Ray Tracing 2

Shading

Last Time

Quick reminder how to
transform the image plane
into canonical representation

Now in 3D

Assume first n, = n, (#columns=#rows)
Witness points (first in 2D):
P, ;= Eye — DW

J 0.5,_,
PR s
+(. nx)u
i 0.5
2— —1——2)¥
+(- p)V

y y

i,j= 1,2,...#columns

Rayr: r = Eye + t(P,-q_,- — Eye)

Assume first n, = n, (#columns=#rows)
Witness points (first in 2D):
If you prefer to aligned the cameras’ coordinat

L
u
. _ -
Rotationg; 5= |- v -
—
w

https://www.geogebra.org/m/jdghhwku

Ray Tracing Algorithm

viewer (eye)

YT

Vi
@ngr
v

visible point
for each pixel {

compute viewing ray

intersect ray with scene

compute illumination at intersection
store resulting color at pixel

}

objects
in scene

Intersecting Objects

for each pixel {
compute viewing ray
intersect ray with scene
compute illumination at intersection
store resulting color at pixel

Intersection with Many Types of Shapes

¢ In a given scene, we also need to track
which shape had the nearest hit point
along the ray.

¢ This is easy to do by augmenting our
interface to track a range of possible \

values for ¢, [tmin, fmax]:

intersect(eye, dir, t min, t_max);

¢ After each intersection, we can then
update the range

https://www.geogebra.org/m/jdqhhwku

Intersection with Many Types of Shapes

for each pixel p in Image {
let [eye, dir] = camera.compute ray(p);
let hit_surf = undefined; let hit_rec = undefined;
let t min = 0; let hit_t = Infinity;

scene.surfaces.forEach(function(surf) {
let intersect_rec = surf.intersect(eye, dir, t min, hit t);
if (intersect_rec.hit) {
hit surf = surf;
hit_t = intersect_rec.t;
hit_rec = intersect_rec;
}
)i

for each pixel of the output image {
compute viewing ray
image.update(p, c); intersect ray with scene
} compute illumination at intersection
store resulting color at pixel

//Compute a color c

lHlumination

for each pixel {
compute viewing ray
intersect ray with scene
compute illumination at intersection
store resulting color at pixel

Our images so far

* With only eye-ray generation and scene intersection

for each pixel p in Image {
let hit_surf = undefined;

scene.surfaces.forEach(function(surf) {
if (surf.intersect(eye, dir, ...)) {
hit_surf = surf;

}
)i

c = hit_surf.ambient;
¥——| Each surface

Image.update(p, c);
} storing a single
ambient color

Today: shading

From this Diffuse
(ambient shading) * shading

Specular

Shading —=> this

https://en.wikipedia.org/wiki/Phong_shading

https://en.wikipedia.org/wiki/Phong_shading

Shading

* Goal: Compute light reflected
toward camera

* Inputs: <\
I~
* eye direction /\\ 1 n

* light direction
(for each of many lights) 6

e surface normal

e surface parameters
(color, shininess, ...)

Light Sources

* There are many types of
possible ways to model light,
but for now we’ll focus on point
lights

¢ Point lights are defined by a
position p that irradiates equally

in all directions

* Technically, illumination from
real point sources falls off
relative to distance squared, but
we will ignore this for now.

Intensity: 1/r2

Intensity: I
(r=1)

Shading Models

Just to be sure:

Shading # Shadows

e Shadows are casted by occluding sources of light.

* Shading of a surface - changing of intensity of the
reflected light due to surface properties ad geometry,
and its locations in 3D with respect to locations of
viewer and light source.

We will cover Diffuse shading and Specular Shading. We
will study a trick that is easy to program, and “looks” like
physical diffuse shading.

Ambient coefficient #

* Albedo coefficient -
percentage of white
light reflected by the
object

* White light -might
contains all visible
frequencies, not only
RGB.

¢ No attention to color.

