.  Two solutions:


• Only check for hits against 
all other surfaces


• Start shadow rays a tiny 
distance away from the hit 
point by adjusting 𝑡min  



Color ray_cast(Ray ray, SurfaceList scene, float near, float far) {
  ...
  //initialize color;  compute hit_surf, hit_position;
  ...

  if (hit_surf is valid) {
    color = hit_surf.kA * Ia;
    scene.lights.forEach( function(light)
      //compute 𝐥i, 𝐡i

      //check for shadow rays to decide if the light illuminates
      if (ray from hit_position in direction of 𝐥i does not hit scene) {

        color += hit_surf.kD*𝐼i*max(0,𝐧・𝐥i) + hit_surf.kS*𝐼i*max(0,𝐧・𝐡i)p;

      }
    });
      
    //compute reflect direction 𝐫i

    //call ray_cast() recursively for mirror reflections
    color += hit_surf.kM*ray_cast(hit_position, 𝐫i, scene, epsilon, +inf); 

  }

  return color;
} 

Recursive Ray Tracer Shadows
• Surface should only be illuminated if nothing blocks the 

light from hitting the surface


• This can be easily checked by intersecting a new ray with 
the scene!• Let’s think about shadows... 

21 

Ray Casting vs. Ray Tracing 

This image is in the public domain.
Source: openclipart

Ray from hit point to 
light is blocked by 

some other surface

Ray Casting vs Ray Tracing
• Ray casting: tracing rays from eyes only


• Ray tracing: tracing secondary rays
• Let’s think about shadows... 

21 

Ray Casting vs. Ray Tracing 

This image is in the public domain.
Source: openclipart

Secondary rays are used for 
testing shadows, doing 

reflections, refractions, etc. 

(hard) Shadows
• Idea: after finding the closest 

hit, cast a ray to each light 
source to determine if it is 
visible


• Be careful not to intersect with 
the object itself.  Two solutions:


• Only check for hits against 
all other surfaces


• Start shadow rays a tiny 
distance away from the hit 
point by adjusting 𝑡min  



Distribution Ray 
Tracing

Reality Check: Do These 
Pictures Look Real?

Let’s Pause for a Moment... 

• Do these pictures look real? 

39 

             
       

What’s Wrong?

• No surface is a perfect mirror because no surface is 
perfectly smooth   

Let’s Pause for a Moment... 

• Do these pictures look real? 

39 

             
       

What have we modeled?
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Classic reflection behavior

Lambertianglossy specular

ideal specular (mirror)

13



Most Surfaces have 
Microgeometry
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Adding microgeometry

12

Ideal Reflection/RefractionWhat’s Wrong then? 

• No surface is a perfect mirror, 
no material interface is perfectly smooth 

Adapted from blender.org 

Perfectly specular 
(mirror) reflection 

Perfectly specular 
refraction 

1 ray in 1 ray out 
1 ray in 

1 ray out 

1 ray out 

41 

Non-Ideal Reflection/Refraction

• Can approximate the microgeometry

Non-Ideal Reflection/Refraction 

Non-ideal glossy 
reflection 

Non-ideal refraction 

• No surface is a perfect mirror, 
no material interface is perfectly smooth 

Adapted from blender.org 

1 ray in 
1 ray in 

many 
rays out 

many 
rays out 

42 

Non-Ideal Reflection/Refraction 

images from blender.org 

Glossy (as opposed to mirror) reflection 

Glossy (as opposed to perfect) refraction 

43 

Courtesy of Blender Foundation. License CC-BY. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use�.



Approach: Distribution Glossy 
Reflection by Randomly 

Sampling Rays

https://graphics.stanford.edu/wikis/cs148-11-fall/RaytracingResults 
http://www.baylee-online.net/Projects/Raytracing/Algorithms/Glossy-Reflection-Transmission 

Randomly sample reflected rays 

Ideal Reflection: One Ray 
Per Bounce

• One reflection ray per intersection 

perfect mirror 

Reflection 

θ θ 

44 

Perfect mirror

Glossy Reflection: Compute Many 
Rays per Bounce and Average

• One reflection ray per intersection 

perfect mirror 

Reflection 

θ θ 

44 

Polished surface

Glossy Reflection 
• Multiple reflection rays 

polished surface θ θ 

Justin Legakis 

45 

   

Justin Legakis

Variation in this 
distribution is controlled 
by the glossiness of the 
surface Other Uses of 

