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Wrapping up distributed Ray Tracing 

  
Triangle Meshes

Oct. 13, 2020

What’s Wrong?

• No surface is a perfect mirror because surfaces rarely  
perfectly smooth   

Let’s Pause for a Moment... 

• Do these pictures look real? 

39 

             
       

Soft Shadows
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What Causes Soft Shadows

http://user.online.be/felixverbelen/lunecl.jpg 

Lights aren’t all point sources 

Distribution Soft Shadows

Randomly sample light rays 

Soft Shadows 
• Multiple shadow rays 

to sample area light 
source 

one shadow ray  
(to random location) 

lots of shadow rays 

48 

Computing Soft Shadows 
One ray per pixel is not enough

• Model light sources as spanning an area


• Sample random positions on area light 
source and average rays

Soft Shadows 
• Multiple shadow rays 

to sample area light 
source 

one shadow ray  
(to random location) 

lots of shadow rays 

48 



Approach: Distribution Glossy 
Reflection by Randomly 

Sampling Rays

https://graphics.stanford.edu/wikis/cs148-11-fall/RaytracingResults 
http://www.baylee-online.net/Projects/Raytracing/Algorithms/Glossy-Reflection-Transmission 

Randomly sample reflected rays 

Computing Soft Shadows
• Model light sources as spanning an area

• Sample random positions on area light 

source and average rays

• Shoot several rays and calculate the 

average among them

Soft Shadows 
• Multiple shadow rays 

to sample area light 
source 

one shadow ray  
(to random location) 

lots of shadow rays 

48 

Soft Shadows 
• Multiple shadow rays 

to sample area light 
source 

one shadow ray  
(to random location) 

lots of shadow rays 

48 

Distribution Antialiasing

Multiple rays per pixel 

Problem: Aliasing

http://www.hackification.com/2008/08/31/experiments-in-ray-tracing-part-8-anti-aliasing/ 



Antialiasing w/ Supersampling

• Cast multiple rays per pixel, average result

Antialiasing – Supersampling 
• Multiple rays per pixel 

jaggies w/ antialiasing 
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Antialiasing w/ Supersampling

• Cast multiple rays per pixel, average result

Antialiasing – Supersampling 
• Multiple rays per pixel 

jaggies w/ antialiasing 

49 

Antialiasing w/ Supersampling

• Cast multiple rays per pixel, average result

Antialiasing – Supersampling 
• Multiple rays per pixel 

jaggies w/ antialiasing 
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Distribution Ray Tracing:  
One ray per pixel is not enough

Multiple rays per pixel 



Distribution Antialiasing w/  
Regular Sampling

Multiple rays per pixel 

Moiré pattern 

http://upload.wikimedia.org/wikipedia/commons/f/fb/Moire_pattern_of_bricks_small.jpg 

Even better: Distribution 
Antialiasing w/  Random Sampling

Remove Moiré patterns 
http://en.wikipedia.org/wiki/File:Moire_pattern_of_bricks.jpg 

Random Sampling Could Miss 
Regions Without Enough Sampling

? 

? 

? 

Stratified (Jittered) Sampling



Problem: Focus 
Real Lenses Have Depth of Field

Problem: Focus 
Real Lenses Have Depth of Field

http://liam887.files.wordpress.com/2010/08/weaver.jpg 

Depth of Field
• Multiple rays per pixel, sample 

lens aperture
• Multiple rays per pixel: 

sample lens aperture 

MIT EECS 6.837 – Durand 
  

Depth of Field 

Justin Legakis 
focal length 

film 

out-of-focus blur 

out-of-focus blur 

51 
   

• Multiple rays per pixel: 
sample lens aperture 

MIT EECS 6.837 – Durand 
  

Depth of Field 

Justin Legakis 
focal length 

film 

out-of-focus blur 

out-of-focus blur 

51 
   

Justin Legakis

Distribution Depth of Field

Randomly sample eye positions 

Square lens 
“Focus plane” 



Problem: Exposure Time 
Real Sensors Take Time to Acquire

Problem: Exposure Time 
Real Sensors Take Time to Acquire

http://www.matkovic.com/anto/3dl-test-balls-01.jpg 

Randomly sample positions 

Motion Blur 
• Sample objects 

temporally over 
time interval 

Rob Cook 

50 

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Motion Blur
• Sample objects temporally over a time interval

Next: Triangle Meshes  
and other data structures 

• FOCG, Ch. 12


• Check out recommended reading for some additional 
references



• Patrick Laug & Houman 
Borouchaki 2013


• 1,844,460 triangles

Interpolation and Barycentric coordinates
https://www.geogebra.org/m/gfau2ksn

Input a triangle given by 3 points, and attribute 

(say color) at each point 


Also given - a point P. What is the reasonable guess 
about the attribute at P?


