
CSC 433/533
Computer Graphics

Alon Efrat

Credit: Joshua Levine

Interpolated Texture
Coordinates

• Explicitly store (u,v) coordinates on the vertices of a triangle
mesh, interpolate in the center using barycentric coordinates

• Texture coordinates just another per-vertex data. How to
compute them?

• Triangles
– specify (u,v) for each vertex
– define (u,v) for interior by linear (barycentric) interpolation

(u,v)

(uc,vc)

(ub,vb)

(ua,va)

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 6

Examples of coordinate functions

22

Textures

Challenge: Real
World Surfaces
Have Complex

Materials

• While ray tracing has done a pretty
good job of capturing how light is
modeled, it only scratches the
surface at modeling how materials
look

• Goal: Replicate photographic quality
by varying shading parameters?

http://ptex.us/ptexpaper.html

http://ptex.us/ptexpaper.html

Texture Mapping

Texture Mapping

• Models attributes of surfaces that vary as position
changes, but do not affect the shape of the surface.

• Examples: wood grain, wrinkles in skin, woven structures
in cloth, defects in metal surfaces, patterns (in general), …

Texture Maps

• Idea: model this variation using an image, called a texture
map (or, sometimes “texture image” or just “texture”)

• The texture map stores the surface details

• Typically, shading parameters like 𝑘d and 𝑘s

• Can be used in lots of interesting ways to achieve
complex effects

8

Texture Lookups

• Since the texture is an image, we need a way to index
into it given a surface position

• Or, where on the surface does the image go?

• Given a position, we lookup the texture coordinates,
given as (u,v) values that refer to positions in the image

• Easy to define for some shapes, can be very hard for
others

Interpolated Texture
Coordinates

• Explicitly store (u,v) coordinates on the vertices of a triangle
mesh, interpolate in the center using barycentric coordinates

• Texture coordinates just another per-vertex data. How to
compute them? Can be difficult!

• Triangles
– specify (u,v) for each vertex
– define (u,v) for interior by linear (barycentric) interpolation

(u,v)

(uc,vc)

(ub,vb)

(ua,va)

© 2017 Steve Marschner • Cornell CS4620 Spring 2017 • Lecture 6

Examples of coordinate functions

22

Computing Texture
Coordinates

• Idea: We will model this problem using a texture
coordinate function,

𝜙: 𝑆→𝑇, for all (x,y,z) ∈ 𝑆 and (u,v) ∈ 𝑇

• When shading a point (x,y,z), we compute 𝜙(x,y,z) to get
the appropriate pixel (u,v) in the texture.

• u and v normally values in [0,1] (and then are scaled to the
size of the texture)

Computing Texture
Coordinates - Example

function texture_lookup(tex, u, v) {
 let i = Math.round(u * tex.width() - 0.5);
 let j = Math.round(v * tex.height() - 0.5);
 return tex.get_pixel(i,j);
}

function shade_surface_point(surf, pt, tex) {
 let normal = surf.get_normal(pt);
 [u,v] = surf.get_texcoord(pt);
 let diffuse_color = texture_lookup(tex,u,v);
 //compute shading using diffuse_color and normal
 //return shading result
}

• For a pixel inside a triangle , the Barycentric coordinates

• Specify how much weight show we give to create

• Specifically

• If A,B,C specifies locations, then P is on the triangle they defines

• If A,B,C are colors, then the same linear combination specifies how to interpolates the

colors.

• - note = the triangle of A is the triangle that does NOT include A.

P ΔABC wA, wB, wC
A, B, C P

P = wA ⋅ A + wB ⋅ B + wA ⋅ C

wA =
Area(ΔCBP)
Area(ΔABC)

Reminder: Barycentric coordinates

• For a pixel inside a triangle , the Barycentric coordinates

• Specify how much weight show we give to create

• Specifically

• If A,B,C specifies locations, then P is on the triangle they defines

• If A,B,C are colors, then the same linear combination specifies how to interpolates the colors.

• - note = the triangle of A is the triangle that does NOT include A.