Distribution Ray Tracing



Approach: Distribution Glossy 
Reflection by Randomly 

Sampling Rays

https://graphics.stanford.edu/wikis/cs148-11-fall/RaytracingResults 
http://www.baylee-online.net/Projects/Raytracing/Algorithms/Glossy-Reflection-Transmission 

Randomly sample reflected rays 

Ideal Reflection: One Ray 
Per Bounce

• One reflection ray per intersection 

perfect mirror 

Reflection 

θ θ 

44 

Perfect mirror

Glossy Reflection: Compute Many 
Rays per Bounce and Average

• One reflection ray per intersection 

perfect mirror 

Reflection 

θ θ 

44 

Polished surface

Glossy Reflection 
• Multiple reflection rays 

polished surface θ θ 

Justin Legakis 

45 

   

Justin Legakis

Variation in this 
distribution is controlled 
by the glossiness of the 
surface Other Uses of 

Distribution Ray Tracing



Problem: Hard Shadows

• One shadow ray per intersection 
per point light source

Shadows 
• One shadow ray per 

intersection per point 
light source 

no shadow rays 

one shadow ray 

46 

Shadows 
• One shadow ray per 

intersection per point 
light source 

no shadow rays 

one shadow ray 

46 

Soft Shadows

http://erich.realtimerendering.com/shadow_comparison.html 

Hard shadows Soft shadows 

Soft Shadows
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Soft shadows

5



What Causes Soft Shadows

http://user.online.be/felixverbelen/lunecl.jpg 

Lights aren’t all point sources 

Distribution Soft Shadows

Randomly sample light rays 

Computing Soft Shadows
• Model light sources as spanning 

an area


• Sample random positions on area 
light source and average rays

Soft Shadows 
• Multiple shadow rays 

to sample area light 
source 

one shadow ray  
(to random location) 

lots of shadow rays 

48 

Soft Shadows 
• Multiple shadow rays 

to sample area light 
source 

one shadow ray  
(to random location) 

lots of shadow rays 

48 



Problem: Aliasing 
Drawing a black line on a white board

Some pixels need to be rendered as gray, with gray level= 
Area of black region in pixel

Area of pixel

Pixel:

• Problem: Hard to calculate how much of the pixel is covered

• Solution: Random sample points in the pixel. 

• Calculate what is the percentage of the point of each color

Distribution Antialiasing w/  
Regular Sampling

Multiple rays per pixel 

Moiré pattern 

http://upload.wikimedia.org/wikipedia/commons/f/fb/Moire_pattern_of_bricks_small.jpg 

Problem: Aliasing

http://www.hackification.com/2008/08/31/experiments-in-ray-tracing-part-8-anti-aliasing/ 

Antialiasing w/ Supersampling

• Cast multiple rays per pixel, average result

Antialiasing – Supersampling 
• Multiple rays per pixel 

jaggies w/ antialiasing 

49 



Distribution Antialiasing

Multiple rays per pixel 

Distribution Antialiasing w/  
Regular Sampling

Multiple rays per pixel 

Moiré pattern 

http://upload.wikimedia.org/wikipedia/commons/f/fb/Moire_pattern_of_bricks_small.jpg 

Distribution Antialiasing w/  
Random Sampling

Remove Moiré patterns 
http://en.wikipedia.org/wiki/File:Moire_pattern_of_bricks.jpg 

Random Sampling Could Miss 
Regions Without Enough Sampling

? 

? 

? 



Stratified (Jittered) Sampling Problem: Focus 
Real Lenses Have Depth of Field

Problem: Focus 
Real Lenses Have Depth of Field

http://liam887.files.wordpress.com/2010/08/weaver.jpg 

Depth of Field
• Multiple rays per pixel, sample 

lens aperture
• Multiple rays per pixel: 

sample lens aperture 

MIT EECS 6.837 – Durand 
  

Depth of Field 

Justin Legakis 
focal length 

film 

out-of-focus blur 

out-of-focus blur 

51 
   

• Multiple rays per pixel: 
sample lens aperture 

MIT EECS 6.837 – Durand 
  

Depth of Field 

Justin Legakis 
focal length 

film 

out-of-focus blur 

out-of-focus blur 

51 
   

Justin Legakis



Distribution Depth of Field

Randomly sample eye positions 

Square lens 
“Focus plane” 

Problem: Exposure Time 
Real Sensors Take Time to Acquire

Problem: Exposure Time 
Real Sensors Take Time to Acquire

http://www.matkovic.com/anto/3dl-test-balls-01.jpg 

Randomly sample positions 

Motion Blur 
• Sample objects 

temporally over 
time interval 

Rob Cook 

50 

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Motion Blur
• Sample objects temporally over a time interval