Albedo coefficient

(%)

100
90

80
SNOW

fresh
70

60

SNOW
old
50

SAND
40 dry,

T=

SAND
wet

30 solL
dry

20

SOIL
10

d
$ WATER IWBI

CUMULUS
STRATUS

STRATUS

1 pESERT

$ SAVANNA

s I FOREST

ALTOSTRATUS
CIRRUS

CROPS|

IMEADOWS

0

Ambient “shading” and Albedo

¢ Ambient light - has no particular direction.
e Every material has 3 coefficients(kd I, k(l .g,, kd . b).

o kd .b specifies the percentage of blue light that the surface reflects
(obviously, as blue light).

¢ The location of viewer and the location of the light-source are irrelevant.

« If a sphere has Ambient coefficient (k;. r, k;. g, k;.b) = (0.1, 0.9, 0.9) it
looks very dim in Red light, but bright in Blue or Green light.

e If iluminated by while light, then the sphere color is cyan.

¢ When describing a scene to (say) OpenGL, WebGL, processing.org etc, we
could specify for every light source how much intensity it emits (in RGB).

¢ In reality, there is no ambient light.

¢ In OpenGL, we could specify 3 sets of coefficients (for ambient, for diffuse,
and for specular. We can also specify the scene ambient RGB.

* E.g. specifying the ambient light in the scene as (0.3, 0.1, 0.9), and a
sphere with k,=(0, 0, 0.5), will be seen with RGB = (0, 0, 0.45)

Lambertian (Diffuse) Shading

* Consider a door illuminated by a flashlight (see below).
* Lets think about the intensity reflected from the door as the door rotates.

o I denotes the intensity. Think about I as #photons/mch

* Let e be a portion of the door with area 1,,,. The number of photons falling on
eis I

» Now open the door (without moving e). Let f be the area of the shadow that
e casts on the door. The area of f is linz/cos a (where a is the angle of the
door)

* The same amount of photos that are passing via e are falling on a large area
camr door after
before

flashlight

Intensity of the light on f = #photons falling on 1;,»

The number of photons on e and on fis the same, but the area

1
=Icosa
oS a

increases to 1;,»

Lambertian (Diffuse) Shading
n

flashlight

Intensity of the light on f = #photons falling on 1,2
The number of photons on e and on fis the same, but the area

increases to 1,

. . . _ 1
/cos a, so intensity now is I/f = I/—Cosa =Icosa

Let I be a unit vector from f toward the light source, and let T be the normal
to the door.

cosa=L -1
The intensity of light reflected from f'is intensity of light hitting f times k,
Conclusion: To create diffuse shading, render f with RGB= kd 1 7; -0

Lambertian (Diffuse) Shading

¢ Simple model: amount of energy
from a light source depends on
the direction at which the light
ray hits the surface

* Results in shading that is
view independent

Ld—kdImaXOn 1)

dlffuse

coefficient
cos 6

intensity/color
of light

http://processing.org

Lambertian Shading

* kg is a property of the surface itself (3 constants - one per
each color channel)

* Produces matte appearance of varying intensities

The moon paradox

¢ why don’t we see this gradual shading when looking at
the moon ?

Toward Specular Shading:
Perfect Mirror

Reflected

e Many real surfaces show some light source

degree of shininess that . light source
produce specular reflections

* These effects move as the
viewpoint changes (as oppose
to diffuse and ambient shading)

* |dea: produce reflection when v
and 1 are symmetrically

positioned across the surface
normal

interface or boundary

‘www.problemsphysics.com
Imaginary light source

Mirrors - perfect reflections

* Before talking about specular reflection, lets see

how to render a scene that contains mirror.
¢ Ray tracing: For each pixel on the image plane, trace ‘ n
aray d from the eye via this pixel, till hits an object. r
If this object is a mirror, we need to continue this ray
in the deflected direction I, olo

* How could find find I ?

0

S

*Claim: r=d - 2(d - n)n, n is a unit vector

orthogonal to the mirror.

