CSC 433/533
 Computer Graphics

Alon Efrat
Credit: Joshua Levine

Character Animation

Animation 2

Rigged character

- Surface is deformed by a set of bones
- Bones are in turn controlled by a smaller set of controls
- The controls are useful, intuitive DOFs for an animator to use

Forward vs. Inverse Kinematics

Skinning

- After solving for the skeleton, one still needs to update and deform the surface

Inverse Kinematics Solves for all Intermediate Constraints

Mesh skinning math: setup

- Surface has control points \mathbf{p}_{i}
- Triangle vertices, spline control points, subdiv base vertices
- Each bone has a transformation matrix M_{j}
- Normally a rigid motion
- Every point-bone pair has a weight $w_{i j}$
- In practice only nonzero for small \# of nearby bones
- The weights are provided by the user

Mesh skinning math

- Deformed position of a point is a weighted sum
- of the positions determined by each bone's transform alone
- weighted by that vertex's weight for that bone

$$
\mathbf{p}_{i}^{\prime}=\sum_{j} w_{i j} M_{j} \mathbf{p}_{i}
$$

Skinning Mesh Animations
Doug L. James Christopher D. Twigg

Carnegie Mellon University

Physics-Based Animation

Animation vs. Simulation

- Animation methods use scripted actions to make objects change
- Simulation: simulate physical laws by associating physical properties to objects
- Solve for physics to achieve (predict) realistic effects

Using Particle Systems

- Idea: Represent the physics on the simplest possible entity: particles
- Used for effects like smoke, fire, water, sparks, and more
- Plenty of other approaches, this is just one family

PARTICLE DREAMS

Karl Sims
Optomystic

Unified Particle Physics for Real-Time Applications
Miles Macklin Matthias Müller Nuttapong Chentanez Tae-Yong Kim NVIDIA

Used in Games Physics

Particle System Setup

```
class Particle {
    Vector3 position;
    vector3 velocity;
    };
```


Position is a function of time

- i.e., $\vec{x} \equiv \vec{x}(t)$

Note that $\vec{u}(t) \equiv \frac{\partial \vec{x}}{\partial t}$
Use a function to control the particle's velocity
$\vec{v}(t)=f(\bar{x}(t))$
This is an Ordinary Differential Equation (ODE)
Solve this ODE at every frame

- i.e., solve for $\vec{x}\left(t_{0}\right), \vec{x}\left(t_{1}\right), \vec{x}\left(t_{2}\right)$, .
- Then we can draw each of these positions to the screen

A Simple Example

Let \vec{v} be constant

$$
\text { e.g., } \vec{v}=f(\vec{x})=(0,0,1)^{\top}
$$

Then we can solve for the position at any time:

$$
\cdot \vec{x}(t)=\vec{x}(0)+t \vec{v}
$$

Not always so easy

- $f(\vec{x})$ can be anything!

Might be unknown until runtime (e.g., user interaction)

- Often times, not solved exactly

Moving Particles, Revisited

Now, acceleration is in the mix - $\vec{a}(t) \equiv \frac{\partial \vec{v}}{\partial t} \equiv \frac{\partial^{2} \vec{x}}{\partial t^{2}}$

Use a function to control the particle's acceleration

- $\vec{a}(t)=f(\vec{x}(t))$

This is a Second Order ODE
Solve this ODE at every frame, same as before
Can sometimes be reduced to a first order ODE
Calculate position and velocity together

Physically-based Motion

Acceleration based on Newton's laws
$\vec{f}(t)=m \vec{a}(t)$...or, equivalently... $\vec{a}(t)=\vec{f}(t) / m$
i.e., force is mass times acceleration

Forces are known beforehand
e.g., gravity, springs, others....

Multiple forces sum together

- These often depend on the position, i.e., $\vec{f}(t) \equiv \vec{f}(\vec{x}(t))$

Sometimes velocity, too
If we know the values of the forces, we can solve for particle's state

Unary Forces

Constant

- Gravity

Position/Time-Dependent

Force fields, e.g. wind
Velocity-Dependent
Drag

Ordinary Differential Equations

$$
\frac{d \mathbf{X}(t)}{d t}=f(\mathbf{X}(t), t)
$$

- Given a function $f(\mathbf{X}, t)$ compute $\mathbf{X}(t)$
- Typically, initial value problems:
- Given values $\mathbf{X}\left(t_{0}\right)=\mathbf{X}_{0}$
- Find values $\mathbf{X}(t)$ for $t>t_{0}$
- We can use lots of standard tools

Reduction to $1^{\text {st }}$ Order

- Point mass: $2^{\text {nd }}$ order ODE

$$
\vec{F}=m \vec{a} \quad \text { or } \quad \overrightarrow{\boldsymbol{F}}=m \frac{d^{2} \overrightarrow{\boldsymbol{x}}}{d t^{2}}
$$

