

Ray Tracing 2

Shading
Last Time

Quick reminder how to
transform the image plane

into canonical representation

Now in 3D
Assume first (#columns=#rows)
Witness points (first in 2D):

Ray r:

nx = ny

Pi,j = Eye − D ⃗w

+(2
j

nx
− 1 −

0.5
nx

) ⃗u

+(2
i

ny
− 1 −

0.5
ny

)v⃗

i, j = 1,2,…#columns

r = Eye + t(Pi,j − Eye)

P1,1

P1,nx

Pny, nx

Assume first (#columns=#rows)
Witness points (first in 2D):
If you prefer to aligned the cameras’ coordinate system with xyz,

Use the matrix

nx = ny

M = Rotation ⃗u, ⃗v. ⃗w ⋅ Trans(−Eye) ⋅ p

Rotation ⃗u, ⃗v. ⃗w =
− ⃗u −
− ⃗v −
− ⃗w −

https://www.geogebra.org/m/jdqhhwku

Ray Tracing Algorithm

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 4

Ray tracing algorithm

for each pixel {
 compute viewing ray
 intersect ray with scene
 compute illumination at visible point
 put result into image
}

6

for each pixel {
 compute viewing ray
 intersect ray with scene
 compute illumination at intersection
 store resulting color at pixel
}

Intersecting Objects
for each pixel {
 compute viewing ray
 intersect ray with scene
 compute illumination at intersection
 store resulting color at pixel
}

•
Sc

en
es

 u
su

al
ly

 h
av

e
m

an
y

ob
je

ct
s

•
N

ee
d

to
 fi

nd
 t

he
 fi

rs
t

in
te

rs
ec

ti
on

 a
lo

ng
 t

he
 r

ay

–
th

at
is,

th
e

on
e

wi
th

 th
e

sm
all

es
t p

os
itiv

e
t v

alu
e

•
Lo

op
 o

ve
r

ob
je

ct
s

–
ign

or
e

th
os

e
th

at
do

n’t
 in

te
rse

ct
–

ke
ep

 tr
ac

k o
f t

he
 cl

os
es

t s
ee

n
so

 fa
r

–
Co

nv
en

ien
t t

o
giv

e
ra

ys
 an

 e
nd

ing
 

t v
alu

e
fo

r t
his

 p
ur

po
se

 (t
he

n 
th

ey
 ar

e
re

all
y s

eg
m

en
ts)

©
 2

01
7

St
ev

e
M

ar
sc

hn
er

 •

C
or

ne
ll

C
S4

62
0

Sp
ri

ng
 2

01
7

•
Le

ct
ur

e
4

Ra
y i

nt
er

se
cti

on
 in

 so
ftw

ar
e

27

Intersection with Many Types of Shapes

• In a given scene, we also need to track
which shape had the nearest hit point
along the ray.

• This is easy to do by augmenting our
interface to track a range of possible
values for 𝑡, [𝑡min, 𝑡max]:

intersect(eye, dir, t_min, t_max);

• After each intersection, we can then
update the range

https://www.geogebra.org/m/jdqhhwku

Intersection with Many Types of Shapes
for each pixel p in Image {

 let [eye, dir] = camera.compute_ray(p);

 let hit_surf = undefined; let hit_rec = undefined;

 let t_min = 0; let hit_t = Infinity;

 scene.surfaces.forEach(function(surf) {

 let intersect_rec = surf.intersect(eye, dir, t_min, hit_t);

 if (intersect_rec.hit) {

 hit_surf = surf;

 hit_t = intersect_rec.t;

 hit_rec = intersect_rec;

 }

 });

 //Compute a color c

 image.update(p, c);

}

for each pixel of the output image {
 compute viewing ray
 intersect ray with scene
 compute illumination at intersection
 store resulting color at pixel
}

Illumination
for each pixel {
 compute viewing ray
 intersect ray with scene
 compute illumination at intersection
 store resulting color at pixel
}

Our images so far
• With only eye-ray generation and scene intersection

for each pixel p in Image {
 let hit_surf = undefined;
 ...