=

P ΔABC wA, wB, wC
A, B, C P

P = wA ⋅ A + wB ⋅ B + wA ⋅ C

wA =
Area(ΔCBP)
Area(ΔABC)

P = wA ⋅ A + wB ⋅ B + wA ⋅ C =
1 ⋅ A + (wB − wA)(A − B) + (wC − wA)

Reminder: Barycentric coordinates

How to map one triangle to another

• Use barycentric coordinates. Recall - each point in image
the texture triangle has coordinates
ϕ(p) = (wB, wC) where wB =

area(tB)
area(ΔABC)

and wB =
area(tB)

area(ΔABC)

We map A → A′ , B → B′ , C → C′

Tiling and Wrapping
• Can be achieved by modifying the mapping to cycle around in

various ways (similar to boundary conditions for image processing)

• Could also just clamp values

Cylindrical Projection

Cylindrical

Spherical

• Convert (x,y,z) to cylindrical
coordinates, discard radius

u = (𝜋 + atan2(y,x)) / (2𝜋)

v = height=z

Three Spaces
• Just like we have mappings from world space to image,

we use 𝜙 as another mapping

Spherical Projection

• Convert (x,y,z) to spherical
coordinates, discard radius

r = sqrt(x2+y2+z2)

u = (𝜋 + atan2(y,x)) / (2𝜋)

v = (𝜋 + acos(z/r)) / (𝜋) (Latitude)

• Similar to casting a ray outward
from center

Problem #1: Defining Texture
Coordinate Functions

• Defining 𝜙 can be very difficult for complex shapes

• Similar to the problem of taking a surface and flattening it

• e.g. Cartographers problem

• Inevitably will have distortion of areas, angles, or
distances

Shape vs. Area Distortions

Low shape distortion,
Moderate area distortion

Properties of Texture
Coordinate Functions

Goals for Texture Functions
1. One-to-one vs one-to-many:

• Each point on the surface should map to a different point on the

texture, unless you want repetition

2. Size distortion:

• Scale of texture kept constant across the surface

3. Shape distortion:

• Shapes/Angles in the texture should state similarly shaped

4. Continuity:

• Are there visible cuts ? 𝜙 should have as few discontinuities as

possible

Distortions vs. Discontinuities

No distortion to area,
Many discontinuities

Applications of
Textures

Planar Projection
• Flatten to a plane (e.g. dropping the z coordinate) or

doing coordinate transform in the space of the the plane

Opacity mapping

http://lectrablog.lectralizard.com/page/2

Controlling Shading
Parameters

• Can look up diffuse and specular coefficients 𝑘d and 𝑘s, or
both

Environment Maps

● Very distant stuff looks the same from anywhere
within reasonable limits

● Pre-render distant objects
(including the sky) out
to a 360° image

● Texture-map it
onto a bounding
cube at runtime

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 16 11

[Emil Persson]

Also can be done with
Cubemaps

Environment Maps

• Use a texture to lookup values for rays that don’t hit any
objects

function trace_ray(ray, scene) {
 if (surface = scene.intersect(ray)) {
 return surface.shade(ray);
 } else {
 u,v = spheremap_coords(ray.direction);
 return texture_lookup(scene.env_map, u, v);
}

B = (u, v)

P

N

N0

P0

P0 = P + B(u, v)N

Normal Maps, bump maps and relief maps
• Can also use textures to look up normal information for the

surface

• Typically, store the normal vector (nx,ny,nz) as (r,g,b) values for the
pixel

• Problem: orientation of the surface could change — normals are
usually defined relative to a local coordinate space

• Why is this better than compute the image with shading effect
(once) and us as a ‘regular image’ ? (more than a single reason)

Bump mapping

• Simulates roughness (“bumpiness”) of a surface without adding geometry

• Uses a two-dimensional height field (bump map) to perturb the normal during per-fragment
shading calculations

• Typically, store the normal vector (nx,ny,nz) as (r,g,b) values for the pixel

• Limitations: the mapping of texture onto the surface is unaffected; silhouette is also unaffected.

• Why is this different (and more efficient) than storing the 3D mesh ?

GDallimore (Wikimedia Commons)

1. For hidden surfaces removal, the orange is still a (smooth) sphere

2. A patch of the surface appears multiple times via tiling, yet it looks different

3. Interactive settings

Bump mapping

Blinn, SIGGRAPH 1978

• Simulates roughness (“bumpiness”) of a surface without adding geometry

• Uses a two-dimensional height field (bump map) to perturb the normal during
per-fragment shading calculations

• Limitations: the mapping of texture onto the surface is unaffected; silhouette is
also unaffected.

More example of normals maps in interactive settings:
The image reacts to changes in lights directions

Credit: wiki

Just to make sure:

for depth computation (who occlude whom), we see one quads (two triangles)

For shading effects, we use the normals

B = (u, v)

P

N

N0

P0

P0 = P + B(u, v)N

Important

When we perform ray-tracing/z-buffering to find
the first object hits by a ray, the texture does not
change the answer.

