CSC 433/533 Computer Graphics

Alon Efrat
Thanks: Joshua Levine

What's Wrong?

- No surface is a perfect mirror because surfaces rarely perfectly smooth

Lecture 15
Wrapping up distributed Ray Tracing
Triangle Meshes
Oct. 13, 2020

Soft Shadows

What Causes Soft Shadows

Lights aren't all point sources

Distribution Soft Shadows

Randomly sample light rays

Computing Soft Shadows

One ray per pixel is not enough

- Model light sources as spanning an area
- Sample random positions on area light source and average rays

Approach: Distribution Glossy Reflection by Randomly Sampling Rays

Distribution Antialiasing

Multiple rays per pixel

Computing Soft Shadows

- Model light sources as spanning an area
- Sample random positions on area light source and average rays
- Shoot several rays and calculate the average among them

Problem: Aliasing

Antialiasing w/ Supersampling

- Cast multiple rays per pixel, average result

Antialiasing w/ Supersampling

- Cast multiple rays per pixel, average result

Distribution Ray Tracing:
One ray per pixel is not enough

Multiple rays per pixel

Distribution Antialiasing w/

 Regular SamplingMoiré pattern

Multiple rays per pixel

Random Sampling Could Miss Regions Without Enough Sampling

Even better: Distribution Antialiasing w/ Random Sampling

Remove Moiré patterns

Stratified (Jittered) Sampling

Problem: Focus
 Real Lenses Have Depth of Field

Depth of Field

- Multiple rays per pixel, sample lens aperture

Justin Legakis

Problem: Focus
Real Lenses Have Depth of Field

Distribution Depth of Field

Randomly sample eye positions

Problem: Exposure Time Real Sensors Take Time to Acquire

Motion Blur

- Sample objects temporally over a time interval

Problem: Exposure Time Real Sensors Take Time to Acquire

Next: Triangle Meshes and other data structures

- FOCG, Ch. 12
- Check out recommended reading for some additional references

Interpolation and Barycentric coordinates

```
Input a triangle given by 2 points A,B , and attribute
(say color) at each point
Also given - a point P. What is the reasonable guess
about the attribute at P?
Need to interpolate using a convex combination of
weights }\mp@subsup{w}{A}{},\mp@subsup{w}{B}{}\mathrm{ , all positive and sum to 1.
If not all positive or not sum to 1- then p is not on
this segment.
```


Interpolation and Barycentric coordinates

https://www.geogebra.org/m/gfau2ksn
Input a triangle given by 3 points, and attribute (say color) at each point

Interpolation and Barycentric coordinates

https://www.geogebra.org/m/gfau2ksn
Input a triangle given by 3 points, and attribute (say color) at each point

- For a pixel P inside a triangle $\triangle A B C$, the Barycentric coordinates w_{A}, w_{B}, w_{C}
- Specify how much weight show we give A, B, C to create P

$$
\begin{aligned}
& v \text { much weight show we give } A, B, C \text { to } \mathrm{cr} \\
& P=w_{A} \cdot A+w_{B} \cdot B+w_{A} \cdot C=
\end{aligned}
$$

Specifically $\quad\left(w_{A}+w_{B}+w_{C}\right) A+w_{B}(B-A)+w_{C}(C-A)==$

$$
A+w_{B} \overrightarrow{(B-A)}+w_{C} \overrightarrow{(C-A)}=
$$

- If A, B, C specifies locations, then P is on the triangle they defines
- If A, B, C are colors, then the same linear combination specifies how to interpolates the colors.
. $w_{A}=\frac{\operatorname{Area}(\triangle C B P)}{\operatorname{Area}(\triangle A B C)}-$ note $=$ the triangle of A is the triangle that does NOT include A .
- This is also used to check if P is inside $\triangle A B C$ - just check if $w_{\Delta}+w_{B}+w_{c}==1$

Shading on surfaces

- In practice, we have colors given either to each pixel (texture), or color for each vertex. The discussion below is only about shading
- For simplicity, assume surface has uniform color
- Problem: How could we produce the shading? Shedding requires normal for each pixels
- If we are happy with a polyhedra surface - just compute for each face the normal.
- If on the other hand, the surface interpolates a smooth surface (e.g. a sphere), we should think about other alternative