Need to interpolate using a convex combination of 
weights   , all positive and sum to 1. wA, wB, wC

Interpolation and Barycentric coordinates

•  

Input a triangle given by 2  points A,B , and attribute 

(say color) at each point 


Also given - a point P. What is the reasonable guess 
about the attribute at P?


Need to interpolate using a convex combination of 
weights   , all positive and sum to 1. 


If not all positive or not sum to 1 - then p is not on 
this segment. 

wA, wB

https://www.geogebra.org/classic/w9agsjve

Interpolation and Barycentric coordinates
https://www.geogebra.org/m/gfau2ksn

• For a pixel  inside a triangle , the Barycentric coordinates  

• Specify how much weight show we give  to create 


•
Specifically = 


• If A,B,C specifies locations, then P is on the triangle they defines 

• If  A,B,C are colors, then the same linear combination specifies how to interpolates the colors.  


•   - note = the triangle of A is the triangle that does NOT include A. 


• This is also used to check if P is inside  - just check if 

P ΔABC wA, wB, wC
A, B, C P

P = wA ⋅ A + wB ⋅ B + wA ⋅ C =

(wA + wB + wC)A + wB
⃗(B − A) + wC

⃗(C − A) =

A + wB
⃗(B − A) + wC

⃗(C − A) =

wA =
Area(ΔCBP)
Area(ΔABC)

ΔABC wA + wB + wc = = 1

Input a triangle given by 3 points, and attribute 

(say color) at each point 


Also given - a point P. What is the reasonable guess 
about the attribute at P?


Need to interpolate using a convex combination of 
weights   , all positive and sum to 1. wA, wB, wC

https://www.geogebra.org/m/gfau2ksn
https://www.geogebra.org/classic/w9agsjve
https://www.geogebra.org/m/gfau2ksn


Shading on surfaces
• In practice, we have colors given either to each pixel (texture), or 

color for each vertex. The discussion below is only about shading


• For simplicity, assume surface has uniform color 


• Problem: How could we produce the shading ? Shedding 
requires normal for each pixels


• If we are happy with a polyhedra surface - just compute for each 
face the normal. 


• If on  the other hand, the surface interpolates a smooth surface 
(e.g. a sphere), we should think about other alternative 
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Shading on Surfaces

• In practice, we have colors given either to each pixel (texture), or color for each 
vertex. The discussion below is only about shading 

• For simplicity, assume surface has uniform color  
• Problem: How could we produce the shading ? Shedding requires normal for each 

pixels 
• If we are happy with a polyhedra surface - just compute for each face the normal.  
• If on  the other hand, the surface interpolates a smooth surface (e.g. a sphere), we 

should think about other alternative 

Remember  Diffuse Shading
• Simple model: amount of energy 

from a light source depends on 
the direction at which the light 
ray hits the surface


• Results in shading that is 
view independent


𝐿d = 𝑘d𝐼 max(0,𝐧・𝐥)

diffuse 
coefficient

cos 𝜃
intensity/color 

of light

Diffuse and specula shading on triangle meshes 

First Improvement, called  Gouraud shading

Compute normal at each triangle 

Approximate the normal at each vertex 
(sum normals of adjacent triangles,  
divide by their number and re-
normalized)

Compute shading at each vertex  (using 
both Diffuse and specular shading) 

For each interval vertex, interpolate 
colors of vertices. 

Diffuse shading formula


 -direction to light 

Ld = kd ⋅ I( ⃗n ⋅ ⃗l)

⃗l

• The shading of each triangle is determined by its normal (same 
normal for all points in the triangle). Edges of triangles are very 
noticeable.  This is called flat shading

https://www.geogebra.org/m/tdstyjrx

https://www.geogebra.org/m/vfw9bpxu

https://www.geogebra.org/m/vfw9bpxu


© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 13

Result of Gouraud shading pipeline
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Results of Gouraud Shading 
Pipeline

• Compute approx normal at vertices, compute their color and interpolate colors.

Diffuse and specula shading on triangle meshes 

First Improvement, called  Gouraud shading

Compute normal at each triangle 

Approximate the normal at each vertex 
(sum normals of adjacent triangles,  
divide by their number and re-
normalized)

Compute shading at each vertex  (using 
both Diffuse and specular shading) 

For each interval vertex, interpolate 
colors of vertices. 