For example, we still treat a sphere as. a smooth
normal sphere.

We use the bumps map only after computing
1) The first sphere hit, and
2) The hitting point (with some exceptions here)

From RmanNotes
http://www.cgrg.ohiostate.edu/~smay/RManNotes/index.html

Relief mapping

Image from Policarpo and Oliveira (2008)

• We are using depth but only comparing rays that hit the surface.

• Trace the eye ray into the bump map. A simple implementation find intersection of
the ray with the tangent plane. (e.g. using z-buffer or simple ray tracing). Once this
intersection points is found, step along the ray and
simultaneously along the surface, till intersection is found (but only among the

e(v) = eye + t ⋅ ⃗r

Relief mapping

normal mapping relief mapping

Image from Natalya Tatarchuk

Normal Map
Example

• Transfer details from high
resolution mesh to normal
map image

https://en.wikipedia.org/wiki/Normal_mapping

4 million triangles

https://en.wikipedia.org/wiki/Normal_mapping

500 triangles 500 triangles 
+ Normal Map

https://en.wikipedia.org/wiki/Normal_mapping
https://en.wikipedia.org/wiki/Normal_mapping

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 16 8

Environment Maps

[Paul Debevec]

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 16 9

[CS467 slides]

Relief mapping

normal mapping relief mapping

Image from Natalya Tatarchuk

More Relief Mapping

Image from Policarpo et al. (2005)

Homography

• (parallax) the transom of a planar shape, as seen
‘from an angle).

• Lines lines, but angles might change.

• Could be created by a simple matrix operation

→

Image-Based Rendering
● Render complex objects to images and texture-
map them to simple proxy shapes (impostors)
● Environment mapping is a specific example

● Billboards/sprites: Textured quads always facing
the viewer
● Single image is valid if viewer doesn't move much

Problem: If the place the image of the wolf onto a rectangular billboard, how could we see the
grass below the wolf ?

We cannot create one image of the wolf which is convincing from all angles, (e.g. looks but we
could create a library of a small number of images, and decide which one to use based on

viewer’s movement

Issues of using only a single billboard

Image-Based Rendering

Décoret, Sillion, Durand and Dorsey 2002

Tree decomposed into a cloud of
texture-mapped planar slices

Impostors Original

• small movement of the camera might cause self occlusion (e.g. one branch covers
another. Of course, this change is not captured in a single billboard.

• Solution: Place several bboards called slices Non-tree pixels are transparent.

• Each slice holds the portion of the tree which is close to its orthographic projections on
the plane. In other words, no self occlusions in the slice, so it could be viewed from
multiple angle

Snell’s Law

• Governs the angle at which
a refracted ray bends

• Computation based on
refraction index of original
medium, na, versus new
index nt (for example, nair=1,
nglass=1.7

• nt sin 𝜃 = na sin 𝜙

Snell’s Law
• Working with cosine’s are easier because we can use

dot products

• Can derive the vector for the refraction direction 𝐭 as

What happens if this is negative?

Notice that (unfortunately), the letter ’n’ is used in this equation to denote three (3) different terms:

1. is the vector which is normal to the sufrace, pointing toward the source of the ray.

2. is the medium coefficient in the medium the ray is coming from. For example, if the

ray entering from air , the n=0

3. is the medium coefficient in the medium the ray is coming from. For example, if the

ray entering from air , then

n = ⃗n
n = nfrom

→ water
nt = nto

air → water nt ≈ 1.8

Shadows

Mark J. Kilgard

• Valuable cue of spatial relationships

• Increases realism

Shadows

Akenine-Moeller and Haines

• Valuable cue of spatial relationships

• Increases realism

Shadow mapping

Akenine-Moeller et al., Real-Time Rendering

• First pass: render the scene from the viewpoint of the light, store depth buffer
as texture (shadow map) much easier to do if the projected object is planar
(triangle/quad)

• Second pass: project vertices into shadow map and compare depth values

!  Render#image#from#POV#of#light#to#create#shadow#
map#

!  (ie.#what#would#the#scene#look#like#if#rendered#from#
the#POV#of#the#light?)#Light’s#view#matrix#=#
gluLookAt?#glOrtho?#

! When#rendering#a#pixel,#deciding#if#it#is#in#shadow?#
!  Project#into#light#clip#space#
!  Compare#z#values#(ie.#distance#from#light#source)#