Shading on Surfaces

- In practice, we have colors given either to each pixel (texture), or color for each vertex. The discussion below is only about shading
- For simplicity, assume surface has uniform color
- Problem: How could we produce the shading ? Shedding requires normal for each pixels
- If we are happy with a polyhedra surface - just compute for each face the normal. - If on the other hand, the surface interpolates a smooth surface (e.g. a sphere), we should think about other alternative

Remember Diffuse Shading

- Simple model: amount of energy from a light source depends on the direction at which the light ray hits the surface
- Results in shading that is view independent

Diffuse and specula shading on triangle meshes

- The shading of each triangle is determined by its normal (same normal for all points in the triangle). Edges of triangles are very noticeable. This is called flat shading

Results of Gouraud Shading Pipeline

- Compute approx normal at vertices, compute their color and interpolate colors.

Diffuse and specula shading on triangle meshes

- The shading of each triangle is determined by its normal (same normal for all points in the triangle). Edges of triangles are very noticeable. This is called flat shading

$$
L_{d}=k_{d} \cdot I(\overrightarrow{\mathbf{n}} \cdot \vec{l})
$$

\vec{l}-direction to light

First Improvement, called Gouraud shading Compute normal at each triangle Approximate the normal at each vertex sum normals of adjacent triangles, divide by their number and renormalized)
Compute shading at each vertex (using both Diffuse and specular shading For each interval vertex, interpolate colors of vertices.

Second Improvement, called Phong shading

Compute approx normal at vertex (same as Gouraud)
Approximate the normal at pixel by interpolating the normals of its vertices.
For each vertex, computing shading using the approximated normal

Modeling Complex Shapes

Recall: Shape Models That We Have So Far

- Implicit Shapes $(f(\mathbf{p})=0$ for all \mathbf{p} on shape):
- Sphere: $f(\mathbf{p})=(\mathbf{p}-\mathbf{c}) \cdot(\mathbf{p}-\mathbf{c})-R^{2}=0$
- Plane: $f(\mathbf{p})=(\mathbf{p}-\mathbf{a}) \cdot \mathbf{n}=0$
- Parametric Shapes $(\mathbf{p}(t)$ is a point on shape for all $t)$:
- Rays: $\mathbf{p}(t)=\mathbf{o}+t \mathbf{d}$
- Triangles:
$p=\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c}, \quad 0 \leq \alpha, \beta, \gamma$ and $\alpha+\beta+\gamma=1$
- Triangle (second form)
$p=\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a}), \quad 0 \leq \beta, \gamma$ and $\beta+\gamma \leq 1$
- Parallelogon $p=\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a}) \quad 0 \leq \beta, \gamma \leq 1$

Triangle Meshes

- Are used in a huge number of applications
- Can be used to represent complex shapes by breaking them into simple (perhaps the simplest) two-dimensional elements

Definition of Trianales

- 3 vertices (points a, b, cin 3D space)
- The normal of the triangle is a vector, \mathbf{n}, that points to its front side
- Convention: vertices listed in counter-clockwise order from the "front" of the triangle

$$
\mathbf{n}=(\mathbf{b}-\mathbf{a}) \times(\mathbf{c}-\mathbf{a})
$$

Definition of Triangle Meshes

- In short, a collection of triangles in 3D space that are connected to form a surface
- Terminology: vertices, edges, triangles
- Surface is piecewise planar, except where two triangle meet which forms a crease and their shared edge
- Meshes are often a piecewise approximation of a smooth surface. We will study how graphics can hide the artifacts, creates the illusion of a smooth surface without increasing their comolexity.

Mesh Topology

A Simple Mesh

- How many vertices? How many triangles?

Two Considerations for Meshes

- We typically care about the mesh being a good approximation to a surface:
- This leads to questions of mesh geometry, e.g.: How many triangles? where to place their vertices?
- We also care about how these triangles are connected
- This leads to questions of mesh topology, e.g.: Are there holes in the mesh? How do triangles intersect?
- Mesh topology can affect assumptions on algorithms that process meshes

Topology vs. Geometry

- Same geometry, different topology

- Same topology, different geometry

Topological Validity

- Meshes that approximate surfaces should be manifolds
- Definition: A (2-dimensional) manifold is a space where every point locally appears to be 2-dimensional space
- 3 cases: points that are on edges, points that are vertices, and points that are interior to triangles.

