

Wire-Frame Representation

1 Object is represented as as a set of points and edges (a graph) containing topological information.
\square Used for fast display in interactive systems.

- Can be ambiguous:

Volumetric Representation

- Voxel based (voxel = 3D pixels).

Advantages: simple and robust Boolean operations, in/ out tests, can represent and model the interior of the object.
Disadvantages: memory consuming, non-smooth, difficult to manipulate.

$\xrightarrow{-}$

Motivation: Surface of Revolution
Rotate a, usually planar,
curve around the z -axis
First construct the curve in the
XZ-plane
htosel/wwwaeocebra.ordelm/CBafoitd

$$
\beta(t)=\left(\beta_{x}(t), \beta_{z}(t)\right)
$$

$$
\begin{aligned}
& x(u, v)=\beta_{x}(u) \cos (v) \\
& y(u, v)=\beta_{x}(u) \sin (v) \\
& z(u, v)=\beta_{z}(u)
\end{aligned}
$$

Big picture - what do we want

The designer could control a small number of points, and a curve connecting theses points is generated.

- Desired Properties:
- Easily controlled - small number of controlled points, and should be easy to predict the effect of each
- Effect should be local and stable (hopefully small change of control parameter \Rightarrow small change of the curve)
- Locality changes are near the control point
- Continuity. C^{1} continuity. Geometric continuity (will discuss later)
- Easy to calculate, calculate intersection points etc. (nothing more complicated than cubic)
(unfortunately) before creating splines, lets create a segment of the spline. Then we could stitch them.
If theses segments starts/stops at control points, they must 'glue' nicely.

__Concatenating Hermit Curves into a Spline

$h_{00}(t), h_{01}(t)$ that will handle location at beginning of end of the segment.
$h_{10}(t), h_{10}(t)$ effects the start and end directions.
Note $h_{00}(0)=1$ Means that the curve
$\mathbf{A} h_{00}(t)+\mathbf{B} h_{01}(t)$ starts at A and ends at B . No need to find a polynomial that will fit only specific

-
 Big picture - what do we want
 The designer could control a small number of points, and a curve connecing theses points is generated.
 - Desired Properties:
 - Easily controlled - small number of controlled points, and should be easy to predict the effect of each
 - Effect should be local and stable (hopefilly small change of control parameter \Rightarrow small change of the curve)
 - Locality changes are near the control point
 - Continuity. C^{1} continuity, Geometric continuity (will discuss later)
 - Easy to calculate, calculate intersection points etc. (nothing more complicated than cubic)
 If we want more control, we could construct the curve from segments connecting the control points (e.g. every third control point) ant more control, we
 If theses segments starts/stops at control points, they must 'glue' nicely.

Lets see how this is done with Hermite curves.

Actually doing excellent for many applications

Not too much control, not too little back to talk about them later

Catmull-Rom Spline do OK

Parametric Curves

Analogous to trajectory of particle in space.
\square Single parameter $t \in\left[T_{1}, T_{2}\right]$ - like "time".
\square position $=p(t)=(x(t), y(t))$,
velocity $=\mathrm{v}(\mathrm{t})=\left(\mathrm{x}^{\prime}(\mathrm{t}), \mathrm{y}^{\prime}(\mathrm{t})\right)$

Circle:

$\square x(t)=\cos (t), y(t)=\sin (t) t \in[0,2 \pi) \quad\|v(t)\| \equiv 1$
$\Rightarrow \begin{aligned} & x(t)=\cos (t), y(t)=\sin (t) t \in[0,2 \pi) \quad\|v(t)\| \equiv 1 \\ & x(t)=\cos (2 t), y(t)=\sin (2 t) \quad t \in[0, \pi) \quad\|v(t)\| \equiv 2\end{aligned}$ $\square x(t)=\left(1-\mathrm{t}^{2}\right) /\left(1+\mathrm{t}^{2}\right), \mathrm{y}(\mathrm{t})=2 \mathrm{t} /\left(1+\mathrm{t}^{2}\right) \mathrm{t} \in(-\infty,+\infty)$

$+$
 Why cubics (deg=3)?

Simplicity, locality, finding intersections easily. At least 4 control points (hence cubic)

Reason: Want to define curves in 3D. If we use only 3 control points, the curve will be contained in a plane

$\mathbf{A} h_{00}^{\prime}(t)+\mathbf{B} h_{01}^{\prime}(t)+\overrightarrow{\mathbf{v}_{\mathbf{A}}} h_{10}^{\prime}(t)+\overrightarrow{\mathbf{v}_{\mathbf{B}}} h_{11}^{\prime}(t)$
https://www.geogebra.org/m/z46dmqkp
Note that $h_{01}^{\prime}(0)=h_{00}^{\prime}(0)=0$, so they cannot change the slope at A
The only function of the four that has non-zero derivative at $t=0$ is $h_{10}^{\prime}(0)$. So we could add $h_{10}(t) \overrightarrow{v A}$ to the curve,
it will not mess the other properties,

since $h_{10}(0)=h_{10}(1)=h_{10}^{\prime}(0)=0$
21

\ldots The four Cubic Hermite weights function

$h_{00}(t), h_{01}(t)$ that will handle location at beginning of end of the segment.
$h_{10}(t), h_{10}(t)$ effects the start and end directions.
Note $h_{00}(0)=1$ Means that the curve
$\mathbf{A} h_{00}(t)+\mathbf{B} h_{01}(t)$ starts at A and ends at B. No
 location.

Hermite Cubic Basis (cont'd)

Lets solve for $h_{00}(t)$ as an example.
$h_{00}(t)=a t^{3}+b t^{2}+c t+d$

must satisfy the following four constraints:

$$
\begin{aligned}
h_{00}(0) & =1=d, \\
h_{00}(1) & =0=a+b+c+d, \\
h_{00}{ }^{\prime}(0) & =0=c, \\
h_{00}^{\prime}(1) & =0=3 a+2 b+c .
\end{aligned}
$$

Four linear equations in four unknowns.

Hermite Cubic Basis (cont'd)
To generate a curve through P_{0} \& P_{l} with slopes T_{0} \& T_{l}, use

$$
C(t)=P_{0} h_{00}(t)+P_{1} h_{01}(t)+T_{0} h_{10}(t)+T_{1} h_{11}(t)
$$

The segments glue nicely, as long as the velocity vectors are opposite
C^{1} continuity: The velocity vector is continuous

Hermite to Bézier

Bezier curve - need 4 control points, but passes through first and last.

- Mixture of points and vectors is awkward
- Specify tangents as differences of points

Cornell CS4620 Fall 2017 • Lecture 16
© 2017 Steve Marschner $\cdot 22$

Hermite to Bézier

$\mathbf{p}_{0}=\mathbf{q}_{0}$
$\mathbf{p}_{1}=\mathbf{q}_{3}$
$\mathbf{t}_{0}=3\left(\mathbf{q}_{1}-\mathbf{q}_{0}\right)$
$\mathbf{t}_{1}=3\left(\mathbf{q}_{3}-\mathbf{q}_{2}\right)$

$$
\left[\begin{array}{c}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{v}_{0} \\
\mathbf{v}_{1}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
-3 & 3 & 0 & 0 \\
0 & 0 & -3 & 3
\end{array}\right]\left[\begin{array}{l}
\mathbf{q}_{0} \\
\mathbf{q}_{1} \\
\mathbf{q}_{2} \\
\mathbf{q}_{3}
\end{array}\right]
$$

Hermite to Bézier

$$
\begin{aligned}
\mathbf{p}_{0} & =\mathbf{q}_{0} \\
\mathbf{p}_{1} & =\mathbf{q}_{3} \\
\mathbf{t}_{0} & =3\left(\mathbf{q}_{1}-\mathbf{q}_{0}\right) \\
\mathbf{t}_{1} & =3\left(\mathbf{q}_{3}-\mathbf{q}_{2}\right)
\end{aligned}
$$

$$
\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b} \\
\mathbf{c} \\
\mathbf{d}
\end{array}\right]=\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
-3 & 3 & 0 & 0 \\
0 & 0 & -3 & 3
\end{array}\right]\left[\begin{array}{l}
\mathbf{q}_{0} \\
\mathbf{q}_{1} \\
\mathbf{q}_{2} \\
\mathbf{q}_{3}
\end{array}\right]
$$

Hermite to Bézier

$$
\begin{aligned}
\mathbf{p}_{0} & =\mathbf{q}_{0} \\
\mathbf{p}_{1} & =\mathbf{q}_{3} \\
\mathbf{t}_{0} & =3\left(\mathbf{q}_{1}-\mathbf{q}_{0}\right) \\
\mathbf{t}_{1} & =3\left(\mathbf{q}_{3}-\mathbf{q}_{2}\right)
\end{aligned}
$$

$$
\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b} \\
\mathbf{c} \\
\mathbf{d}
\end{array}\right]=\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{q}_{0} \\
\mathbf{q}_{1} \\
\mathbf{q}_{2} \\
\mathbf{q}_{3}
\end{array}\right]
$$

Bézier matrix

$\mathbf{f}(t)=\left[\begin{array}{llll}t^{3} & t^{2} & t & 1\end{array}\right]\left[\begin{array}{cccc}-1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}\mathbf{p}_{0} \\ \mathbf{p}_{1} \\ \mathbf{p}_{2} \\ \mathbf{p}_{3}\end{array}\right]$

- note that these are the Bernstein polynomials

$$
b_{n, k}(t)=\binom{n}{k} t^{k}(1-t)^{n-k}
$$

and that defines Bézier curves for any degree

Another way to Bézier segments

- A really boring spline segment: $f(t)=p 0$
- it only has one control point
- the curve stays at that point for the whole time
- Only good for building a piecewise constant spline
- a.k.a. a set of points
https://www.geogebra.org/m/gcchthfa
${ }^{\bullet} \mathbf{p}_{0}$

Cornell CS4620 Fall 2017 • Lecture 16

Another way to Bézier segments

- A piecewise linear spline segment
- two control points per segment
- blend them with weights α and $\beta=1-\alpha$
- Good for building a piecewise linear spline
- a.k.a. a polygon or polyline

Another way to Bézier segments

- A piecewise linear spline segment
- two control points per segment
- blend them with weights α and $\beta=1-\alpha$
- Good for building a piecewise linear spline
- a.k.a. a polygon or polyline

Another way to Bézier segments

- A linear blend of two piecewise linear segments
- three control points now
- interpolate on both segments using α and β
- blend the results with the same weights
- makes a quadratic spline segment
- finally, a curve!

$$
\begin{aligned}
\mathbf{p}_{1,0} & =\alpha \mathbf{p}_{0}+\beta \mathbf{p}_{1} \\
\mathbf{p}_{1,1} & =\alpha \mathbf{p}_{1}+\beta \mathbf{p}_{2} \\
\mathbf{p}_{2,0} & =\alpha \mathbf{p}_{1,0}+\beta \mathbf{p}_{1,1} \\
& =\alpha \alpha \mathbf{p}_{0}+\alpha \beta \mathbf{p}_{1}+\beta \alpha \mathbf{p}_{1}+\beta \beta \mathbf{p}_{2} \\
& =\alpha^{2} \mathbf{p}_{0}+2 \alpha \beta \mathbf{p}_{1}+\beta^{2} \mathbf{p}_{2}
\end{aligned}
$$

Cornell CS4620 Fall 2017 • Lecture 16
© 2017 Steve Marschner •

Another way to Bézier segments

- Cubic segment: blend of two quadratic segments
- four control points now (overlapping sets of 3)
- interpolate on each quadratic using α and β
- blend the results with the same weights
- makes a cubic spline segment
- this is the familiar one for graphics-but you can keep going

$$
\begin{aligned}
\mathbf{p}_{3,0}= & \alpha \mathbf{p}_{2,0}+\beta \mathbf{p}_{2,1} \\
= & \alpha \alpha \alpha \mathbf{p}_{0}+\alpha \alpha \beta \mathbf{p}_{1}+\alpha \beta \alpha \mathbf{p}_{1}+\alpha \beta \beta \mathbf{p}_{2} \\
& \beta \alpha \alpha \mathbf{p}_{1}+\beta \alpha \beta \mathbf{p}_{2}+\beta \beta \alpha \mathbf{p}_{2}+\beta \beta \beta \mathbf{p}_{3} \\
= & \alpha^{3} \mathbf{p}_{0}+3 \alpha^{2} \beta \mathbf{p}_{1}+3 \alpha \beta^{2} \mathbf{p}_{2}+\beta^{3} \mathbf{p}_{3}
\end{aligned}
$$

Cornell CS4620 Fall 2017 • Lecture 16
© 2017 Steve Marschner • 30

Another way to Bézier segments

- A linear blend of two piecewise linear segments
- three control points now
- interpolate on both segments using α and β
- blend the results with the same weights
- makes a quadratic spline segment
- finally, a curve!
$\mathbf{p}_{1,0}=\alpha \mathbf{p}_{0}+\beta \mathbf{p}_{1}$ $\mathbf{p}_{1,1}=\alpha \mathbf{p}_{1}+\beta \mathbf{p}_{2}$
$\mathbf{p}_{2,0}=\alpha \mathbf{p}_{1,0}+\beta \mathbf{p}_{1,1}$
$=\alpha \alpha \mathbf{p}_{0}+\alpha \beta \mathbf{p}_{1}+\beta \alpha \mathbf{p}_{1}+\beta \beta \mathbf{p}_{2}$
$=\alpha^{2} \mathbf{p}_{0}+2 \alpha \beta \mathbf{p}_{1}+\beta^{2} \mathbf{p}_{2}$
\qquad

Cornel C C 54220 Fall 2017 - Leceure 16

Cornell CS4620 Fall 2017• Lecture 16
© 2017 Steve Marschner • 31

Bilinear interpolation of 4 3D points - 2D analog of 1D linear interpolation between 2 points in the plane
Given $P_{00}, P_{01}, P_{10}, P_{11}$ the bilinear surface for $u, v \in[0,1]$ is:
$P(u, v)=(1-u)(1-v) P_{00}+(1-u) v P_{01}+u(1-v) P_{10}+u v P_{11}$

52

Extrusion

Extrusion of a, usually planar, curve along a linear segment.
Consider curve $\beta(t)$ and vector \vec{v}

- Then

$$
t^{\prime} \cdot \vec{v}+\beta(t), \quad 0 \leq t, t^{\prime} \leq 1,
$$

The cross section may change as it is swept