Diffuse shading formula


 -direction to light 

Ld = kd ⋅ I( ⃗n ⋅ ⃗l)

⃗l

• The shading of each triangle is determined by its normal (same 
normal for all points in the triangle). Edges of triangles are very 
noticeable.  This is called flat shading

Second Improvement, called  Phong 
shading


Compute approx normal at vertex 
(same as Gouraud)

Approximate the normal at pixel by 
interpolating the normals of its 
vertices.   

For each vertex, computing shading 
using the approximated normal   

https://www.geogebra.org/m/tdstyjrx

https://www.geogebra.org/m/vfw9bpxu

Second Improvement, called  Phong 
shading


Compute approx normal at vertex 
(same as Gouraud)

Approximate the normal at pixel by 
interpolating the normals of its 
vertices.   

For each vertex, computing shading 
using the approximated normal   

https://www.geogebra.org/m/tdstyjrx

https://www.geogebra.org/m/vfw9bpxu

Modeling Complex 
Shapes 

https://www.geogebra.org/m/vfw9bpxu
https://www.geogebra.org/m/vfw9bpxu


Recall: Shape Models That We Have So Far
• Implicit Shapes (𝑓(𝐩) = 0 for all 𝐩 on shape):


• Sphere: 𝑓(𝐩) = (𝐩 - 𝐜)・(𝐩 - 𝐜) - 𝑅2 = 0


• Plane: 𝑓(𝐩) = (𝐩 - 𝐚)・𝐧 = 0


• Parametric Shapes (𝐩(𝑡) is a point on shape for all 𝑡):


• Rays: 𝐩(𝑡) = 𝐨 + 𝑡𝐝


• Triangles: 



• Triangle (second form) 



• Parallelogon 

p = αa + βb + γc, 0 ≤ α, β, γ  and  α + β + γ = 1

p = a + β(b − a) + γ(c − a), 0 ≤ β, γ   and   β + γ ≤ 1

p = a + β(b − a) + γ(c − a) 0 ≤ β, γ ≤ 1

Triangle Meshes

• Are used in a huge number of applications


• Can be used to represent complex shapes by breaking 
them into simple (perhaps the simplest) two-dimensional 
elements

http://www.meshlab.net/

Definition of Triangles

• 3 vertices (points 𝐚, 𝐛, 𝐜 in 3D 
space)


• The normal of the triangle is a 
vector, 𝐧, that points to its front 
side


• Convention: vertices listed in 
counter-clockwise order from the 
“front” of the triangle

n = (b − a) × (c − a)

http://www.meshlab.net/


Definition of Triangle Meshes
• In short, a collection of triangles in 3D space that are 

connected to form a surface


• Terminology: vertices, edges, triangles


• Surface is piecewise planar, except where two triangle 
meet which forms a crease and their shared edge


• Meshes are often a piecewise approximation of a 
smooth surface. We will study how graphics can hide 
the artifacts, creates the illusion of a smooth surface 
without increasing their comolexity.  

A Simple Mesh
• How many vertices?  How many triangles?• same geometry, different mesh topology: 

• same mesh topology, different geometry:

© 2017 Steve Marschner • Cornell CS4620 Spring 2017
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Mesh Topology

Two Considerations for 
Meshes

• We typically care about the mesh being a good 
approximation to a surface: 


• This leads to questions of mesh geometry, e.g.:  How 
many triangles? where to place their vertices?


• We also care about how these triangles are connected


• This leads to questions of mesh topology, e.g.: Are there 
holes in the mesh?  How do triangles intersect?


• Mesh topology can affect assumptions on algorithms that 
process meshes



• same geometry, different mesh topology: 

• same mesh topology, different geometry:
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Topology vs. Geometry
• Same geometry, different topology


• Same topology, different geometry

• same geometry, different mesh topology: 

• same mesh topology, different geometry:

© 2017 Steve Marschner • Cornell CS4620 Spring 2017
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Topological Validity

• Meshes that approximate surfaces should be manifolds 

• Definition: A (2-dimensional) manifold is a space where 
every point locally appears to be 2-dimensional space


• 3 cases: points that are on edges, points that are 
vertices, and points that are interior to triangles.

When is a Mesh a Manifold?
• Definition: A (2-dimensional) manifold is a space where 

every point locally appears to be 2-dimensional space


• Implication: Every edge is shared by exactly two triangles

Manifold

Non-manifold

When is a Mesh a Manifold?
• Definition: A (2-dimensional) manifold is a space where 

every point locally appears to be 2-dimensional space


• Implication: Every vertex has a single, complete loop of 
triangles around it

Manifold

Non-manifold



When is a Mesh a Manifold?
• Definition: A (2-dimensional) manifold is a space where 

every point locally appears to be 2-dimensional space


• Implication: Triangles only intersect at vertices and edges

Manifold

Non-manifold

Manifolds with Boundary
• Sometimes, we relax the manifold 

condition to allow meshes with boundaries.  