* Proof
¢ Assume wlog that n=(0,1) (vertical upward).
* Look at the components: d=(d.x,d.y), r=(r.x, r.y)
e r and d have the same x-value, but opposite y-
value:
er.x=d.x and
ery=-d.y=ry+(-2ry)=ry-2(n - r)
e (d - n)n=(0, ry).

Application: mirror sphere

e Avray d that hits the sphere B. We find the intersection point P, find

P -
the normal toB at P, n=—c)
|P—c|

e and bounced in the directionr =d — 2(n - d)d

Blinn-Phong (Specular) Shading

* Many real surfaces show some
degree of shininess that produce
specular reflections

¢ These effects move as the
viewpoint changes (as oppose to
diffuse and ambient shading)

Reflected _Value = cos™(a) = (h-n)™.
or
 |dea: produce reflection when v Reflected_Value = cos™(8) = (h-n)" \/\
and 1 are symmetrically positioned | Z
h= +v 13
across the surface normal A h+vl y
Sun E °
1

—===== 8.

ss=3.6
-

Blinn-Phong (Specular) Shading

N\L
P
/\\l n h

X&V/
FY

e For any two unit vectors v, [, the vector

v + 1 is a bisector of the angle between
these vectors.

e Normalize v +1
h=wv+1)/lIv+1l

* In a perfect mirror, the 100% of the
reflection occurs at the surface point
where h is the normal n

« Diffuse reflection. Reflect |large value for
points where h is "almost” n

* Phong heuristic:
Ls = ksimax(0, (n - h)p-)

Note: shadows are
additional effort,
not a specular effect

specular

coefficient
Phong

exponent

Blinn-Phong Decomposed

Ambient + Diffuse + Specular = Phong Reflection

https://en.wikipedia.org/wiki/Phong _shading

https://en.wikipedia.org/wiki/Phong_shading

Blinn-Phong Shading

¢ Increasing p narrows the lobe

¢ This is kind of a hack, but it does look good

[Foley et al.]

Putting it all together

¢ Usually include ambient, diffuse, and specular in one
model

1; = l;a + l;d + l;s
L = kalu + kal max(0,n - 1) + kI max(0,n - h)y

* And, the final result accumulates for all lights in the scene
L=kid,+ 2, (kal; max(O,n . L’) + kil max(O,n . h,)P)

¢ Be careful of overflowing! You may need to clamp colors,
especially if there are many lights.

Simple Ray Tracer

function ray_cast(eye, dir, near, far) {
let hit_surf = undefined; let hit_rec = undefined;
let t_min = 0; let hit_t = Infinity;
let color = background; //default background color
scene.surfaces.forEach(function(surf) {
let intersect_rec = surf.hit(eye, dir, t_min, hit t);
if (intersect_rec.hit) {
hit_surf = surf;
hit_t = intersect_rec.t;

hit_rec = intersect_rec;
}
i

for each pixel p in Image {
let [eye, dir] = camera.compute_ray(p);
let ¢ = ray cast(eye, dir, 0, Infinity);
if (hit_surf !== undefined) { image.update(p, c);
color = hit_surf.kA * Ia; }

scene.lights.forEach(function(light) {
//compute I, h
color = color + hit_surf.kD*[*max(0,n -1l) + hit surf.kS*[*max(0,n *
hi)r;
3
}

return color;

}

Refraction and Snell Law

* When light passes from one medium to another, (say air—
glass or glass —air, its direction might change.

* This happens when the speed of light in the two mediums are
different

Credit: Wikipedia

Following the wavefront

my

For the wavefronts to stay connected at the boundary
the wave must change direction.

Credit: Wikipedia

Refraction and Snell Law

¢ When ray of light traverses from one medium (e.g. from air
to water) it might bend. This is called refraction.

the transmissive material: V
‘N I
V I
n; = material
n=1 index
ny = material n=1
index

n =13

water

. 7xamples of refractions

credit: wikipedia

’ Object

camera lense

No transmission

Fiber optics

Refraction and Snell’s Law

* Governs the angle at which a refracted ray Water

bends when traversing from air to glass, water| i, Glass Air
etc.

