Ray Tracing 2

Shading

Quick reminder how to transform the image plane into canonical representation

Last Time

Now in 3D
Assume first $n_{x}=n_{y}$ (\#columns=\#rows) Witness points (first in 2D):
$P_{i, j}=$ Eye $-D \overrightarrow{\mathbf{w}}$
$+\left(2 \frac{j}{n_{i}}-1-\frac{0.0}{n_{n}}\right) \bar{u}$

$$
+\left(2 \frac{i}{n_{y}}-1-\frac{0.5}{n_{y}}\right) \overrightarrow{\mathbf{v}}
$$

$i, j=1,2, \ldots$ \#columns
Ray $\mathrm{r}: r=$ Eye $+t\left(P_{i, j}-\right.$ Eye $)$

Assume first $n_{x}=n_{y}$ (\#columns=\#rows)
Witness points (first in 2D):
If you prefer to aligned the cameras' coordinate system with xyz;
Use the matrix $M=$ Rotation $_{\vec{u}, \vec{v} . \vec{w}} \cdot \operatorname{Trans}(-E y e) \cdot p$
Rotation $_{\vec{u}, \vec{v}, \vec{w}}=\left[\begin{array}{ccc}- & \vec{u} & - \\ - & \vec{v} & - \\ - & \vec{w} & -\end{array}\right]$
https://www.geogebra.org/m/jdqhhwku

Intersecting Objects

for each pixel \{
compute viewing ray
intersect ray with scene
compute illumination at intersection
store resulting color at pixel
\}

Ray Tracing Algorithm

for each pixel \{
compute viewing ray
intersect ray with scene
compute illumination at intersection
store resulting color at pixel

Intersection with Many Types of Shapes

- In a given scene, we also need to track which shape had the nearest hit point along the ray.
- This is easy to do by augmenting our interface to track a range of possible values for t, $\left[t_{\text {min }}, t_{\text {max }}\right]$:
intersect(eye, dir, t_min, t_max);
- After each intersection, we can then update the range

Intersection with Many Types of Shapes

for each pixel p in Image
let [eye, dir] = camera.compute_ray(p);
let hit_surf = undefined; let hit_rec = undefined;
let t_min $=0$; let hit_t = Infinity;
scene.surfaces.forEach(function(surf) \{
let intersect_rec = surf.intersect(eye, dir, t_min, hit_t);
if (intersect_rec.hit) \{
hit_surf = surf;
hit_t = intersect_rec.t;
hit_rec = intersect_rec;
\}
\});
//Compute a color c image.update(p, c);

Illumination

for each pixel \{
compute viewing ray
intersect ray with scene
compute illumination at intersection
store resulting color at pixel
\}

Our images so far

- With only eye-ray generation and scene intersection

```
for each pixel p in Image {
    let hit_surf = undefined;
    ...
    scene.surfaces.forEach( function(surf)
    if (surf.intersect(eye, dir, ...)) {
        hit_surf = surf;
    }
    });
    c = hit_surf.ambient;
    Image.update(p, c)
}
    M,_


\section*{Today: shading}


From this
Diffuse
+ Specular
(ambient shading) \({ }^{+}\)Shading Shading \(\Rightarrow\) this

\section*{Shading}
- Goal: Compute light reflected toward camera
- Inputs:
- eye direction
- light direction (for each of many lights)
- surface normal
- surface parameters (color, shininess, ...)


\section*{Shading Models}

Just to be sure:

\section*{Shading \(\neq\) Shadows}
- Shadows are casted by occluding sources of light.
- Shading of a surface - changing of intensity of the reflected light due to surface properties ad geometry, and its locations in 3D with respect to locations of viewer and light source.

We will cover Diffuse shading and Specular Shading. We will study a trick that is easy to program, and "looks" like physical diffuse shading.

\section*{Light Sources}
- There are many types of possible ways to model light, but for now we'll focus on point lights
- Point lights are defined by a position \(\mathbf{p}\) that irradiates equally in all directions
- Technically, illumination from real point sources falls off relative to distance squared, but we will ignore this for now.


\section*{Ambient coefficient \(\neq\) Albedo coefficient}
- Albedo coefficient percentage of white light reflected by the object
- White light -might contains all visible frequencies, not only RGB.
- No attention to color.


\section*{Ambient "shading" and Albedo}
- Ambient light - has no particular direction.
- Every material has 3 coefficients \(\left(\mathbf{k}_{\mathrm{d}} \cdot \mathbf{r}, \mathbf{k}_{\mathrm{d}} \cdot \mathbf{g}, \mathbf{k}_{\mathbf{d}} \cdot \mathbf{b}\right)\).
- \(\mathbf{k}_{\mathbf{d}} \cdot \mathbf{b}\) specifies the percentage of blue light that the surface reflects (obviously, as blue light).
- The location of viewer and the location of the light-source are irrelevant.
- If a sphere has Ambient coefficient \(\left(k_{d} . r, k_{d} . g, k_{d} . b\right)=(0.1,0.9,0.9)\) it looks very dim in Red light, but bright in Blue or Green light.
- If illuminated by while light, then the sphere color is cyan.
- When describing a scene to (say) OpenGL, WebGL, processing.org etc, we could specify for every light source how much intensity it emits (in RGB).
- In reality, there is no ambient light.
- In OpenGL, we could specify 3 sets of coefficients (for ambient, for diffuse, and for specular. We can also specify the scene ambient RGB.
- E.g. specifying the ambient light in the scene as ( \(0.3,0.1,0.9\) ), and a sphere with \(k_{d}=(0,0,0.5)\), will be seen with \(R G B=(0,0,0.45)\)

\section*{Lambertian (Diffuse) Shading}


Intensity of the light on \(f=\) \#photons falling on \(1_{i n^{2}}\)
The number of photons on \(e\) and on \(f\) is the same, but the area increases to \(1_{i n^{2}} / \cos \alpha\), so intensity now is \(I / f=I / \frac{1}{\cos \alpha}=I \cos \alpha\)

Let \(\overrightarrow{\mathbf{L}}\) be a unit vector from \(f\) toward the light source, and let \(\overrightarrow{\mathbf{n}}\) be the normal to the door.
\(\cos \alpha=\overrightarrow{\mathbf{L}} \cdot \overrightarrow{\mathbf{n}}\)
The intensity of light reflected from \(f\) is intensity of light hitting f times \(k_{d}\)
Conclusion: To create diffuse shading, render f with \(\mathrm{RGB}=k_{d} I \vec{L} \cdot \vec{n}\)

\section*{Lambertian (Diffuse) Shading}
- Consider a door illuminated by a flashlight (see below).
- Lets think about the intensity reflected from the door as the door rotates.
- I denotes the intensity. Think about \(I\) as \#photons/inch \({ }^{2}\)
- Let \(e\) be a portion of the door with area \(1_{i n^{2}}\). The number of photons falling on \(e\) is \(I\).
- Now open the door (without moving \(e\) ). Let \(f\) be the area of the shadow that \(e\) casts on the door. The area of \(f\) is \(1_{i n^{2}} / \cos \alpha\) (where \(\alpha\) is the angle of the door)
- The same amount of photos that are passing via e are falling on a large area