• Every point on a manifold with boundary 
either locally appears to be 2-dimensional 
space or 2-dimensional half-space


• Every edge is used by either one or two 
triangles


• Every vertex connects to a single edge-
connected set of triangles

Bad

OK

OK

Consistent Orientation
• In many applications, all triangles facing the same way is important


• Can be used to distinguish inside from outside.


• If consistent: neighboring triangles will appear to disagree on the 
order of vertices on their shared edge

Möbius strip: Non-orientable

Simple Representations 
of Triangle Meshes



Important Concerns w/ 
Representing Triangle Meshes
• Efficiency of storage size


• Many representations store redundant information


• Efficiency of access


• How quickly can we get the information we need for 
rendering?


• How quickly can we get neighborhood information, for 
mesh modification?

Using Separate Triangles
• Use a simple structure to store each triangle:


Triangle {
  vertexPositions[3];  //Vec3
};

• Store a triangle mesh using an array of 
Triangle 

• Problems: The coordinates and other properties 
(colors) of a vertex are stored multiple times:  
Could be bad because of


1. Wasteful (large numbers)


2. concurrency issues


3. In certain scenarios, the very same vertex 
might appear with different locations.  
For example, start from a vertex at 

. Resize by scaling by 3. Is the 
vertex at  or at   
x = 1/3

x = 0.99999 x = 1?

Using Indexed Meshes
• Triangles share a common list of vertices, storing only 

references/pointers: 


• A vertex (and its related information (RGB etc) is 
stored only once.


Triangle {
  vertices[3]; //object reference or int 
};

Vertex {
  position;    //Vec3
};

• Store a triangle mesh using two arrays, one of Vertex 
and the other of Triangle 

• We will study data structures that could 
expedite some operations (not today)

Using Indexed Meshes

• Each triangle thus tracks 
references to the vertices 
associated with it



Using Indexed Meshes

• Alternatively one can store using 
array indices directly:


IndexedMesh {
  vertices[num_verts];   //Vec3
  triIndices[num_tris];  //int
};

• Plus, it is easy (or at least easier) to 
see which two triangles share an 
edge.

Data on Meshes
• Typically, we store a variety of data on meshes as 

well


• Can store this on vertices, triangles, or even edges


• Examples:


• Colors stored on vertices


• Normals stored on faces


• Texture coordinates stored on vertices


• Information stored on vertices is typically 
interpolated with barycentric coordinates

CS530 - Introduction to Scientific VisualizationCS 530 - Introduction to Scientific Visualization - 08/27/2014

Primitive Attributes
Color Normal

Texture coordinates

Opacity
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Remember  Diffuse Shading
• Simple model: amount of energy 

from a light source depends on 
the direction at which the light 
ray hits the surface


• Results in shading that is 
view independent


𝐿d = 𝑘d𝐼 max(0,𝐧・𝐥)

diffuse 
coefficient

cos 𝜃
intensity/color 

of light

Diffuse and specula shading on triangle meshes 

First Improvement, called  Gouraud shading

Compute normal at each triangle 

Approximate the normal at each vertex 
(average the normals of the adjacent 
triangles) 

Compute shading at each vertex  (using 
both Diffuse and specular shading) 

For each interval vertex, interpolate 
colors of vertices. 

Diffuse shading formula


 -direction to light 

Ld = kd ⋅ I( ⃗n ⋅ ⃗l)

⃗l

• The shading of each triangle is determined by its normal (same 
normal for all points in the triangle). Edges of triangles are very 
noticeable.  This is called flat shading

Second Improvement, called  Phong 
shading


Compute approx normal at vertex 
(same as Gouraud)

Approximate the normal at pixel by 
interpolating the normals of its 
vertices.   

For each vertex, computing shading 
using the approximated normal   



Mesh File Formats: *.obj
• Widely used format for indexed meshes


• Supports additional data stored on 
vertices and polygons

#sample .obj file

v 0.000 0.000 0.000
v 0.500 0.809 0.309
v 1.000 0.000 -0.309
v 0.583 -0.720 0.225
v -0.630 0.750 0.025
...

f 1 3 2
f 1 4 3
f 11 3 4
f 3 11 7 
...

We will get back to geometric data 
structures in the future.  