!  Distance#from#light#>#Z#value#of#rendered#texel#in#shadow#
map#=>#occluding#object#=>#shadow!#

Two possible tasks (different difficulties)

1) case shadow by changing the texture (lighting) of the image of the

grass

1) Does not effected by the location of viewer

Used to determine if a pixel of the grass is exposed to the sun during
the rendering of the grass (applying e.g. for Phong Specular Shading)

Need to be able to determine FAST in a point of the grass is
visible to the sun

For this we use the depth buffer D[1..n, 1..n] from the first
path as texture for other second pass

Shadow mapping

Akenine-Moeller et al., Real-Time Rendering

• First pass details: can disable all rendering features that do not affect depth map.

• Second pass details: For each fragment, use the light’s modelview and projection
transforms to obtains (u,v) coordinates in the shadow map and the depth w of
the vertex.

• Compare w with value w’ stored in (u,v) in the shadow map. If w ≤ w’, perform
lighting calculations with this light. Otherwise, do not.

Bias

• Numerical imprecision leads to self-shadowing

• Solution: add a bias . Change comparison from to

• Can use glPolygonOffset

" w w0 w w0 + "

Akenine-Moeller et al., Real-Time Rendering

Setting the bias

• Numerical imprecision leads to self-shadowing

• Solution: add a bias . Change comparison from to

• Can use glPolygonOffset

" w w0 w w0 + "

Too little Too much Just right

Mark J. Kilgard

Cube mapping

• Render the scene six times, through six faces of a cube, with 90-degree field-of-
view for each image.

• Store images in six textures, which represent an omni-directional view of the
environment

Greene, 1986

Cube mapping

http://developer.nvidia.com/object/cube_map_ogl_tutorial.html; TopherTG (Wikipedia)

• To compute texture coordinates, reflect the view vector v about the normal n:

• The highest (in absolute value) coordinate of r identifies which of the six maps
we need. The texture coordinates in this map are obtained by normalizing the
other two coordinates of r.

r = 2(v · n)n� v

http://developer.nvidia.com/object/cube_map_ogl_tutorial.html

Sphere mapping

• Cube maps require maintaining six texture in memory

• Sphere mapping uses a single viewpoint-specific environment map, updated
every frame

• Map depicts a perfectly reflective sphere viewed orthographically

Greene, 1986

Sphere mapping

• Cube maps require maintaining six texture in memory

• Sphere mapping uses a single viewpoint-specific environment map, updated
every frame

• Map depicts a perfectly reflective sphere viewed orthographically

Greene, 1986

Rendering Large Environments
(in real time)

Siddhartha Chaudhuri

Largescale Rendering Cheat Sheet

● Don't render what you can't see

● Don't render what the display can't resolve

● People won't notice small errors, especially in
background objects

● If all else fails, fog is your best friend :)

Don't render what you can't see
● Rasterizing invisible objects is wasteful
● Detect such objects early and ignore (cull) them

Frustum culling

Occlusion culling

Backface culling

Difficulty

Backface < Frustum <<< Occlusion

Backface Culling

● Drop faces on the far side of object meshes
● Assume face normals consistently point inside-out
● Back faces have normals pointing away from the camera

● OpenGL:
glEnable(GL_CULL_FACE);

glCullFace(GL_BACK);

● Why would anyone want
glCullFace(GL_FRONT)?

● Uses vertex winding order to determine front and back faces,
not the vertex normals you pass in!

● When does this scheme for back face culling fail?

Back

Front

Frustum Culling

● Test each object against the view frustum
● Much faster: test the bounding box instead

– If object is visible, no frustum plane can have all 8 corners
on invisible side

● Optimization:
● Group objects hierarchically

– Octree (or quadtree for 2.5D scenes)
– Binary Space Partitioning (BSP) tree (or a restricted version
called a kd-tree)

– Bounding box/sphere hierarchy
● Traverse tree top-down and ignore subtrees whose
roots fail the bounding box test

Hardware Occlusion Queries
● Part of OpenGL/D3D API
● At any time, pretend to
draw a dummy shape (say
the bounding box of a
complex object) and
check if any pixels are
affected

● Accelerated by
hierarchical z-buffer

● Works for dynamic scenes

Unoccluded pixels of bounding box,
so object is potentially visible

From-Region Visibility

● Preprocessing:
● Break scene up into regions
● For each region, compute a potentially visible set
(PVS) of objects

● Runtime:
● Detect the region containing the observer
● Render the objects in the corresponding PVS

● PVS is usually quite conservative, so further culling
is needed

Portal-Based Rendering

● Suitable for indoor environments
● Divide environment into cells, connected by
simple polygonal portals (doors/windows/...)

● Render:
● Neighboring cells with visible portals (check if projected
polygon is within screen limits)

● Neighbors-of-neighbors with portals visible through the
first set of portals

● … and so on
● Further culling possible with frusta through portals

Guiding Principle

For every object, choose the simplest possible
representation that will look nearly the same as the
original when rendered at the current distance

Levels of Detail (LOD)
● Coarser representations for distant objects

● Hierarchy of representations of the same object at
different resolutions

● The same idea can also be used for textures
(mipmapping)

69,451 polys 2,502 polys 251 polys 76 polys

Levels of Detail (LOD)
Instead of storing only the highly-detailed model, we store:

1. The highly-detailed model, triangles, and

2. a less-detailed simplification of the same model model, and

3. a very coarse copy etc.

• The decision of which of these copies to use for rendering is made
in real time, depending on viewer positions.

• What is the overhead of storing multiple copies?

• A very pessimistic upper bound.

1. Assume that the we start with a model with triangles

2. In the coarser model, we store

3. in the coarser model, we store half this number, so ,

4. next,

• So in total at most , and the

overhead is at most factor 2. Neglectable, comparing to the
speedup in rendering time.

• In practice, the actually overhead is much smaller

≈ 70K

n
≤ n /2

≤ n /4
n /8...

n(1 +
1
2

+
1
4

+
1
8

+ …) ≤ 2n

Environment Maps

● Very distant stuff looks the same from anywhere
within reasonable limits

● Pre-render distant objects
(including the sky) out
to a 360° image

● Texture-map it
onto a bounding
cube at runtime

Image-Based Rendering
● Render complex objects to images and texture-
map them to simple proxy shapes (impostors)
● Environment mapping is a specific example

● Billboards/sprites: Textured quads always facing
the viewer
● Single image is valid if viewer doesn't move much

Problem: If the place the image of the wolf onto a rectangular billboard, how could we
see the grass below the wolf ?

Image-Based Rendering

Décoret, Sillion, Durand and Dorsey 2002

Tree decomposed into a cloud of
texture-mapped planar slices

Impostors Original

Adding Depth to Images

● Store the depth map as well as the color
● Impostor is heightfield defined by the depth map
● Fixes parallax errors (impostor is still valid when
viewing position changes significantly)

● What are the drawbacks?

Image-Based Rendering
● Render complex objects to images and texture-
map them to simple proxy shapes (impostors)
● Environment mapping is a specific example

● Billboards/sprites: Textured quads always facing
the viewer
● Single image is valid if viewer doesn't move much

Images + Geometry

+

=

Foreground Background

Viewer

Images + Geometry

+

=

Foreground Background Impostor

Viewer

Images + Geometry (Rendered View)

+

=

Foreground Background Impostor

Case Study: Quake

● Preprocessing:
● Level map preprocessed into BSP-tree
● Each leaf node stores potentially visible polygons from
that region

● Runtime:
● Leaf node containing player detected by searching the
tree (very fast)

● PVS of polygons for this node are rendered
● (BSP-tree is NOT used for back-to-front rendering!)

Antialiasing and
Mipmaps

Problem: Sampling Textures
Can Lead to Aliasing

• Just as we’ve seen with image processing and raytracing
applications, if details are not captured with sufficient
samples we can see noticeable artifacts

• Solution: use a better sampling/reconstruction

Pixel Footprints
• Can vary in size, shape, and orientation relative to the texture

• Problem: Which of the texture pixels show we pick for each image pixel ? (blue or
black)

Answer: neither blue nor black is
correct. We need to average them.

To resolve the aliasing problem: For each rendered image pixel,
we need to average multiple texture pixels.
Their number might be large.

Sampling and Reconstruction
• If footprint is small, need better reconstruction (e.g.

bilinear instead of nearest neighbor)

• If the footprint is large, need to average many samples

Mipmap

• More or less the same idea as “level of
details”

• Antialiasing is only one of the
applications of mipmaps

• To quickly compute averages, store the
texture at multiple resolutions

• For each lookup, estimate the size of
the footprint and index into the mipmap
accordingly

https://en.wikipedia.org/wiki/Mipmap

https://en.wikipedia.org/wiki/Mipmap

Correcting Aliasing