Intensity of the light on \(f=\#\) photons falling on \(1_{\text {in }^{2}}\)
The number of photons on \(e\) and on \(f\) is the same, but the area
increases to \(1_{i n^{2}} / \cos \alpha\), so intensity now is \(I / f=I / \frac{1}{\cos \alpha}=I \cos \alpha\)

\section*{Lambertian (Diffuse) Shading}
- Simple model: amount of energy from a light source depends on the direction at which the light ray hits the surface
- Results in shading that is view independent


\section*{Lambertian Shading}
- \(k_{d}\) is a property of the surface itself (3 constants - one per each color channel)
- Produces matte appearance of varying intensities

\(k_{d} \longrightarrow\)

Toward Specular Shading:
Perfect Mirror
- Many real surfaces show some degree of shininess that produce specular reflections
- These effects move as the viewpoint changes (as oppose to diffuse and ambient shading)
- Idea: produce reflection when \(\mathbf{v}\) and \(\mathbf{l}\) are symmetrically positioned across the surface normal


Imaginary light source

\section*{The moon paradox}
- why don't we see this gradual shading when looking at the moon?


\section*{Mirrors - perfect reflections}
- Before talking about specular reflection, lets see how to render a scene that contains mirror.
- Ray tracing: For each pixel on the image plane, trace a ray d from the eye via this pixel, till hits an object. If this object is a mirror, we need to continue this ray in the deflected direction \(r\).
- How could find find \(r\) ?
- Claim: \(\mathbf{r}=\mathbf{d}-2(\mathbf{d} \cdot \mathbf{n}) \mathbf{n}\),
\(\mathbf{n}\) is a unit vector
orthogonal to the mirror.

- Proof
- Assume wlog that \(\mathbf{n = ( 0 , 1 )}\) (vertical upward).
- Look at the components: \(\mathbf{d = ( d . x , d . y ) , \quad r = ( r . x , ~ r . y ) ~}\)
\(\cdot \mathbf{r}\) and \(\mathbf{d}\) have the same \(x\)-value, but opposite \(y\) -
value:
-r.x=d.x and
-r. \(y=-d . y=r . y+(-2 r . y)=r . y-2(n \cdot r)\)
\(\bullet(\mathbf{d} \cdot \mathbf{n}) \mathbf{n}=(0, r . y)\).
(d-n)n=(0, r.y).

\section*{Application: mirror sphere}
- A ray \(d\) that hits the sphere \(B\). We find the intersection point \(P\), find the normal to B at \(\mathrm{P}, \quad \mathbf{n}=\frac{P-c}{|P-c|}\)
- and bounced in the direction \(\mathbf{r}=\mathbf{d}-2(\mathbf{n} \cdot \mathbf{d}) \mathbf{d}\)


\section*{Blinn-Phong (Specular) Shading}
- For any two unit vectors \(\vec{v}, \vec{l}\), the vector \(\mathbf{v}+\mathbf{l}\) is a bisector of the angle between these vectors.
- Normalize \(\mathbf{v}+\mathbf{1}\)
\[
\mathbf{h}=(\mathbf{v}+\mathbf{l}) /\|\mathbf{v}+\mathbf{l}\|
\]
- In a perfect mirror, the \(100 \%\) of the reflection occurs at the surface point where \(h\) is the normal \(n\)
- Diffuse reflection. Reflect large value for points where \(h\) is "almost" \(n\)
- Phong heuristic:


\section*{Blinn-Phong (Specular) Shading}
- Many real surfaces show some degree of shininess that produce specular reflections
- These effects move as the viewpoint changes (as oppose to diffuse and ambient shading)

\section*{Reflected_Value \(=\cos ^{m}(\alpha)=(h \cdot n)^{m}\)}
or
- Idea: produce reflection when \(\mathbf{v}\) and \(\mathbf{l}\) are symmetrically positioned across the surface normal


\section*{Blinn-Phong Decomposed}


\section*{Blinn-Phong Shading}
- Increasing \(p\) narrows the lobe
- This is kind of a hack, but it does look good


\section*{Simple Ray Tracer}
function ray_cast(eye, dir, near, far) \{
let hit_surf = undefined; let hit_rec = undefined;
let \(t \min =0\); let hit \(t=\) Infinity;
let color = background; //default background color
scene.surfaces.forEach( function(surf) \{
let intersect_rec \(=\) surf.hit(eye, dir, \(t_{\text {min, }}\) hit \(t\) ),
if (intersect_rec.hit) \{
hit_surf = surf;
hit_t = intersect rec.t;
hit_rec = intersect_rec;
\});
if (hit_surf !== undefined)
for each pixel \(p\) in Image \{
let [eye, dir] = camera.compute_ray(p); let c = ray_cast(eye, dir, 0, Infinity) ; image.update( \(\mathrm{p}, \mathrm{c}\) );
(hit_surf !== undefined)
color hit_surf.kA * Ia
scene.lights.forEach( function(light)
color \(=\) color + hit_surf. \(\mathrm{kD} * I_{i} * \max \left(0, \mathbf{n} \cdot \mathbf{1}_{i}\right)+\) hit \(\operatorname{surf} . \mathrm{kS} * I_{i} * \max (0, \mathbf{n}\)
