
CSC 433/533
Computer Graphics

Alon Efrat

Thanks: Joshua Levine

Lecture 15
Wrapping up distributed Ray Tracing

Triangle Meshes

Oct. 13, 2020

What’s Wrong?

• No surface is a perfect mirror because surfaces rarely
perfectly smooth

Let’s Pause for a Moment...

• Do these pictures look real?

39

Soft Shadows

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 23

Soft shadows

5

What Causes Soft Shadows

http://user.online.be/felixverbelen/lunecl.jpg

Lights aren’t all point sources

Distribution Soft Shadows

Randomly sample light rays

Soft Shadows
• Multiple shadow rays

to sample area light
source

one shadow ray
(to random location)

lots of shadow rays

48

Computing Soft Shadows
One ray per pixel is not enough

• Model light sources as spanning an area

• Sample random positions on area light
source and average rays

Soft Shadows
• Multiple shadow rays

to sample area light
source

one shadow ray
(to random location)

lots of shadow rays

48

Approach: Distribution Glossy
Reflection by Randomly

Sampling Rays

https://graphics.stanford.edu/wikis/cs148-11-fall/RaytracingResults
http://www.baylee-online.net/Projects/Raytracing/Algorithms/Glossy-Reflection-Transmission

Randomly sample reflected rays

Computing Soft Shadows
• Model light sources as spanning an area

• Sample random positions on area light

source and average rays

• Shoot several rays and calculate the

average among them

Soft Shadows
• Multiple shadow rays

to sample area light
source

one shadow ray
(to random location)

lots of shadow rays

48

Soft Shadows
• Multiple shadow rays

to sample area light
source

one shadow ray
(to random location)

lots of shadow rays

48

Distribution Antialiasing

Multiple rays per pixel

Problem: Aliasing

http://www.hackification.com/2008/08/31/experiments-in-ray-tracing-part-8-anti-aliasing/

Antialiasing w/ Supersampling

• Cast multiple rays per pixel, average result

Antialiasing – Supersampling
• Multiple rays per pixel

jaggies w/ antialiasing

49

Antialiasing w/ Supersampling

• Cast multiple rays per pixel, average result

Antialiasing – Supersampling
• Multiple rays per pixel

jaggies w/ antialiasing

49

Antialiasing w/ Supersampling

• Cast multiple rays per pixel, average result

Antialiasing – Supersampling
• Multiple rays per pixel

jaggies w/ antialiasing

49

Distribution Ray Tracing:
One ray per pixel is not enough

Multiple rays per pixel

Distribution Antialiasing w/
Regular Sampling

Multiple rays per pixel

Moiré pattern

http://upload.wikimedia.org/wikipedia/commons/f/fb/Moire_pattern_of_bricks_small.jpg

Even better: Distribution
Antialiasing w/ Random Sampling

Remove Moiré patterns
http://en.wikipedia.org/wiki/File:Moire_pattern_of_bricks.jpg

Random Sampling Could Miss
Regions Without Enough Sampling

?

?

?

Stratified (Jittered) Sampling

Problem: Focus
Real Lenses Have Depth of Field

Problem: Focus
Real Lenses Have Depth of Field

http://liam887.files.wordpress.com/2010/08/weaver.jpg

Depth of Field
• Multiple rays per pixel, sample

lens aperture
• Multiple rays per pixel:

sample lens aperture

MIT EECS 6.837 – Durand

Depth of Field

Justin Legakis
focal length

film

out-of-focus blur

out-of-focus blur

51

• Multiple rays per pixel:
sample lens aperture

MIT EECS 6.837 – Durand

Depth of Field

Justin Legakis
focal length

film

out-of-focus blur

out-of-focus blur

51

Justin Legakis

Distribution Depth of Field

Randomly sample eye positions

Square lens
“Focus plane”

Problem: Exposure Time
Real Sensors Take Time to Acquire

Problem: Exposure Time
Real Sensors Take Time to Acquire

http://www.matkovic.com/anto/3dl-test-balls-01.jpg

Randomly sample positions

Motion Blur
• Sample objects

temporally over
time interval

Rob Cook

50

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Motion Blur
• Sample objects temporally over a time interval

Next: Triangle Meshes
and other data structures

• FOCG, Ch. 12

• Check out recommended reading for some additional
references

• Patrick Laug & Houman
Borouchaki 2013

• 1,844,460 triangles

Interpolation and Barycentric coordinates
https://www.geogebra.org/m/gfau2ksn

Input a triangle given by 3 points, and attribute

(say color) at each point

Also given - a point P. What is the reasonable guess
about the attribute at P?