* Computation based on refraction index

(confusingly denoted Nt) of the mediums. E 0
The mediums here are air and glass.

* Typical air has refraction indexed /

—n|

Nyir = 1) 9
nglass = 1.5

— d
. Nyater = 13

— 1
Niber optics = 1.46 ¢ = arcsin(ﬁ sin)

*Snell law: nt sin 6 = n sin ¢

Snell’s Law and vector
calculus Total Internal Reflection

* Working with cosine’s are
easier because we can use
dot products

d Water
» Can derive the vector for the
refraction direction t as " Z)
t
n(d+n cos 0)) v
t = ———" —ncos ¢ ¢ -n
AN
2
* n(d-n(dn)) J 2 (1-(an)’)
== —n\l-——7" d
ng ny

No transmission

Careful:
don’t confuse n (a normal vector) with (1.3n, for water) and with n (=1 for air)

Shadows

¢ |dea: after finding the closest
hit, cast a ray to each light
source to determine if it is

Recursive Ray

¢ Be careful not to intersect with

- the object itself. Two solutions:
Tracing

¢ Only check for hits against
all other surfaces

¢ Start shadow rays a tiny
distance away from the hit
point by adjusting tmin

Recursive Ray Tracer

Color ray cast(Ray ray, SurfaceList scene, float near, float far) {
//initialize color; compute hit surf, hit_position;

if (hit_surf is valid) {
color = hit_surf.kA * Ia;

}

return color;

}

Shadows

¢ Surface should only be illuminated if nothing blocks the
light from hitting the surface

¢ This can be easily checked by intersecting a new ray with
the scenel!
4
\%;% Ray from hit point to
light is blocked by

i some other surface

Ray Casting vs Ray Tracing

* Ray casting: tracing rays from eyes only

* Ray tracing: tracing secondary rays
% Secondary rays are used for
4 testing shadows, doing

i reflections, refractions, etc.

(hard) Shadows

¢ |dea: after finding the closest
hit, cast a ray to each light
source to determine if it is
visible

¢ Be careful not to intersect with
the object itself. Two solutions:

¢ Only check for hits against
all other surfaces

¢ Start shadow rays a tiny
distance away from the hit
point by adjusting tmin

Distribution Ray
Tracing

Reality Check: Do These
Pictures Look Real?

What’s Wrong?

* No surface is a perfect mirror because no surface is
perfectly smooth

What have we modeled'?

ideal specular (mirror)

glossy specular Lambertian

Most Surfaces have
Microgeometry

-

Ideal Reflection/Refraction

~Jrayin 1rayout

=
4

O
5 _)1 ray out

Perfectly specular Perfectly specular
(mirror) reflection refraction

Adapted from blender.org

Non-ldeal Reflection/Refraction

* Can approximate the microgeometry

~Jrayin

{/\/\ rays out
\\- 4

Non-ideal glossy
reflection

Adapted from blender.org

AN

Glossy (as oppoé'éd fd mirror) reflection

IQ'\

\\ -
Glossy (as opposed t‘é

Approach: Distribution Glossy
Reflection by Randomly
Sampling Rays

Ideal Reflection: One Ray
Per Bounce

n

/ 0 0 Perfect mirror

Glossy Reflection: Compute Many
Rays per Bounce and Average

Variation in this
distribution is controlled
by the glossiness of the
surface

Polished surface

Other Uses of
Distribution Ray Tracing

Approach: Distribution Glossy
Reflection by Randomly
Sampling Rays

Ideal Reflection: One Ray
Per Bounce

n

/ 0 0 Perfect mirror

Glossy Reflection: Compute Many
Rays per Bounce and Average

Variation in this
distribution is controlled
by the glossiness of the
surface

Polished surface

Other Uses of
Distribution Ray Tracing

Computer Graphics Volume 18, Number 3 July 1984

Distributed Ray Tracing

Robert L. Cook
Thomas Porter
Loren Carpenter

Computer Division
Lucasfilm Ltd.