When is a Mesh a Manifold?

- Definition: A (2-dimensional) manifold is a space where every point locally appears to be 2-dimensional space
- Implication: Every vertex has a single, complete loop of triangles around it

When is a Mesh a Manifold?

- Definition: A (2-dimensional) manifold is a space where every point locally appears to be 2-dimensional space
- Implication: Triangles only intersect at vertices and edges

Manifolds with Boundary

- Sometimes, we relax the manifold condition to allow meshes with boundaries.

- Every point on a manifold with boundary either locally appears to be 2-dimensional space or 2-dimensional half-space
- Every edge is used by either one or two triangles
- Every vertex connects to a single edgeconnected set of triangles

Consistent Orientation

- In many applications, all triangles facing the same way is important
- Can be used to distinguish inside from outside.
- If consistent: neighboring triangles will appear to disagree on the order of vertices on their shared edge

Simple Representations of Triangle Meshes

Important Concerns w/ Representing Triangle Meshes

- Efficiency of storage size
- Many representations store redundant information
- Efficiency of access
- How quickly can we get the information we need for rendering?
- How quickly can we get neighborhood information, for mesh modification?

Using Indexed Meshes

- Triangles share a common list of vertices, storing only references/pointers:
- A vertex (and its related information (RGB etc) is stored only once.

Triangle \{
vertices[3]; //object reference or int
\};

vertex \{ \};

- Store a triangle mesh using two arrays, one of Vertex and the other of Triangle
- We will study data structures that could expedite some operations (not today)

Using Separate Triangles

- Use a simple structure to store each triangle:

Triangle \{

vertexPositions[3]; //vec3
\};

- Store a triangle mesh using an array of Triangle
- Problems: The coordinates and other properties (colors) of a vertex are stored multiple times: Could be bad because of

1. Wasteful (large numbers)

2. concurrency issues
3. In certain scenarios, the very same vertex might appear with different locations. For example, start from a vertex at $x=1 / 3$. Resize by scaling by 3 . Is the vertex at $x=0.99999$ or at $x=1$?

\#	Vertex 0		Vertex 1
Vertex 2			
0	$\left(a_{x}, a_{y}, a_{z}\right)$	$\left(b_{x}, b_{y}, b_{z}\right)$	$\left(c_{x}, c_{y}, c_{z}\right)$
1	$\left(b_{x}, b_{y}, b_{z}\right)$	$\left(d_{x}, d_{y}, d_{z}\right)$	$\left(c_{x}, c_{y}, c_{z}\right)$
2	$\left(a_{x}, a_{y}, a_{z}\right)$	$\left(d_{x}, d_{y}, d_{z}\right)$	$\left(b_{x}, b_{y}, b_{z}\right)$

Using Indexed Meshes

- Each triangle thus tracks references to the vertices associated with it

Using Indexed Meshes

- Alternatively one can store using array indices directly:

IndexedMesh \{
vertices[num_verts]; //Vec3
triIndices[num_tris]; //int

$$
\} ;
$$

- Plus, it is easy (or at least easier) to see which two triangles share an edge.

Data on Meshes

- Typically, we store a variety of data on meshes as well
- Can store this on vertices, triangles, or even edges
- Examples:
- Colors stored on vertices
- Normals stored on faces
- Texture coordinates stored on vertices
- Information stored on vertices is typically interpolated with barycentric coordinates

Diffuse and specula shading on triangle meshes

- The shading of each triangle is determined by its normal (same normal for all points in the triangle). Edges of triangles are very noticeable. This is called flat shading

Mesh File Formats: *.obj

- Widely used format for indexed meshes
- Supports additional data stored on vertices and polygons

$$
\mathrm{v}-0.630 \quad 0.750 \quad 0.025
$$

We will get back to geometric data structures in the future.