 scene.surfaces.forEach(function(surf) {
 if (surf.intersect(eye, dir, ...)) {
 hit_surf = surf;
 ...
 }
 });

 c = hit_surf.ambient;
 Image.update(p, c);
}

Each surface
storing a single
ambient color

Today: shading

https://en.wikipedia.org/wiki/Phong_shading

From this
(ambient shading)

Diffuse
Shading

Specular
Shading this + + ⇒

https://en.wikipedia.org/wiki/Phong_shading

Shading
• Goal: Compute light reflected

toward camera

• Inputs:

• eye direction

• light direction 
(for each of many lights)

• surface normal

• surface parameters  
(color, shininess, ...)  

Light Sources
• There are many types of

possible ways to model light,
but for now we’ll focus on point
lights

• Point lights are defined by a
position 𝐩 that irradiates equally
in all directions

• Technically, illumination from
real point sources falls off
relative to distance squared, but
we will ignore this for now.

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 5

Light falloff

5

Intensity: 𝐼
(𝑟 = 1)

Intensity: 𝐼/𝑟2

𝑟

Shading Models
Just to be sure:

Shading Shadows

• Shadows are casted by occluding sources of light.

• Shading of a surface - changing of intensity of the
reflected light due to surface properties ad geometry,
and its locations in 3D with respect to locations of
viewer and light source.

We will cover Diffuse shading and Specular Shading. We
will study a trick that is easy to program, and ``looks’’ like
physical diffuse shading.

≠

Ambient coefficient Albedo coefficient≠
• Albedo coefficient -

percentage of white
light reflected by the
object

• White light -might
contains all visible
frequencies, not only
RGB.

• No attention to color.

Ambient ``shading’’ and Albedo
• Ambient light - has no particular direction.

• Every material has 3 coefficients .

• specifies the percentage of blue light that the surface reflects
(obviously, as blue light).

• The location of viewer and the location of the light-source are irrelevant.

• If a sphere has Ambient coefficient it
looks very dim in Red light, but bright in Blue or Green light.

• If illuminated by while light, then the sphere color is cyan.

• When describing a scene to (say) OpenGL, WebGL, processing.org etc, we
could specify for every light source how much intensity it emits (in RGB).

• In reality, there is no ambient light.

• In OpenGL, we could specify 3 sets of coefficients (for ambient, for diffuse,
and for specular. We can also specify the scene ambient RGB.

• E.g. specifying the ambient light in the scene as (0.3, 0.1, 0.9), and a
sphere with =(0, 0, 0.5), will be seen with

(kd . r, kd . g, , kd . b)
kd . b

(kd . r, kd . g, kd . b) = (0.1, 0.9, 0.9)

kd RGB = (0, 0, 0.45)

Lambertian (Diffuse) Shading
• Consider a door illuminated by a flashlight (see below).

• Lets think about the intensity reflected from the door as the door rotates.

• I denotes the intensity. Think about I as #photons

• Let be a portion of the door with area . The number of photons falling on
e is I.

• Now open the door (without moving . Let be the area of the shadow that
 casts on the door. The area of f is (where is the angle of the

door)

• The same amount of photos that are passing via e are falling on a large area

/inch2

e 1in2

e) f
e 1in2/cos α α

e f

door after

αflashlight ⃗L

Intensity of the light on #photons falling on

The number of photons on and on is the same, but the area

increases to , so intensity now is

f = 1in2

e f

1in2/cos α I/f = I/ 1
cos α = I cos α

door
before

Lambertian (Diffuse) Shading

f

door after

flashlight

Intensity of the light on #photons falling on

The number of photons on and on is the same, but the area

increases to , so intensity now is

Let be a unit vector from toward the light source, and let be the normal
to the door.