- Corresponds to system of first order ODEs

$$
\left\{\begin{array}{lr}
\frac{d}{d t} \overrightarrow{\boldsymbol{x}}=\overrightarrow{\boldsymbol{v}} & 2 \text { unknowns (x, v) } \\
\frac{d}{d t} \overrightarrow{\boldsymbol{v}}=\overrightarrow{\boldsymbol{F}} / m & \text { instead of just } \mathbf{x}
\end{array}\right.
$$

Newtonian Mechanics

- Point mass: $2^{\text {nd }}$ order ODE

$$
\vec{F}=m \vec{a} \quad \text { or } \quad \overrightarrow{\boldsymbol{F}}=m \frac{d^{2} \overrightarrow{\boldsymbol{x}}}{d t^{2}}
$$

This image is in the public doma
Source: Wikimedia Commons.

- Position \boldsymbol{x} and force \boldsymbol{F} are vector quantities
- We know \boldsymbol{F} and m, want to solve for \boldsymbol{x}
- You have all seen this a million times before

Reduction to $1^{\text {st }}$ Order

$$
\left\{\begin{array}{lc}
\frac{d}{d t} \overrightarrow{\boldsymbol{x}}=\overrightarrow{\boldsymbol{v}} & 2 \text { variables (x, v) } \\
\frac{d}{d t} \overrightarrow{\boldsymbol{v}}=\overrightarrow{\boldsymbol{F}} / m & \text { instead of just one }
\end{array}\right.
$$

- Why reduce?

Reduction to $1^{\text {st }}$ Order

$$
\left\{\begin{array}{lr}
\frac{d}{d t} \overrightarrow{\boldsymbol{x}}=\overrightarrow{\boldsymbol{v}} & 2 \text { 2 variables (x, v) } \\
\frac{d}{d t} \overrightarrow{\boldsymbol{v}}=\overrightarrow{\boldsymbol{F}} / m & \text { instead of just one }
\end{array}\right.
$$

- Why reduce?
- Numerical solvers grow more complicated with increasing order, can just write one 1st order solver and use it
- Note that this doesn't mean it would always be easy :-)

Now, Many Particles

- We have N point masses
- Let's just stack all $\mathbf{x s}$ and $\mathbf{v s}$ in a big vector of length 6 N

$$
\boldsymbol{X}=\left(\begin{array}{c}
\boldsymbol{x}_{1} \\
\boldsymbol{v}_{1} \\
\vdots \\
\boldsymbol{x}_{N} \\
\boldsymbol{v}_{N}
\end{array}\right) \quad f(\boldsymbol{X}, t)=\left(\begin{array}{c}
\boldsymbol{v}_{1} \\
\boldsymbol{F}^{1}(\boldsymbol{X}, t) \\
\vdots \\
\boldsymbol{v}_{N} \\
\boldsymbol{F}^{N}(\boldsymbol{X}, t)
\end{array}\right)
$$

Notation

- Let's stack the pair (\mathbf{x}, \mathbf{v}) into a bigger state vector \mathbf{X}

$$
\begin{array}{r}
\boldsymbol{X}=\binom{\overrightarrow{\boldsymbol{x}}}{\overrightarrow{\boldsymbol{v}}} \begin{array}{l}
\text { For a particle in } \\
\text { 3D, state vector } \mathbf{X} \\
\text { has 6 numbers }
\end{array} \\
\frac{d}{d t} \boldsymbol{X}=f(\boldsymbol{X}, t)=\binom{\overrightarrow{\boldsymbol{v}}}{\overrightarrow{\boldsymbol{F}}(x, v) / m}
\end{array}
$$

Now, Many Particles

- We have N point masses
- Let's just stack all $\mathbf{x s}$ and \mathbf{v} s in a big vector of length 6 N
- \mathbf{F}^{i} denotes the force on particle i
- When particles don't interact, \mathbf{F}^{i} only depends on \mathbf{x}_{i} and $\mathbf{v}_{\text {i }}$.

Path through a Vector Field

- $X(t)$: path in multidimensional phase space

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{X}=f(\boldsymbol{X}, t)
$$

"When we are at state \mathbf{X} at time t, where will \mathbf{X} be after an infinitely small time interval dt ?"

Integration Algorithm 1

Calculating Particle State from Forces: First attempt
Use forces to update velocity: $\vec{v}(t+h)=\vec{v}(t)+\frac{h}{m} \vec{f}(t)$
Use old velocity to update position: $\vec{x}(t+h)=\vec{x}(t)+h \vec{v}(t)$
Issues
Unstable in certain cases!
Reducing time step can help, but this becomes computationally expensive
Error is $O\left(h^{2}\right)$ per step (and accumulates!). Error is $O(h)$ globally.
This technique is called Forward (Explicit) Euler Integration
Example: circle

Path through a Vector Field

- $\boldsymbol{X}(t)$: path in multidimensional phase space

- $f=\mathrm{d} / \mathrm{d} t \boldsymbol{X}$ is a vector that sits at each point in phase space, pointing the direction.