Triangle Meshes More Efficient Representations

Triangle Strips

- Idea: Rely on the mesh property and group triangles that share common vertices
- Create a new triangle by reusing the last two vertices in the strip
- [0, 1,2,3,4,5,6,7] specifies the sequence on the right with triangles ($0,1,2$), ($1,2,3$), ($2,3,4$) \ldots

- Have to invert every other for consistent orientation

Triangle Strips

- Complex meshes store list of strips
- How long of a strip to use?

Triangle Fans

- Same idea as triangle strips, but keep the earliest vertex in the list instead of the last two
- $[0,1,2,3,4,5]$ specifies the sequence on the right with triangles ($0,1,2$), ($0,2,3$), (0,3,4), ..

Queries on Meshes

- For face, find all:
- Vertices
- Edges

```
Triangle \{
v[3]; //Vertex
e[3]; //Edge
adj[3]; //Triangle
```

Can we do better?

- Incident edges
- Incident triangles
- Neighboring vertices
- For edge, find:
- Two adjacent faces
- Two adjacent vertices
t[]; \}

Edge \{
v[2]; //Vertex
t[2]; //Triangle
/Triangle //Edge //Vertex

Mesh Data Structures and Queries

Typical Operations on the Data Structure

Triangle-Neighbor Structure

- Let's try first extending the indexed mesh structure for sharing vertices
- Add pointers, nbr [], to 3 neighboring triangles
- Add a single pointer, t , for each vertex to one of its adjacent triangles
- Can now enumerate triangles adjacent to vertices

Triangle-Neighbor Structure

Triangle \{
v[3]; //Vertex
nbr[3]; //Triangle
\}

Vertex \{
t; //Triangle
\}
..or..

IndexedMesh
...
tInd[num_tris]; //int[3]
tNbr[num_tris]; //int[3]
vTri[num_verts]; //int
\};

Triangle-Neighbor Structure

TrianglesOfVertex(v) \{
$t=v . t$
do \{
find i where (t.v[i] == v)
$t=t . n b r[i]$
\} while (t != v.t);
\}

- Can optimize by storing pointers to neighboring edges

Triangle-Neighbor Structure

- Recall that indexed meshes needed $36^{*} n_{v}$ bytes and $n_{t} \approx 2 n_{v}$
- We added an array of triples of indices (per triangle)
- This increases storage by $3^{*} 4^{*} n_{t}$ or $24^{*} n_{v}$ bytes
- We also added an array of representative triangle per vertex
- This increases storage by $4^{*} n_{v}$ bytes
- Total storage: $36+24+4=64$ bytes per vertex
- Still not as much as separate triangles

Winged-Edge Structure

Winged-Edge Structure

- Widely used mesh structure that focuses on edges instead of triangles
- Edges store pointers to:
- Head/Tail vertices
- Left/Right triangles
- Left/Right "next" edges
- Left/Right "previous" edges
- Each vertex/triangle stores one
 pointer to some edge

Half-Edge Structure

(sometimes called Doubly connected Edge List -DCEL)

- Simplifies winged-edge, removes awkwardness of checking which way edges are oriented
- Each half-edge store pointers to:
- Head vertex
- Left triangle
- Left "next" edge
- The opposite "pair" half-edge (the twin edge)
- Each vertex/triangle stores one pointer to a half-edge

Half-Edge Structure

Half-Edge Storage Requirements

- Vertex data: 3 floats for position, 1 int for edge reference
- $4^{*} 4=16 n_{v}$ bytes
- Face data: 1 int for edge reference
- $4^{*} 1=4^{*} n_{t}=8 n_{v}$ bytes.
- Edge data, 4 ints for references, but store a pair of half edges for each edge
- $n_{h} \approx 6 n_{v}$
- $8^{*} 4^{*} 6=96 n_{v}$ bytes.
- In total, $120 \mathrm{n}_{\mathrm{v}}$ bytes.

Half-Edge Structure

HEdge \{

pair, next;	//HEdge
v;	//Vertex
f;	//Face

\};

EdgesOfVertex(v) \{
h = v.h;
do \{
h = h.next.pair;
\} while (h != v.h);
\}

```
dgesOfVertex(v) {
    v.e;
    do {
        if (e.tail == v) {
        e = e.lprev;
        } else {
        e = e.rprev;
        }
    } while (e != v.e);
}
```

Winged-Edge Implementation