The intensity of light reflected from is intensity of light hitting f times

Conclusion: To create diffuse shading, render f with RGB=

f = 1in2

e f
1in2/cos α I/f = I/ 1

cos α = I cos α

⃗L f ⃗n

cos α = ⃗L ⋅ ⃗n
f kd

kd I ⃗L ⋅ ⃗n

⃗L
⃗n

∢
∢

α

α

Lambertian (Diffuse) Shading
• Simple model: amount of energy

from a light source depends on
the direction at which the light
ray hits the surface

• Results in shading that is 
view independent

𝐿d = 𝑘d𝐼 max(0,𝐧・𝐥)

diffuse
coefficient

cos 𝜃
intensity/color

of light

http://processing.org

Lambertian Shading
• 𝑘d is a property of the surface itself (3 constants - one per

each color channel)

• Produces matte appearance of varying intensities

• Produces matte appearance

[F
ol

ey
 e

t
al

.]

kd

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 5

Lambertian shading

7

The moon paradox
• why don’t we see this gradual shading when looking at

the moon ?

VS

Toward Specular Shading:
Perfect Mirror

• Many real surfaces show some
degree of shininess that
produce specular reflections

• These effects move as the
viewpoint changes (as oppose
to diffuse and ambient shading)

• Idea: produce reflection when 𝐯
and 𝐥 are symmetrically
positioned across the surface
normal

Imaginary light source

light source

d

d

p

Reflected
 light source

Mirrors - perfect reflections
•Before talking about specular reflection, lets see

how to render a scene that contains mirror.

•Ray tracing: For each pixel on the image plane, trace

a ray d from the eye via this pixel, till hits an object.
If this object is a mirror, we need to continue this ray
in the deflected direction r.

•How could find find r ?

•Claim: 𝐫 = 𝐝 - 2(𝐝・𝐧)𝐧, n is a unit vector
orthogonal to the mirror.

•Proof

•Assume wlog that n=(0,1) (vertical upward).

• Look at the components: d=(d.x,d.y), r=(r.x, r.y)

• 𝐫 and 𝐝 have the same x-value, but opposite y-

value:

• r.x=d.x and

• r.y= -d.y = r.y+ (-2r.y) = r.y -2 (n・r)

• (𝐝・𝐧)𝐧=(0, r.y).

lamp

mirror

Application: mirror sphere

• A ray d that hits the sphere B. We find the intersection point P, find

the normal to B at P, ,

• and bounced in the direction

n =
P − c

|P − c |
r = d − 2(n ⋅ d)d

r

Blinn-Phong (Specular) Shading
• Many real surfaces show some

degree of shininess that produce
specular reflections

• These effects move as the
viewpoint changes (as oppose to
diffuse and ambient shading)

• Idea: produce reflection when 𝐯
and 𝐥 are symmetrically positioned
across the surface normal

Blinn-Phong (Specular) Shading
•For any two unit vectors , the vector

 is a bisector of the angle between
these vectors.

•Normalize 𝐯 + 𝐥

𝐡 = (𝐯 + 𝐥) / ‖𝐯 + 𝐥‖

• In a perfect mirror, the 100% of the
reflection occurs at the surface point
where h is the normal n

•Diffuse reflection. Reflect large value for
points where h is ``almost’’ n

•Phong heuristic:

𝐿s = 𝑘s𝐼 max(0, (𝐧・𝐡)p.)

⃗v, ⃗l
v + l

specular
coefficient Phong

exponent

Note: shadows are
additional effort,
not a specular effect

Blinn-Phong Decomposed

https://en.wikipedia.org/wiki/Phong_shading

Ambient Diffuse Specular Phong Reflection+ + =

https://en.wikipedia.org/wiki/Phong_shading

Blinn-Phong Shading
• Increasing 𝑝 narrows the lobe

• This is kind of a hack, but it does look good

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 5

Specular shading

[F
ol

ey
 e

t
al

.]