Triangle Meshes More Efficient 
Representations

Triangle Strips
• Idea: Rely on the mesh property 

and group triangles that share 
common vertices


• Create a new triangle by reusing 
the last two vertices in the strip


• [0,1,2,3,4,5,6,7] specifies the 
sequence on the right with 
triangles (0,1,2), (1,2,3), (2,3,4) …


• Have to invert every other for 
consistent orientation

Triangle Strips
• Complex meshes store list of strips


• How long of a strip to use? 



Triangle Fans

• Same idea as triangle strips, 
but keep the earliest vertex in 
the list instead of the last two


• [0,1,2,3,4,5] specifies the 
sequence on the right with 
triangles (0,1,2), (0,2,3), 
(0,3,4), …

Mesh Data Structures 
and Queries

Queries on Meshes
• For face, find all: 

• Vertices

• Edges

• Adjacent faces 


• For vertex, find all: 

• Incident edges

• Incident triangles

• Neighboring vertices 


• For edge, find: 

• Two adjacent faces

• Two adjacent vertices 

Triangle {
  v[3];   //Vertex
  e[3];   //Edge
  adj[3]; //Triangle
}

Vertex {
  t[];    //Triangle
  e[];    //Edge
  adj[];  //Vertex
}

Edge {
  v[2];   //Vertex
  t[2];   //Triangle
}

Can we do better?

Typical Operations on the Data 
Structure 

Once a triangle T0 is given which triangles 
are neighboring T0 ? 

Given a ray r, which triangles intersect r? 

(Older material) is a point q=(x,y,z) inside   
T0 ?  (solved with barycentric coordinates. 
Who are the triangles that are adjacent to a 
vertex p0 ? 



Triangle-Neighbor Structure
• Let’s try first extending the 

indexed mesh structure for 
sharing vertices


• Add pointers, nbr[], to 3 
neighboring triangles

• Add a single pointer, t, for 
each vertex to one of its 
adjacent triangles


• Can now enumerate triangles 
adjacent to vertices

Triangle-Neighbor 
Structure

Triangle {
  v[3];    //Vertex
  nbr[3];  //Triangle
}

Vertex {
  ...
  t;       //Triangle
}

…or…


IndexedMesh {
  ...
  tInd[num_tris];  //int[3]
  tNbr[num_tris];  //int[3]
  vTri[num_verts]; //int
};

Triangle-Neighbor Structure Triangle-Neighbor Structure

TrianglesOfVertex(v) {
  t = v.t
  do {
    find i where (t.v[i] == v)
    t = t.nbr[i]
  } while (t != v.t);
}        

• Can optimize by storing 
pointers to neighboring 
edges



Triangle-Neighbor Structure
• Recall that indexed meshes needed 36*nv bytes and nt ≈ 2nv


• We added an array of triples of indices (per triangle)


• This increases storage by 3*4*nt or 24*nv bytes


• We also added an array of representative triangle per vertex 


• This increases storage by 4*nv bytes


• Total storage: 36 + 24 + 4 = 64 bytes per vertex 


• Still not as much as separate triangles 

Winged-Edge Structure
• Widely used mesh structure 

that focuses on edges instead 
of triangles


• Edges store pointers to:

• Head/Tail vertices

• Left/Right triangles

• Left/Right “next” edges

• Left/Right “previous” edges


• Each vertex/triangle stores one 
pointer to some edge

rnext

rprev

Winged-Edge Structure Half-Edge Structure 
(sometimes called Doubly connected Edge List 

-DCEL)
• Simplifies winged-edge, removes 

awkwardness of checking which 
way edges are oriented


• Each half-edge store pointers to:

• Head vertex

• Left triangle

• Left “next” edge

• The opposite “pair” half-edge 

(the twin edge) 


• Each vertex/triangle stores one 
pointer to a half-edge



Half-Edge Structure Half-Edge Structure
HEdge {
  pair, next;  //HEdge
  v;           //Vertex
  f;           //Face
};

EdgesOfVertex(v) {
  h = v.h;
  do {
    h = h.next.pair;
  } while (h != v.h);
} 

EdgesOfVertex(v) {
  e = v.e;
  do {
    if (e.tail == v) {
      e = e.lprev;
    } else {
      e = e.rprev;
    }
  } while (e != v.e);
} 

Winged-Edge Implementation

Half-Edge Storage 
Requirements

• Vertex data: 3 floats for position, 1 int for edge reference


• 4*4 = 16nv bytes


• Face data: 1 int for edge reference


• 4*1 = 4*nt = 8nv bytes.


• Edge data, 4 ints for references, but store a pair of half edges for each edge


• nh ≈ 6nv


• 8*4*6 = 96nv bytes.


• In total, 120nv bytes.

https://www.openmesh.org/