Need to interpolate using a convex combination of
weights , all positive and sum to 1. wA, wB, wC

Interpolation and Barycentric coordinates

•

Input a triangle given by 2 points A,B , and attribute

(say color) at each point

Also given - a point P. What is the reasonable guess
about the attribute at P?

Need to interpolate using a convex combination of
weights , all positive and sum to 1.

If not all positive or not sum to 1 - then p is not on
this segment.

wA, wB

https://www.geogebra.org/classic/w9agsjve

Interpolation and Barycentric coordinates
https://www.geogebra.org/m/gfau2ksn

• For a pixel inside a triangle , the Barycentric coordinates

• Specify how much weight show we give to create

•
Specifically =

• If A,B,C specifies locations, then P is on the triangle they defines

• If A,B,C are colors, then the same linear combination specifies how to interpolates the colors.

• - note = the triangle of A is the triangle that does NOT include A.

• This is also used to check if P is inside - just check if

P ΔABC wA, wB, wC
A, B, C P

P = wA ⋅ A + wB ⋅ B + wA ⋅ C =

(wA + wB + wC)A + wB
⃗(B − A) + wC

⃗(C − A) =

A + wB
⃗(B − A) + wC

⃗(C − A) =

wA =
Area(ΔCBP)
Area(ΔABC)

ΔABC wA + wB + wc = = 1

Input a triangle given by 3 points, and attribute

(say color) at each point

Also given - a point P. What is the reasonable guess
about the attribute at P?

Need to interpolate using a convex combination of
weights , all positive and sum to 1. wA, wB, wC

https://www.geogebra.org/m/gfau2ksn
https://www.geogebra.org/classic/w9agsjve
https://www.geogebra.org/m/gfau2ksn

Shading on surfaces
• In practice, we have colors given either to each pixel (texture), or

color for each vertex. The discussion below is only about shading

• For simplicity, assume surface has uniform color

• Problem: How could we produce the shading ? Shedding
requires normal for each pixels

• If we are happy with a polyhedra surface - just compute for each
face the normal.

• If on the other hand, the surface interpolates a smooth surface
(e.g. a sphere), we should think about other alternative

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 13

Result of flat-shading pipeline

19

Shading on Surfaces

• In practice, we have colors given either to each pixel (texture), or color for each
vertex. The discussion below is only about shading

• For simplicity, assume surface has uniform color
• Problem: How could we produce the shading ? Shedding requires normal for each

pixels
• If we are happy with a polyhedra surface - just compute for each face the normal.
• If on the other hand, the surface interpolates a smooth surface (e.g. a sphere), we

should think about other alternative

Remember Diffuse Shading
• Simple model: amount of energy

from a light source depends on
the direction at which the light
ray hits the surface

• Results in shading that is 
view independent

𝐿d = 𝑘d𝐼 max(0,𝐧・𝐥)

diffuse
coefficient

cos 𝜃
intensity/color

of light

Diffuse and specula shading on triangle meshes

First Improvement, called Gouraud shading

Compute normal at each triangle

Approximate the normal at each vertex
(sum normals of adjacent triangles,
divide by their number and re-
normalized)

Compute shading at each vertex (using
both Diffuse and specular shading)

For each interval vertex, interpolate
colors of vertices.

Diffuse shading formula

 -direction to light

Ld = kd ⋅ I(⃗n ⋅ ⃗l)

⃗l

• The shading of each triangle is determined by its normal (same
normal for all points in the triangle). Edges of triangles are very
noticeable. This is called flat shading

https://www.geogebra.org/m/tdstyjrx

https://www.geogebra.org/m/vfw9bpxu

https://www.geogebra.org/m/vfw9bpxu

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 13

Result of Gouraud shading pipeline

23

Results of Gouraud Shading
Pipeline

• Compute approx normal at vertices, compute their color and interpolate colors.

Diffuse and specula shading on triangle meshes

First Improvement, called Gouraud shading

Compute normal at each triangle

Approximate the normal at each vertex
(sum normals of adjacent triangles,
divide by their number and re-
normalized)

Compute shading at each vertex (using
both Diffuse and specular shading)

For each interval vertex, interpolate
colors of vertices.

Diffuse shading formula

 -direction to light

Ld = kd ⋅ I(⃗n ⋅ ⃗l)

⃗l

• The shading of each triangle is determined by its normal (same
normal for all points in the triangle). Edges of triangles are very
noticeable. This is called flat shading

Second Improvement, called Phong
shading

Compute approx normal at vertex
(same as Gouraud)

Approximate the normal at pixel by
interpolating the normals of its
vertices.