19

ks

p

Putting it all together
• Usually include ambient, diffuse, and specular in one

model

𝐿 = 𝐿a + 𝐿d + 𝐿s

𝐿 = 𝑘a𝐼a + 𝑘d𝐼 max(0,𝐧・𝐥) + 𝑘s𝐼 max(0,𝐧・𝐡)p

• And, the final result accumulates for all lights in the scene

𝐿 = 𝑘a𝐼a + Σi (𝑘d𝐼i max(0,𝐧・𝐥i) + 𝑘s𝐼i max(0,𝐧・𝐡i)p)

• Be careful of overflowing! You may need to clamp colors,
especially if there are many lights.

Simple Ray Tracer
function ray_cast(eye, dir, near, far) {
 let hit_surf = undefined; let hit_rec = undefined;
 let t_min = 0; let hit_t = Infinity;
 let color = background; //default background color

 scene.surfaces.forEach(function(surf) {
 let intersect_rec = surf.hit(eye, dir, t_min, hit_t);
 if (intersect_rec.hit) {
 hit_surf = surf;
 hit_t = intersect_rec.t;
 hit_rec = intersect_rec;
 }
 });

 if (hit_surf !== undefined) {
 color = hit_surf.kA * Ia;
 scene.lights.forEach(function(light) {
 //compute 𝐥i, 𝐡i

 color = color + hit_surf.kD*𝐼i*max(0,𝐧・𝐥i) + hit_surf.kS*𝐼i*max(0,𝐧・
𝐡i)p;

 });
 }

 return color;
}

for each pixel p in Image {

 let [eye, dir] = camera.compute_ray(p);

 let c = ray_cast(eye, dir, 0, Infinity);

 image.update(p, c);

}

Refraction and Snell Law
• When light passes from one medium to another, (say air

glass or glass air, its direction might change.

• This happens when the speed of light in the two mediums are
different

→
→

Credit: Wikipedia

Following the wavefront

•
Credit: Wikipedia

 For the wavefronts to stay connected at the boundary
the wave must change direction.

• Make sure you know whether you’re entering or leaving
the transmissive material:

• Note: We won’t ask you to trace rays through
intersecting transparent objects :-)

Refraction & Sidedness of Objects

T

ηT = material
 index

ηi=1

N

T

ηT= 1

ηi = material
 index

N

I
I

28

 nwater = 1.3

Refraction and Snell Law
• When ray of light traverses from one medium (e.g. from air

to water) it might bend. This is called refraction.

Examples of refractions

Total Internal Reflection

No transmission

26

Image courtesy of Frazzydee on Wikimedia Commons. License: CC-BY-SA. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

camera lense

Fiber optics

credit: wikipedia

Refraction and Snell’s Law
• Governs the angle at which a refracted ray

bends when traversing from air to glass, water
etc.

• Computation based on refraction index
(confusingly denoted nt) of the mediums.
The mediums here are air and glass.

• Typical air has refraction indexed

•

•Snell law: nt sin 𝜃 = n sin 𝜙

nair = 1
nglass = 1.5
nwater = 1.3
nfiber optics = 1.46

air

Water
Glass

ϕ = arcsin(
1

1.3
sin θ)

Air

Snell’s Law and vector
calculus

• Working with cosine’s are
easier because we can use
dot products

• Can derive the vector for the
refraction direction 𝐭 as

•

Careful:
don’t confuse (a normal vector) with (1.3 for water) and with (=1 for air)n nt n

Water

Total Internal Reflection

Total Internal Reflection

No transmission

26

Image courtesy of Frazzydee on Wikimedia Commons. License: CC-BY-SA. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Recursive Ray
Tracing

Shadows
• Idea: after finding the closest

hit, cast a ray to each light
source to determine if it is
visible

• Be careful not to intersect with
the object itself. Two solutions:

• Only check for hits against
all other surfaces

• Start shadow rays a tiny
distance away from the hit
point by adjusting 𝑡min  

Color ray_cast(Ray ray, SurfaceList scene, float near, float far) {
 ...
 //initialize color; compute hit_surf, hit_position;
 ...

 if (hit_surf is valid) {
 color = hit_surf.kA * Ia;
 scene.lights.forEach(function(light)
 //compute 𝐥i, 𝐡i