\(\left.\mathbf{h}_{i}\right)^{p}\);
\});
\}
return color;
\}

\section*{Putting it all together}
- Usually include ambient, diffuse, and specular in one model
\[
\begin{gathered}
L=L_{a}+L_{d}+L_{s} \\
L=k_{a} I_{a}+k_{d} I \max (0, \mathbf{n} \cdot \mathbf{l})+k_{s} I \max (0, \mathbf{n} \cdot \mathbf{h})^{p}
\end{gathered}
\]
- And, the final result accumulates for all lights in the scene
\[
L=k_{a} I_{a}+\sum_{i}\left(k_{d} I_{i} \max \left(0, \mathbf{n} \cdot \mathbf{1}_{i}\right)+k_{s} I_{i} \max \left(0, \mathbf{n} \cdot \mathbf{h}_{i}\right)^{p}\right)
\]
- Be careful of overflowing! You may need to clamp colors, especially if there are many lights.

\section*{Refraction and Snell Law}
- When light passes from one medium to another, (say air \(\rightarrow\) glass or glass \(\rightarrow\) air, its direction might change.
- This happens when the speed of light in the two mediums are different

Credit: Wikipedia


\section*{Following the wavefront}
-
Credit: Wikipedia
For the wavefronts to stay connected at the boundary the wave must change direction.


\section*{Refraction and Snell Law}
- When ray of light traverses from one medium (e.g. from air to water) it might bend. This is called refraction.
the transmissive material:



\section*{Refraction and Snell's Law}
bends when traversing from air to glass, water etc.
- Computation based on refraction index (confusingly denoted \(\boldsymbol{n}_{\mathbf{t}}\) ) of the mediums. The mediums here are air and glass.
- Typical air has refraction indexed
\begin{tabular}{lr}
\(n_{\text {air }}=\) & 1 \\
\(n_{\text {glass }}=\) & 1.5 \\
\(n_{\text {water }}=\) & 1.3 \\
\(n_{\text {fiber optics }}=\) & 1.46
\end{tabular}
- Snell law: \(\mathbf{n}_{\mathbf{t}} \boldsymbol{\operatorname { s i n }} \theta=\mathbf{n} \boldsymbol{\operatorname { s i n }} \phi\)

\[
\phi=\arcsin \left(\frac{1}{1.3} \sin \theta\right)
\]

\section*{Snell's Law and vector calculus}
- Working with cosine's are easier because we can use dot products
- Can derive the vector for the refraction direction \(\mathbf{t}\) as
\(\mathbf{t}=\frac{n(\mathbf{d}+\mathbf{n} \cos \theta))}{n_{t}}-\mathrm{n} \cos \phi\)
\(\bullet \frac{n(\mathbf{d}-\mathbf{n}(\mathbf{d} \cdot \mathbf{n}))}{n_{t}}-\mathbf{n} \sqrt{1-\frac{n^{2}\left(1-(\mathbf{d} \cdot \mathbf{n})^{2}\right)}{n_{t}^{2}}}\)

Careful:
don't confuse \(\mathbf{n}\) (a normal vector) with ( \(1.3 n_{t}\) for water) and with \(n\) ( \(=1\) for air)

\section*{Recursive Ray Tracing}

\section*{Total Internal Reflection}


\section*{Shadows}
- Idea: after finding the closest hit, cast a ray to each light source to determine if it is visible
- Be careful not to intersect with the object itself. Two solutions
- Only check for hits against all other surfaces
- Start shadow rays a tiny distance away from the hit point by adjusting \(t_{\text {min }}\)


\section*{Recursive Ray Tracer}

Color ray_cast(Ray ray, SurfaceList scene, float near, float far) \{ ...
//initialize color; compute hit_surf, hit_position;
.
if (hit_surf is valid) \{
color = hit_surf.kA * Ia
\}


\section*{Ray Casting vs Ray Tracing}
- Ray casting: tracing rays from eyes only
- Ray tracing: tracing secondary rays


Secondary rays are used for testing shadows, doing reflections, refractions, etc.

\section*{Shadows}
- Surface should only be illuminated if nothing blocks the light from hitting the surface
- This can be easily checked by intersecting a new ray with the scene!

Ray from hit point to light is blocked by some other surface

\section*{(hard) Shadows}
- Idea: after finding the closest hit, cast a ray to each light source to determine if it is visible
- Be careful not to intersect with the object itself. Two solutions
- Only check for hits against all other surfaces
- Start shadow rays a tiny distance away from the hit point by adjusting \(t_{\text {min }}\)


\section*{Reality Check: Do These} Pictures Look Real?

\section*{Distribution Ray Tracing}

\section*{What's Wrong?}

- No surface is a perfect mirror because no surface is perfectly smooth

What have we modeled?

ideal specular (mirror)

glossy specular


Lambertian

\section*{Most Surfaces have Microgeometry}