Abstract

Ray tracing is one of the most elegant techniques in com-
puter graphics. Many phenomena that are difficult or
impossible with other techniques are simple with ray trac-
ing, including shadows, reflecti and refracted light.
Ray directions, however, have been determined precisely,
and this has limited the capabilities of ray tracing. By
distributing the directions of the rays according to the
analytic function they sample, ray tracing can incorporate
fuzzy phenomena. This provides correct and easy solu-
tions to some previously unsolved or partially solved prob-
lems, including motion blur, depth of field, penumbras,
translucency, and fuzzy reflections. Motion blur and
depth of field calculations can be integrated with the visi-
ble surface calculati iding the probl found in
previous methods.

Ray traced images are sharp because ray directions are
determined precisely from geometry. Fuzzy phenomenon
would seem to require large numbers of additional sam-
ples per ray. By distributing the rays rather than adding
more of them, however, fuzzy phenomena can be ren-
dered with no additional rays beyond those required for
spatially oversampled ray tracing. This approach pro-
vides correct and easy soluti to some previously
unsolved problems.

This approach has not been possible before because of
aliasing. Ray tracing is a form of point sampling and, as
such, has been subject to aliasing artifacts. This aliasing
is not inherent, however, and ray tracing can be filtered
as effectively as any analytic method[4]. The filtering
does incur the expense of additional rays, but it is not

Problem: Hard Shadows

* One shadow ray per intersection
per point light source

point light source
[}

no shadow rays

one shadow ray

Soft Shadows

N

¢
Y .

Hard shadows

Soft shadows

http://erich,

html

What Causes Soft Shadows

SUN EARTH MOON
5

l

PENUMBRA

UMBRA

beffelixverbelen/lunecl.jpg

Lights aren’t all point sources

Distribution Soft Shadows

Randomly sample light rays

Computing Soft Shadows

* Model light sources as spanning
an area

e Sample random positions on area
light source and average rays

one shadow ray

" (to random location)

penumbra umbra
°

lots of shadow rays

Problem: Aliasing

Drawing a black line on a white board

I S

1 2 3 4 5 6 7 8

Fig. B: y=f(x) approximation

Some pixels need to be rendered as gray, with gray level=
Area of black region in pixel Pixel:
Area of pixel

* Problem: Hard to calculate how much of the pixel is covered
¢ Solution: Random sample points in the pixel.
¢ Calculate what is the percentage of the point of each color

Distribution Antialiasing w/
Regular Sampling

_Moire patter

Multiple rays per pixel

Problem: Aliasing

http://www.hackification.com/.

Antialiasing w/ Supersampling

e Cast multiple rays per pixel, average result

jaggies w/ antialiasing

Distribution Antialiasing

/’vgﬁa;e 0£/0/‘/ o

Multiple rays per pixel

Distribution Antialiasing w/
Regular Sampling

floire pattern
° ° °
° ° °
° ° °

‘‘‘‘‘‘‘

Multiple rays per pixel

Distribution Antialiasing w/
Random Sampling

Remove Moiré patterns

Random Sampling Could Miss
Regions Without Enough Sampling

o
g

Stratified (Jittered) Sampling

One ray /ml bov ®
o

[]

o
° o

o
o
o

Problem: Focus
Real Lenses Have Depth of Field

Problem: Focus
Real Lenses Have Depth of Field

* Multiple rays per pixel, sample SRLEELTLE HIT
lens aperture

out-of-focus blur

focal length Justin Legakis

Distribution Depth of Field

Square lens

“Focus plane”

\‘:‘*\/

Randomly sample eye positions

Problem: Exposure Time
Real Sensors Take Time to Acquire

- ¥

» /““‘,”[L‘flmﬁ!C:

[N xuu»"‘,{?‘. -

Problem: Exposure Time
Real Sensors Take Time to Acquire

Motion Blur

e Sample objects temporally over a time interval

Rob Cook