 //check for shadow rays to decide if the light illuminates
 if (ray from hit_position in direction of 𝐥i does not hit scene) {

 color += hit_surf.kD*𝐼i*max(0,𝐧・𝐥i) + hit_surf.kS*𝐼i*max(0,𝐧・𝐡i)p;

 }
 });

 //compute reflect direction 𝐫i

 //call ray_cast() recursively for mirror reflections
 color += hit_surf.kM*ray_cast(hit_position, 𝐫i, scene, epsilon, +inf);

 }

 return color;
}

Recursive Ray Tracer Shadows
• Surface should only be illuminated if nothing blocks the

light from hitting the surface

• This can be easily checked by intersecting a new ray with
the scene!• Let’s think about shadows...

21

Ray Casting vs. Ray Tracing

This image is in the public domain.
Source: openclipart

Ray from hit point to
light is blocked by

some other surface

Ray Casting vs Ray Tracing
• Ray casting: tracing rays from eyes only

• Ray tracing: tracing secondary rays
• Let’s think about shadows...

21

Ray Casting vs. Ray Tracing

This image is in the public domain.
Source: openclipart

Secondary rays are used for
testing shadows, doing

reflections, refractions, etc.

(hard) Shadows
• Idea: after finding the closest

hit, cast a ray to each light
source to determine if it is
visible

• Be careful not to intersect with
the object itself. Two solutions:

• Only check for hits against
all other surfaces

• Start shadow rays a tiny
distance away from the hit
point by adjusting 𝑡min  

Distribution Ray
Tracing

Reality Check: Do These
Pictures Look Real?

Let’s Pause for a Moment...

• Do these pictures look real?

39

What’s Wrong?

• No surface is a perfect mirror because no surface is
perfectly smooth

Let’s Pause for a Moment...

• Do these pictures look real?

39

What have we modeled?

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 21

Classic reflection behavior

Lambertianglossy specular

ideal specular (mirror)

13

Most Surfaces have
Microgeometry

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 21

Adding microgeometry

12

Ideal Reflection/RefractionWhat’s Wrong then?

• No surface is a perfect mirror,
no material interface is perfectly smooth

Adapted from blender.org

Perfectly specular
(mirror) reflection

Perfectly specular
refraction

1 ray in 1 ray out
1 ray in

1 ray out

1 ray out

41

Non-Ideal Reflection/Refraction

• Can approximate the microgeometry

Non-Ideal Reflection/Refraction

Non-ideal glossy
reflection

Non-ideal refraction

• No surface is a perfect mirror,
no material interface is perfectly smooth

Adapted from blender.org

1 ray in
1 ray in

many
rays out

many
rays out

42

Non-Ideal Reflection/Refraction

images from blender.org

Glossy (as opposed to mirror) reflection

Glossy (as opposed to perfect) refraction

43

Courtesy of Blender Foundation. License CC-BY. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use�.

Approach: Distribution Glossy
Reflection by Randomly

Sampling Rays

https://graphics.stanford.edu/wikis/cs148-11-fall/RaytracingResults
http://www.baylee-online.net/Projects/Raytracing/Algorithms/Glossy-Reflection-Transmission

Randomly sample reflected rays

Ideal Reflection: One Ray
Per Bounce

• One reflection ray per intersection

perfect mirror

Reflection

θ θ

44

Perfect mirror

Glossy Reflection: Compute Many
Rays per Bounce and Average

• One reflection ray per intersection

perfect mirror

Reflection

θ θ

44

Polished surface

Glossy Reflection
• Multiple reflection rays

polished surface θ θ

Justin Legakis

45

Justin Legakis

Variation in this
distribution is controlled
by the glossiness of the
surface Other Uses of

Distribution Ray Tracing

Approach: Distribution Glossy
Reflection by Randomly

Sampling Rays

https://graphics.stanford.edu/wikis/cs148-11-fall/RaytracingResults
http://www.baylee-online.net/Projects/Raytracing/Algorithms/Glossy-Reflection-Transmission

