

- Forward (explicit) Euler integration
 - ∘ $x(t+\Delta t) \leftarrow x(t) + \Delta t v(t)$
 - ∘ $v(t+\Delta t) \leftarrow v(t) + \Delta t f(x(t), v(t), t) / m$
- Problem:
 - $\,\circ\,$ Accuracy decreases as Δt gets bigger

Solving the Equations of Motion

Explicit Euler step $y_{n+1} = y_n + hf(t_n, y_n)$ Implicit Euler step $y_{n+1} = y_n + hf(t_{n+1}, y_{n+1})$

Why are these methods called like this?

- Explicit: all quantities are known (given explicitly)
- **Implicit**: y_{n+1} is unknown (given implicitly)
- Stability conditions for Euler
 - Explicit $y_n = (1 + h\lambda)^n y_0 < \infty \iff |1 + h\lambda| < 1$ - Implicit $y_n = (1 - h\lambda)^{-n} y_0 < \infty \iff |1 - h\lambda|^{-1} < 1$

Implicit Euler is stable for all h > 0 !

More Complex Particle Systems

Particle System Forces

- Gravity
 - Force due to gravitational pull (of earth)
 - \circ g = acceleration due to gravity (m/s²)

$$f_g = mg$$
 $g = (0, -9.80665, 0)$

Particle System Forces• Drag
• Force due to resistance of medium
•
$$k_{drag} = drag \ coefficient (kg/s)$$
 $f_d = -k_{drag}v$ $\int_{p} \sqrt{f_d}$ • Air resistance sometimes taken as proportional to v^2

Particle System Forces

- Gravitational pull of other particles
 - $\circ~$ Newton's universal law of gravitation

$$f_{G} = G \frac{m_{1} \cdot m_{2}}{d^{2}}$$

G = 6.67428 x 10⁻¹¹ N m² kg⁻²

Examples: Fountain, Gravity

Spring-Mass Models

v(p)

Binary, *n*-ary Forces

Much more interesting behaviors to be had from particles that interact Simplest: binary forces, e.g. springs

$$ec{f_i}(ec{x_i}, ec{x_j}) = -k_s(\|ec{x_i} - ec{x_j}\| - r_{ij})rac{ec{x_i} - ec{x_j}}{\|ec{x_i} - ec{x_j}\|}$$

Nice example project with mass-spring systems:

· https://vimeo.com/73188339

More sophisticated models for deformable things use forces relating 3 or more particles

Particle System Forces

- Springs
 - Hooke's law with damping

$$f_H(p) = \left[k_s(d(p,q)-s) + k_d(v(q)-v(p)) \cdot D\right] D$$

D = (q - p)/||q - p|| d(p,q) = ||q - p|| s = resting length $k_s = \text{spring coefficient}$ $k_d = \text{damping coefficient}$ v(p) = velocity of p v(q) = velocity of q $k_d \sim 2\sqrt{mk_s}$

Particle System Forces

Spring-mass mesh

Solving Spring-Mass Systems

- Can be set up as an Euler integration
- + \mathbf{f}_0 accumulates the spring forces, $\mathbf{M}^{\text{-1}}$ is a matrix of the masses at each point
- Δx , Δv describe the discretized position and velocity update

$$\begin{pmatrix} \Delta \mathbf{x} \\ \Delta \mathbf{v} \end{pmatrix} = h \begin{pmatrix} \mathbf{v_0} \\ \mathbf{M}^{-1} \mathbf{f_0} \end{pmatrix}$$

• Compare with implicit form:

$$\begin{pmatrix} \Delta \mathbf{x} \\ \Delta \mathbf{v} \end{pmatrix} = h \begin{pmatrix} \mathbf{v_0} + \Delta \mathbf{v} \\ \mathbf{M}^{-1} \mathbf{f} (\mathbf{x_0} + \Delta \mathbf{x}, \mathbf{v_0} + \Delta \mathbf{v}) \end{pmatrix}$$

Baraff, Witkin. SIGGRAPH 1998. https://www.cs.cmu.edu/~baraff/papers/sig98.pdf

Examples: Cloth, Flag

Particle System Forces

Witkin

- Collision detection
 - Intersect ray with scene
 - $\circ~$ Compute up to Δt at time of first collision, and then continue from there