Non-Ideal Reflection/Refraction
- Can approximate the microgeometry


\section*{Ideal Reflection/Refraction}



Glossy Reflection: Compute Many
Rays per Bounce and Average

Variation in this distribution is controlled by the glossiness of the surface


\section*{Ideal Reflection: One Ray Per Bounce}


\section*{Other Uses of Distribution Ray Tracing}


Glossy Reflection: Compute Many
Rays per Bounce and Average

Variation in this distribution is controlled by the glossiness of the surface


\section*{Ideal Reflection: One Ray Per Bounce}


\section*{Other Uses of Distribution Ray Tracing}

Abstract
Ray tracing is one of the most elegant techniques in computer graphics. Many phenomena that are difficult or puter graphics. Many phenomena that are ditficult or
impossible with other techniques are simple with ray tracing, including shadows, reflections, and refracted light. aay directions, however, have been determined precisely,
ad this has limited the capabilities of ray tracing By and this has limited the capabiltites of ray tracing. By
distributiting the directions of the rays according to the analytic function they sample, ray tracing can incorporate fuzzy phenomena. This provides correct and easy soluions to some previously unsolved or partially solved prob-
ms, including motion blur, depth of field, penumbras, ranslucency, and fuzzy reflections. Motion blur and depth of field calculations can be integrated with the visie surface calculations, avoiding the problems found in previous methods.

Ray traced images are sharp because ray directions are determined precisely from geometry. Fuzzy phenomenon
would seem to require large numbers of additional samples per ray. By distributing the rays rather than adding more of them, however, fuzzy phenomena can be rea dered with no additional rays beyond those required fo spatially oversampled rasy rocutions to some previously
vides correct and easy solut unsolved problems.
This approach has not been possible before because of aliasing. Ray tracing is a form of point sampling and, as such, has been subject to aliasing artifacts. This aliasing is not inherent, however, and ray tracing can be filtered
as effectively as any analytic method 4 . The filtering as effectively as any analytic method[4]. The filtering
does incur the expense of additional rays, but it is not

\section*{Soft Shadows}


Hard shadows


Soft shadows

\section*{Problem: Hard Shadows}
- One shadow ray per intersection per point light source

no shadow rays


\section*{Soft Shadows}


\section*{What Causes Soft Shadows}


Lights aren't all point sources


\section*{Distribution Soft Shadows}


Randomly sample light rays

\section*{Computing Soft Shadows}
- Model light sources as spanning an area
- Sample random positions on area light source and average rays


\section*{Problem: Aliasing}

Drawing a black line on a white board


Some pixels need to be rendered as gray, with gray level= Area of black region in pixel Area of pixel
- Problem: Hard to calculate how much of the pixel is covered
- Solution: Random sample points in the pixel.
- Calculate what is the percentage of the point of each color


\section*{Distribution Antialiasing w/ Regular Sampling}


Multiple rays per pixel

\section*{Antialiasing w/ Supersampling}
- Cast multiple rays per pixel, average result


\section*{Distribution Antialiasing}


Multiple rays per pixel
Distribution Antialiasing w/ Random Sampling


Remove Moiré patterns

Distribution Antialiasing w/ Regular Sampling


Multiple rays per pixel

Random Sampling Could Miss Regions Without Enough Sampling


\section*{Stratified (Jittered) Sampling}
One ray per box \begin{tabular}{c|c|c|}
\(\bullet\) & & \\
\hline\(\bullet\) & & \\
\hline & \(\bullet\) & \\
\hline\(\bullet\) & & \(\bullet\) \\
\hline
\end{tabular}

Problem: Focus
Real Lenses Have Depth of Field


Problem: Focus
Real Lenses Have Depth of Field


\section*{Depth of Field}
- Multiple rays per pixel, sample lens aperture


\section*{Distribution Depth of Field}


Randomly sample eye positions

Problem: Exposure Time
Real Sensors Take Time to Acquire

Problem: Exposure Time Real Sensors Take Time to Acquire


\section*{Motion Blur}
- Sample objects temporally over a time interval
```