For each vertex, computing shading
using the approximated normal

https://www.geogebra.org/m/tdstyjrx

https://www.geogebra.org/m/vfw9bpxu

Second Improvement, called Phong
shading

Compute approx normal at vertex
(same as Gouraud)

Approximate the normal at pixel by
interpolating the normals of its
vertices.

For each vertex, computing shading
using the approximated normal

https://www.geogebra.org/m/tdstyjrx

https://www.geogebra.org/m/vfw9bpxu

Modeling Complex
Shapes

https://www.geogebra.org/m/vfw9bpxu
https://www.geogebra.org/m/vfw9bpxu

Recall: Shape Models That We Have So Far
• Implicit Shapes (𝑓(𝐩) = 0 for all 𝐩 on shape):

• Sphere: 𝑓(𝐩) = (𝐩 - 𝐜)・(𝐩 - 𝐜) - 𝑅2 = 0

• Plane: 𝑓(𝐩) = (𝐩 - 𝐚)・𝐧 = 0

• Parametric Shapes (𝐩(𝑡) is a point on shape for all 𝑡):

• Rays: 𝐩(𝑡) = 𝐨 + 𝑡𝐝

• Triangles:

• Triangle (second form)

• Parallelogon

p = αa + βb + γc, 0 ≤ α, β, γ and α + β + γ = 1

p = a + β(b − a) + γ(c − a), 0 ≤ β, γ and β + γ ≤ 1

p = a + β(b − a) + γ(c − a) 0 ≤ β, γ ≤ 1

Triangle Meshes

• Are used in a huge number of applications

• Can be used to represent complex shapes by breaking
them into simple (perhaps the simplest) two-dimensional
elements

http://www.meshlab.net/

Definition of Triangles

• 3 vertices (points 𝐚, 𝐛, 𝐜 in 3D
space)

• The normal of the triangle is a
vector, 𝐧, that points to its front
side

• Convention: vertices listed in
counter-clockwise order from the
“front” of the triangle

n = (b − a) × (c − a)

http://www.meshlab.net/

Definition of Triangle Meshes
• In short, a collection of triangles in 3D space that are

connected to form a surface

• Terminology: vertices, edges, triangles

• Surface is piecewise planar, except where two triangle
meet which forms a crease and their shared edge

• Meshes are often a piecewise approximation of a
smooth surface. We will study how graphics can hide
the artifacts, creates the illusion of a smooth surface
without increasing their comolexity.

A Simple Mesh
• How many vertices? How many triangles?• same geometry, different mesh topology:

• same mesh topology, different geometry:

© 2017 Steve Marschner • Cornell CS4620 Spring 2017

Topology/geometry examples

32

Mesh Topology

Two Considerations for
Meshes

• We typically care about the mesh being a good
approximation to a surface:

• This leads to questions of mesh geometry, e.g.: How
many triangles? where to place their vertices?

• We also care about how these triangles are connected

• This leads to questions of mesh topology, e.g.: Are there
holes in the mesh? How do triangles intersect?

• Mesh topology can affect assumptions on algorithms that
process meshes

• same geometry, different mesh topology:

• same mesh topology, different geometry:

© 2017 Steve Marschner • Cornell CS4620 Spring 2017

Topology/geometry examples

32

Topology vs. Geometry
• Same geometry, different topology

• Same topology, different geometry

• same geometry, different mesh topology:

• same mesh topology, different geometry:

© 2017 Steve Marschner • Cornell CS4620 Spring 2017

Topology/geometry examples

32

Topological Validity

• Meshes that approximate surfaces should be manifolds

• Definition: A (2-dimensional) manifold is a space where
every point locally appears to be 2-dimensional space

• 3 cases: points that are on edges, points that are
vertices, and points that are interior to triangles.

When is a Mesh a Manifold?
• Definition: A (2-dimensional) manifold is a space where

every point locally appears to be 2-dimensional space

• Implication: Every edge is shared by exactly two triangles

Manifold

Non-manifold

When is a Mesh a Manifold?
• Definition: A (2-dimensional) manifold is a space where

every point locally appears to be 2-dimensional space

• Implication: Every vertex has a single, complete loop of
triangles around it

Manifold

Non-manifold

When is a Mesh a Manifold?
• Definition: A (2-dimensional) manifold is a space where

every point locally appears to be 2-dimensional space

• Implication: Triangles only intersect at vertices and edges

Manifold

Non-manifold

Manifolds with Boundary
• Sometimes, we relax the manifold

condition to allow meshes with boundaries.