Randomly sample reflected rays

Ideal Reflection: One Ray
Per Bounce

• One reflection ray per intersection

perfect mirror

Reflection

θ θ

44

Perfect mirror

Glossy Reflection: Compute Many
Rays per Bounce and Average

• One reflection ray per intersection

perfect mirror

Reflection

θ θ

44

Polished surface

Glossy Reflection
• Multiple reflection rays

polished surface θ θ

Justin Legakis

45

Justin Legakis

Variation in this
distribution is controlled
by the glossiness of the
surface Other Uses of

Distribution Ray Tracing

Problem: Hard Shadows

• One shadow ray per intersection
per point light source

Shadows
• One shadow ray per

intersection per point
light source

no shadow rays

one shadow ray

46

Shadows
• One shadow ray per

intersection per point
light source

no shadow rays

one shadow ray

46

Soft Shadows

http://erich.realtimerendering.com/shadow_comparison.html

Hard shadows Soft shadows

Soft Shadows

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 23

Soft shadows

5

What Causes Soft Shadows

http://user.online.be/felixverbelen/lunecl.jpg

Lights aren’t all point sources

Distribution Soft Shadows

Randomly sample light rays

Computing Soft Shadows
• Model light sources as spanning

an area

• Sample random positions on area
light source and average rays

Soft Shadows
• Multiple shadow rays

to sample area light
source

one shadow ray
(to random location)

lots of shadow rays

48

Soft Shadows
• Multiple shadow rays

to sample area light
source

one shadow ray
(to random location)

lots of shadow rays

48

Problem: Aliasing
Drawing a black line on a white board

Some pixels need to be rendered as gray, with gray level=
Area of black region in pixel

Area of pixel

Pixel:

• Problem: Hard to calculate how much of the pixel is covered

• Solution: Random sample points in the pixel.

• Calculate what is the percentage of the point of each color

Distribution Antialiasing w/
Regular Sampling

Multiple rays per pixel

Moiré pattern

http://upload.wikimedia.org/wikipedia/commons/f/fb/Moire_pattern_of_bricks_small.jpg

Problem: Aliasing

http://www.hackification.com/2008/08/31/experiments-in-ray-tracing-part-8-anti-aliasing/

Antialiasing w/ Supersampling

• Cast multiple rays per pixel, average result

Antialiasing – Supersampling
• Multiple rays per pixel

jaggies w/ antialiasing

49

Distribution Antialiasing

Multiple rays per pixel

Distribution Antialiasing w/
Regular Sampling

Multiple rays per pixel

Moiré pattern

http://upload.wikimedia.org/wikipedia/commons/f/fb/Moire_pattern_of_bricks_small.jpg

Distribution Antialiasing w/
Random Sampling

Remove Moiré patterns
http://en.wikipedia.org/wiki/File:Moire_pattern_of_bricks.jpg

Random Sampling Could Miss
Regions Without Enough Sampling

?

?

?

Stratified (Jittered) Sampling Problem: Focus
Real Lenses Have Depth of Field

Problem: Focus
Real Lenses Have Depth of Field

http://liam887.files.wordpress.com/2010/08/weaver.jpg

Depth of Field
• Multiple rays per pixel, sample

lens aperture
• Multiple rays per pixel:

sample lens aperture

MIT EECS 6.837 – Durand

Depth of Field

Justin Legakis
focal length

film

out-of-focus blur

out-of-focus blur

51

• Multiple rays per pixel:
sample lens aperture

MIT EECS 6.837 – Durand

Depth of Field

Justin Legakis
focal length

film

out-of-focus blur

out-of-focus blur

51

Justin Legakis

Distribution Depth of Field

Randomly sample eye positions

Square lens
“Focus plane”

Problem: Exposure Time
Real Sensors Take Time to Acquire

Problem: Exposure Time
Real Sensors Take Time to Acquire

http://www.matkovic.com/anto/3dl-test-balls-01.jpg

Randomly sample positions

Motion Blur
• Sample objects

temporally over
time interval

Rob Cook

50

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Motion Blur
• Sample objects temporally over a time interval