Comparison Euler, Step Sizes

Euler quality is proportional to $\mathrm{d} t$

Intuitive Solution: Take Steps

- Current state \mathbf{X}
- Examine $\mathrm{f}(\mathbf{X}, \mathrm{t})$ at (or near) current state
- Take a step to new value of \mathbf{X}

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq--fair-use/
$\frac{\mathrm{d}}{\mathrm{d} t} \boldsymbol{X}=f(\boldsymbol{X}, t)$
$\Rightarrow{ }^{\mathbf{6} \mathbf{6}} \mathrm{d} \boldsymbol{X}=\mathrm{d} t f(\boldsymbol{X}, t)^{\mathbf{7}}$
$f=\mathrm{d} / \mathrm{d} t \boldsymbol{X}$ is a vector that sits at each point in phase space, pointing the direction.

Euler, Visually

$\frac{\mathrm{d}}{\mathrm{d} t} \boldsymbol{X}=f(\boldsymbol{X}, t)$

Euler's Method

- Simplest and most intuitive
- Pick a step size h
- Given $\mathbf{X}_{0}=\mathbf{X}\left(t_{0}\right)$, take step:

$$
\begin{aligned}
t_{1} & =t_{0}+h \\
\mathbf{X}_{1} & =\mathbf{X}_{0}+h f\left(\mathbf{X}_{0}, t_{0}\right)
\end{aligned}
$$

- Piecewise-linear approximation to the path
- Basically, just replace d \boldsymbol{t} by a small but finite number

Euler, Visually

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{X}=f(\boldsymbol{X}, t)
$$

Euler, Visually

$\frac{\mathrm{d}}{\mathrm{d} t} \boldsymbol{X}=f(\boldsymbol{X}, t)$

Integration Algorithm 2

Another attempt
Update velocity with forces at next time step: $\vec{v}(t+h)=\vec{v}(t)+\frac{h}{m} \vec{f}(t+h)$
Use new velocity to update position: $\vec{x}(t+h)=\vec{x}(t)+h \vec{v}(t+h)$
Benefits
Unconditionally stable if the system is linear!
Issues
Solving for $\vec{f}(t+h)$ is often expensive
Can introduce artificial viscous damping
Error is still $O\left(h^{2}\right)$ per step
This technique is called Backward (Implicit) Euler Integration

Euler, Visually

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{X}=f(\boldsymbol{X}, t)
$$

Another Simple Example: Sprinkler

list<Particle> PL;
spread $=0.1$; //how random the velocity is
//add k particles to the list
for (int $i=0$; $i<k$; $i++$) \{
Particle p;
p->position $=\operatorname{Vec} 3(0,0,0)$;
p->velocity $=\operatorname{Vec} 3(0,0,1)+$ spread*Vec3(rand(), rand(), rand()); PL->add(p);
\}
for (each time step)
for (each particle p in PL) \{
p->position += p->velocity*dt; //dt: time step
p->velocity -= g*dt; //g: gravitation constant
\}

Binary, n-ary Forces

Much more interesting behaviors to be had from particles that interact Simplest: binary forces, e.g. springs

$$
\vec{f}_{i}\left(\vec{x}_{i}, \vec{x}_{j}\right)=-k_{s}\left(\left\|\vec{x}_{i}-\vec{x}_{j}\right\|-r_{i j}\right) \frac{\vec{x}_{i}-\vec{x}_{j}}{\left\|\vec{x}_{i}-\vec{x}_{j}\right\|}
$$

Nice example project with mass-spring systems:
https://vimeo.com/73188339
More sophisticated models for deformable things use forces relating 3 or more particles

Particle System Setup, Revisited
class Particle \{
float mass;
Vector3 position; Vector3 velocity; Vector3 force;
\} ;

Basic Algorithm

1) Clear forces from previous calculations
2) Calculate/accumulate forces for each particle
3) Solve for particle's state (position, velocity) for the next time step h

Generalizations

- It's not all hacks:

Smoothed Particle Hydrodynamics (SPH)

- A family of "real" particle-based fluid simulation techniques.
- Fluid flow is described by the Navier-Stokes Equations, a nonlinear partial differential equation (PDE)
- SPH discretizes the fluid as small packets (particles!), and evaluates pressures and forces based on them.
© ACM. All rights reserved. This content is excluded fro
our Creative Commons license. For more information, see our Creative Commons license. For mor
http://ocw.mit.edul/help/faq-fair-use/.