• Every point on a manifold with boundary
either locally appears to be 2-dimensional
space or 2-dimensional half-space

• Every edge is used by either one or two
triangles

• Every vertex connects to a single edge-
connected set of triangles

Bad

OK

OK

Consistent Orientation
• In many applications, all triangles facing the same way is important

• Can be used to distinguish inside from outside.

• If consistent: neighboring triangles will appear to disagree on the
order of vertices on their shared edge

Möbius strip: Non-orientable

Simple Representations
of Triangle Meshes

Important Concerns w/
Representing Triangle Meshes
• Efficiency of storage size

• Many representations store redundant information

• Efficiency of access

• How quickly can we get the information we need for
rendering?

• How quickly can we get neighborhood information, for
mesh modification?

Using Separate Triangles
• Use a simple structure to store each triangle:

Triangle {
 vertexPositions[3]; //Vec3
};

• Store a triangle mesh using an array of
Triangle

• Problems: The coordinates and other properties
(colors) of a vertex are stored multiple times:
Could be bad because of

1. Wasteful (large numbers)

2. concurrency issues

3. In certain scenarios, the very same vertex
might appear with different locations.
For example, start from a vertex at

. Resize by scaling by 3. Is the
vertex at or at
x = 1/3

x = 0.99999 x = 1?

Using Indexed Meshes
• Triangles share a common list of vertices, storing only

references/pointers:

• A vertex (and its related information (RGB etc) is
stored only once.

Triangle {
 vertices[3]; //object reference or int
};

Vertex {
 position; //Vec3
};

• Store a triangle mesh using two arrays, one of Vertex
and the other of Triangle

• We will study data structures that could
expedite some operations (not today)

Using Indexed Meshes

• Each triangle thus tracks
references to the vertices
associated with it

Using Indexed Meshes

• Alternatively one can store using
array indices directly:

IndexedMesh {
 vertices[num_verts]; //Vec3
 triIndices[num_tris]; //int
};

• Plus, it is easy (or at least easier) to
see which two triangles share an
edge.

Data on Meshes
• Typically, we store a variety of data on meshes as

well

• Can store this on vertices, triangles, or even edges

• Examples:

• Colors stored on vertices

• Normals stored on faces

• Texture coordinates stored on vertices

• Information stored on vertices is typically
interpolated with barycentric coordinates

CS530 - Introduction to Scientific VisualizationCS 530 - Introduction to Scientific Visualization - 08/27/2014

Primitive Attributes
Color Normal

Texture coordinates

Opacity

CS530 - Introduction to Scientific VisualizationCS 530 - Introduction to Scientific Visualization - 08/27/2014

Primitive Attributes
Color Normal

Texture coordinates

Opacity

CS530 - Introduction to Scientific VisualizationCS 530 - Introduction to Scientific Visualization - 08/27/2014

Primitive Attributes
Color Normal

Texture coordinates

Opacity

Remember Diffuse Shading
• Simple model: amount of energy

from a light source depends on
the direction at which the light
ray hits the surface

• Results in shading that is 
view independent

𝐿d = 𝑘d𝐼 max(0,𝐧・𝐥)

diffuse
coefficient

cos 𝜃
intensity/color

of light

Diffuse and specula shading on triangle meshes

First Improvement, called Gouraud shading

Compute normal at each triangle

Approximate the normal at each vertex
(average the normals of the adjacent
triangles)

Compute shading at each vertex (using
both Diffuse and specular shading)

For each interval vertex, interpolate
colors of vertices.

Diffuse shading formula

 -direction to light

Ld = kd ⋅ I(⃗n ⋅ ⃗l)

⃗l

• The shading of each triangle is determined by its normal (same
normal for all points in the triangle). Edges of triangles are very
noticeable. This is called flat shading

Second Improvement, called Phong
shading

Compute approx normal at vertex
(same as Gouraud)

Approximate the normal at pixel by
interpolating the normals of its
vertices.

For each vertex, computing shading
using the approximated normal

Mesh File Formats: *.obj
• Widely used format for indexed meshes

• Supports additional data stored on
vertices and polygons

#sample .obj file

v 0.000 0.000 0.000
v 0.500 0.809 0.309
v 1.000 0.000 -0.309
v 0.583 -0.720 0.225
v -0.630 0.750 0.025
...

f 1 3 2
f 1 4 3
f 11 3 4
f 3 11 7
...

We will get back to geometric data
structures in the future.

Triangle Meshes More Efficient
Representations

Triangle Strips
• Idea: Rely on the mesh property

and group triangles that share
common vertices

• Create a new triangle by reusing
the last two vertices in the strip

• [0,1,2,3,4,5,6,7] specifies the
sequence on the right with
triangles (0,1,2), (1,2,3), (2,3,4) …

• Have to invert every other for
consistent orientation

Triangle Strips
• Complex meshes store list of strips

• How long of a strip to use?

Triangle Fans

• Same idea as triangle strips,
but keep the earliest vertex in
the list instead of the last two

• [0,1,2,3,4,5] specifies the
sequence on the right with
triangles (0,1,2), (0,2,3),
(0,3,4), …

Mesh Data Structures
and Queries

Queries on Meshes
• For face, find all:

• Vertices

• Edges

• Adjacent faces

• For vertex, find all:

• Incident edges

• Incident triangles

• Neighboring vertices

• For edge, find:

• Two adjacent faces

• Two adjacent vertices

Triangle {
 v[3]; //Vertex
 e[3]; //Edge
 adj[3]; //Triangle
}

Vertex {
 t[]; //Triangle
 e[]; //Edge
 adj[]; //Vertex
}

Edge {
 v[2]; //Vertex
 t[2]; //Triangle
}

Can we do better?

Typical Operations on the Data
Structure

Once a triangle T0 is given which triangles
are neighboring T0 ?

Given a ray r, which triangles intersect r?

(Older material) is a point q=(x,y,z) inside
T0 ? (solved with barycentric coordinates.
Who are the triangles that are adjacent to a
vertex p0 ?

Triangle-Neighbor Structure
• Let’s try first extending the

indexed mesh structure for
sharing vertices

• Add pointers, nbr[], to 3
neighboring triangles

• Add a single pointer, t, for
each vertex to one of its
adjacent triangles

• Can now enumerate triangles
adjacent to vertices

Triangle-Neighbor
Structure

Triangle {
 v[3]; //Vertex
 nbr[3]; //Triangle
}

Vertex {
 ...
 t; //Triangle
}

…or…

IndexedMesh {
 ...
 tInd[num_tris]; //int[3]
 tNbr[num_tris]; //int[3]
 vTri[num_verts]; //int
};

Triangle-Neighbor Structure Triangle-Neighbor Structure

TrianglesOfVertex(v) {
 t = v.t
 do {
 find i where (t.v[i] == v)
 t = t.nbr[i]
 } while (t != v.t);
}

• Can optimize by storing
pointers to neighboring
edges

Triangle-Neighbor Structure
• Recall that indexed meshes needed 36*nv bytes and nt ≈ 2nv

• We added an array of triples of indices (per triangle)

• This increases storage by 3*4*nt or 24*nv bytes

• We also added an array of representative triangle per vertex

• This increases storage by 4*nv bytes

• Total storage: 36 + 24 + 4 = 64 bytes per vertex

• Still not as much as separate triangles

Winged-Edge Structure
• Widely used mesh structure

that focuses on edges instead
of triangles

• Edges store pointers to:

• Head/Tail vertices

• Left/Right triangles

• Left/Right “next” edges

• Left/Right “previous” edges

• Each vertex/triangle stores one
pointer to some edge

rnext

rprev

Winged-Edge Structure Half-Edge Structure
(sometimes called Doubly connected Edge List

-DCEL)
• Simplifies winged-edge, removes

awkwardness of checking which
way edges are oriented

• Each half-edge store pointers to:

• Head vertex

• Left triangle

• Left “next” edge

• The opposite “pair” half-edge

(the twin edge)

• Each vertex/triangle stores one
pointer to a half-edge

Half-Edge Structure Half-Edge Structure
HEdge {
 pair, next; //HEdge
 v; //Vertex
 f; //Face
};

EdgesOfVertex(v) {
 h = v.h;
 do {
 h = h.next.pair;
 } while (h != v.h);
}

EdgesOfVertex(v) {
 e = v.e;
 do {
 if (e.tail == v) {
 e = e.lprev;
 } else {
 e = e.rprev;
 }
 } while (e != v.e);
}

Winged-Edge Implementation

Half-Edge Storage
Requirements

• Vertex data: 3 floats for position, 1 int for edge reference

• 4*4 = 16nv bytes

• Face data: 1 int for edge reference

• 4*1 = 4*nt = 8nv bytes.

• Edge data, 4 ints for references, but store a pair of half edges for each edge

• nh ≈ 6nv

• 8*4*6 = 96nv bytes.

• In total, 120nv bytes.

https://www.openmesh.org/