Witkin

Collisions – Overshooting

• Usually, we detect collision when it is too late: we are already inside

Collisions – Overshooting

- Usually, we detect collision when it is too late: we are already inside
- Solution: Back up
 - Compute intersection point
 - Ray-object intersection!
 - Compute response there
 - Advance for remaining fractional time step

Collisions – Overshooting

- Usually, we detect collision when it is too late: we are already inside
- Solution: Back up
 - Compute intersection point
 - Ray-object intersection!
 - Compute response there
 - Advance for remaining fractional time step
- Other solution: Quick and dirty hack
 - Just project back to object closest point

71

Animation So Far

- Interpolation based animation:
 - Interpolation of images, for example based on keyframes
 - Interpolation of motions, for example scripted character animation by designing transformation on per entity basis
- Physically-based animation techniques where we solve an ODE of some sort
 - · We've started talking about this with particle-based physics
 - Today we'll talk about another scheme for it
- Next: we'll talk about non-physical animations through behaviors.

Animating Based on Behavioral Rules

Boids

- Powerful, simple model
 - No central control
 - Only simple rules for each individual
 - Complex, emergent phenomena
 - Self-organization, swarm intelligence

(1883)

Reynolds

Boids

- Computer graphics motivation
 - Scripting of the path of many individual objects using traditional computer animation techniques is tedious.

Reynolds

Boids

- Like a particle system, except ...
 - Each boid may be an entire polygonal object with a local coordinate system (rather than a point)

Boids

- Like a particle system, except ...
 - Each boid can "perceive" a local region around it, e.g., a spherical neighborhood

http://www.arges-systems.com

Boids

Flocking

- Complex flocking behaviors can be modeled with simple "intentional forces"
 - Separation
 - Alignment
 - \circ Cohesion

Flocking – 3 Behaviors (1)

http://www.red3d.com

Flocking – 3 Behaviors (2)

 Alignment = velocity matching: attempt to match velocity with nearby flockmates

Flocking – 3 Behaviors (3)

 Cohesion = flock centering: attempt to stay close to nearby flockmates

http://www.red3d.com

Other Examples (single behavior)

- Example behaviors
 - Seek
 - $\circ \ \ \textbf{Flee}$
 - Evasion
 - Pursuit
 - Wander
 - Arrival
 - Obstacle Avoidance
 - Containment
 - Wall Following
 - Path Following

http://www.red3d.com/cwr/steer/

Examples

(OURSE: 07 (OURSE ORGANIZER: DEMETRI TERZOPOULOS

"BOIDS DEMOS" (RAIG REVNOLDS Silicon Studios, MS 3L-980 2011 North Shoreline Blyd. Mountain View, (A 94039-7311

Obstacle Avoidance (1)

- · Force field approach
 - Obstacles have a field of repulsion
 - $\circ~$ Boids increasingly repulsed as they approach obstacle
- Drawbacks:
 - Approaching a force in exactly the opposite direction
 - Flying alongside a wall

Obstacle Avoidance (2)

- Steer-to-avoid approach
 - $\circ~$ Boid only considers obstacles directly in front of it
 - Finds silhouette edge of obstacle closest to point of eventual impact

• A vector is computed that will aim the boid at a point one body length beyond the silhouette edge

Arbitrating Independent Behaviors 🐱

- Navigation module of boid brain to collect relevant acceleration requests and then determine single behaviorally desired acceleration
 - Weighted average according to priority
- Emergency acceleration allocated to satisfy pressing needs first
 - Example: Centering ignored in order to maneuver around obstacles

ncase.me/improv-wip/

Improv.js [WIP]

a tool to make tools to make explorable explanations

Let's say you have a model of a complex system. And you want others to be able to play around with it, explore the system, change its rules, maybe even create their *own* models with it! Well, that's an incredibly specific goal to have, but hey, you're in luck.

Improv lets you write words normally like this...

A "boid" is like a bird, but worse. Let's make a flock of {NUMBER count: min=0,max=100} boids, and paint 'em all {CHOOSE color: black, red, blue, random colors}!

...which will get you something like this:

