
CSC 433/533
Computer Graphics

Review

Course Material Source Credits

Transformations in 2D
Short version

We will discuss transformation in 3D, and with full details, later in the course

(will need Matrix Multiplication and Homogenous coordinates)

About hw1
Aliasing and Anti-Aliasing

• This about an image where each pixels is fully black or
fully white

What if we rotate the rectangle

• Some pixels are partially covered by the rectangle. Show
they be rendered as black, white, or some shade of grey ?

What if we rotate the rectangle

• IWe still need to assign a value to each pixel.

• If we draw each partially covered pixel as black, we will obtain a very pixelated shape. This is an example of aliasing.

• A possible solution is to render some pixels as gray. For example, based on the portion of its area which is covered. This
technique is call antialiasing. Essentially, the color of a pixel might be determined using input from several neighboring pixels.

• We will study much much more about it. Do not worry about it in hw1.

• In hw1, each rendered pixel has the (rgb) value of one (single) input pixel. No averaging or mixing.

Something to be careful about with hw1

Translations (shift) by(α, β)

• Adding a constant to the x-coordinate of every point

• Adding a constant to the y-coordinate of every point

•

α

β

(x, y) → (x + α, y + β)

y = 1

y = 3

y = 5

y = 7

y = 9

x=1 x=3 x=5 x=7 x=9

y = 1

y = 3

y = 5

y = 7

y = 9

x=1 x=3 x=5 x=7 x=9

(x=5,y=3)

(x=9,y=7)

Translation (shift) by (4, 4)
(x, y) ! (x + 4, y + 4)

Scaling
•We can use two constants (sx,sy) for the x-axis and the y-axis. Then we shift each

point (x,y) into the point

•

•Example

(sx ⋅x, sy ⋅y)

(x, y) → (sx ⋅x, sy ⋅y)

(x, y) → (x /2, y/2)

(6,6)

(3,3)

Scaling
• Example: (x, y) → (0.5x, 2y)

ç

(6,6)

(3,12)

The mathematician and coffee cup non-funny joke
Part 1

Empty Coffee
 cup Full Coffee Kettle

Mathematician

Fence

Solution:
1. Walk around the fence,
2. fetch coffee kettle,
3. walk back pure coffee,
4. drink

The mathematician and coffee cup non-funny joke
Part 2

Empty Coffee
 cup

Full Coffee
 Kettle

Fence

Solution:
1. Bring the coffee Kettle to the other table, and walk to the left table
2. Apply the solution from the previous slide

Resize the clock, without
changing its center

y = 1

y = 3

y = 5

y = 7

y = 9

x=1 x=3 x=5 x=7 x=9

y = 1

y = 3

y = 5

y = 7

y = 9

x=1 x=3 x=5 x=7 x=9

Problem: scale the clock, but without changing its center and without e↵ecting the green rectangle

Solution - in 3 steps

y = 1

y = 3

y = 5

y = 7

y = 9

x=1 x=3 x=5 x=7 x=9

y = 1

y = 3

y = 5

y = 7

y = 9

x=1 x=3 x=5 x=7 x=9

Translate by (�5,�5).
Now the center of the clock is on
(0, 0)

y = 1

y = 3

y = 5

y = 7

y = 9

x=1 x=3 x=5 x=7 x=9

y = 1

y = 3

y = 5

y = 7

y = 9

x=1 x=3 x=5 x=7 x=9

Scale by (2, 2)
(x, y) ! (2x, 2y)

y = 1

y = 3

y = 5

y = 7

y = 9

x=1 x=3 x=5 x=7 x=9

y = 1

y = 3

y = 5

y = 7

y = 9

x=1 x=3 x=5 x=7 x=9

Translate by (+5,+5).
Now the center of the clock
is back (5, 5)

from here

to here

to here

from here

Shearing
• If we move each point (x,y) into the point

(x, y) → (x + y, y)

Shearing
• Vertical shearing shifts each

column based on the x value.

(x, y) → (x, x + y)

Rotation
• Rotate counterclockwise by an angle 𝜙 about the origin.
(x, y) → (x cos ϕ−y sin ϕ, x sin ϕ+y cos ϕ)

New x New y

Assume we rotate p by an angle CCWθ

x = cos(�)

y = sin(�)
�

p = (x, y)
1

x0 = cos(� + ✓)

y0 = sin(� + ✓)

�

p0 = (x0, y0)

1

✓

x′ = cos(ϕ + θ) =

= x cos(θ) − y sin(θ)

Starting from a point p=(x,y), where will this point
find itself after rotation by in the
CounterClockwise direction ?

Let denote the new location of this
point. Lets compute this location:

θ

p′ = (x′ , y′)

cos(ϕ)

=x

cos(θ) − sin(ϕ)

=y

sin(θ) =

y′ = sin(ϕ + θ) =
sin(ϕ)

=y

cos(θ) + cos(ϕ)

=x

sin(θ)

= x sin(θ) + y cos(θ)

phi←

theta
←

18

Transformation Composition

❑ What operation rotates by θ around P = (px,py) ?

Translate P to origin
Rotate around origin by θ
Translate back

P P

Reflection on the x-axes: (x, y) → (x, − y)

y = 1

y = 3

y = 5

y = 7

y = 9

x=1 x=3 x=5 x=7 x=9

y = 1

y = 3

y = 5

y = 7

y = 9

x=1 x=3 x=5 x=7 x=9

(x=5,y=3)

(x=5, y= -3)

y = 1

y = 3

y = 5

y = 7

y = 9

x=1 x=3 x=5 x=7 x=9
y = �1

y = �3

y = �5

y = �7

y = �9

y = �1

y = �3

y = �5

y = �7

y = �9

Arbitrary Reflection - promo
We will get back to it later in the semester

1. Compute b.
2. Shift by (0,-b)
3. Rotate by –α CCW
4. Reflect through x
5. Rotate by α
6. Shift by (0,b)

P

P’
y=ax+b

α(0,b)

α=tan-1(a)

x

y

P

P’
y=ax+b

α(0,b)

x

y

Very scarrrrry….
Unless we represent

transformation by matrices
And then it is trivial

A Simple Mathematical
Abstraction for Images

• We can abstract an image as a function, I

• I: R → V

• The domain, R, is a some continuous rectangular area
(R ⊆ ℝ2) and the range,

• V, is a set of possible values.

• Since R is two dimensional, we can use I(x,y) to represent
the value of the image at a position (x,y) ∈ R

Raster Images
• We digitize I(x,y) as an array of values, I[y][x], called

pixels, for picture elements

NOTE: (0,0) is
often the top
left, not the
bottom left!

How Do We Acquire
Raster Images?

Light
• Is both: (1) particles known as photons that (2) act as waves.

• Amplitude (height of wave)

• Wavelength (distance of which wave repeats)

• Frequency is the inverse of wavelength

• Relationship between wavelength (λ) and frequency (f):

• λ = c / f

• Where c = speed of light = 299,792,458 m / s

Light Light is Electromagnetic Radiation

• Visible spectrum is
“tiny”

• Wavelength range:
380-740 nm

Color != Wavelength
• But rather, a combination of wavelengths and energy

Isaac Newton, 1666

http://www.webexhibits.org/colorart/bh.html
https://www.clivemaxfield.com/diycalculator/popup-m-cvision.shtml http://www.thestargarden.co.uk/Newtons-theory-of-light.html

Optics: Thin Lenses
• A lens is a transparent device that allows light to pass

through while causing it to either converge or diverge.

• Given a camera, a target object, and a single converging lens:

• Let S1 and S2 be the distance from the lens to the target
and film

• The focal length, f, is a measure of how strongly a lens
converges light

• The magnification factor, m = S2/S1, relates the two
distances.

Thin Lens Equation Human Optics
• In human vision, the cornea acts as a

protective lens that roughly focuses
incoming light

• Iris controls the amount of light that
enters the eye

• The lens sharply focuses incoming light
onto the retina

• Absorbs both infrared and ultraviolet
light which can damage the lens

• The retina is covered by
photoreceptors (light sensors) which
measure light

The Eye

LENS

RETINA

Text

Not like a camera

Photoreceptors
• Rods (detect low-light / scoptopic vision)

• Approximately 100-150 million rods (Non-
uniformly distributed across the retina)

• Sensitive to low-light levels (scotopic
vision)

• Cones (detect day-light / phototopic vision)

• Approximately 6-7 million cones.

• Detect color with 3 different kinds:

• Red (L cone) : 564-580nm
wavelengths (65% of all cones)

• Green (M cone) : 534-545nm (30% of
all cones)

• Blue (S cone) : 420-440nm (5% of all
cones)

From Humans to Machines:
Charge-Coupled Devices (CCDs)

• A CCD is an electronic circuit
with a grid of small
rectangular photocells.

• The optical lens focuses a
scene onto the sensors.

• Each photocell measures the
amount of light that hits it.

• The collective data of the
sensors represents an image
when viewed from a distance.

http://en.wikipedia.org/wiki/Charge-coupled_device

Color Image Acquisition Color Image Acquisition
• In a single CCD color digital camera each individual

photosite of the CCD is filtered to detect either red, green,
OR blue light

• Most filters mimic the cone density of the human eye

• The Bayer filter uses 50% green and 25% red and blue
sites.

• The ‘RAW’ data must be demosaiced (fill in the gaps) to
produce a true-color image.

Bayer Filter

• Newer technology allows each photosite is able to
discriminate and measure red, green and blue light
simultaneously.

How Do We Encode
Raster Images? • Bitmap: digital image that is a 2d array of pixels which store

one bit.

• Simplest digital image, a representation of a black and
white image.

• Bit: ones/zeros, convention is 0 = black & 1 = white.

Bitmaps

Digital Images Linearized
• While we think of images as 2-

dimensional, in memory we
usually prefer to pack storage
so that they are 1-dimensional.

• The same image can be
represented in both binary and
hexadecimal

Greyscale Images - Pixmaps

• We use 0 for black and 1 for white -- what value should
we use for grey?

• Could use floating point numbers

• Instead, one convention is to use 8 bits for pixel -- how
many different “shades of grey”?

• Can convert to [0.0,1.0] by dividing by 255

Javascript and Arrays

• Standard Array type in Javascript is sparse:

• No guarantee of contiguous block of memory, memory is allocated on
demand.

• Can store mixed types

• Javascript TypedArray does use a contiguous block of memory

• But, requires a fixed type. E.g. Byte,

The operation Array.from
Definition and Usage
The Array.from() method returns an Array object from any object with a length property or an iterable
object.

Create an Array from a String:
var myArr = Array.from("ABCDEFG");

Definition and Usage
The Array.from() method returns an Array object from any object with a length property or an iterable
object.
Syntax
B=Array.from(object, mapFunction, thisValue)

B=Array.from([1, 2, 3], x => x + x)
console.log(B);
Output: Array [2, 4, 6]

function f() {
 return Array.from(arguments);
}
f(1, 2, 3);
// [1, 2, 3]

Array.from() is not supported in Internet Explorer 11 (or earlier).

Image Allocation
let ROWS = 8;
let COLS = 8;
let pixmap2 = Array.from(Array(ROWS), () => Array(COLS));

pixmap2

pixmap2[3]

Rows separated in
memory!

pixmap2[2]

pixmap2[4]

......

pixmap2[2][3]

But it’s even worse since
individual elements likely
are not adjacent either!

 let ROWS = 8; let COLS = 8;

 //pixmap is an array of arrays
 let pixmap = [];
 for (let r = 0; r < ROWS; r++) {
 pixmap[r] = [];
 }

 //pixmap2 is an array of arrays, but with lengths specified
let pixmap2=Array.from(Array(COLS), ()=>new Array(COLS))

 //pixmap3 is utilizes a 1-d array for the whole thing
 let pixmap3 = Array(ROWS * COLS);

 //top left pixel (x,y) = (0,0)
 pixmap[0][0]; pixmap2[0][0]; pixmap3[0];

 //top right pixel (x,y) = (7,0)
 pixmap[0][7]; pixmap2[0][7]; pixmap3[7];

 //bottom left pixel, in general [index] = [y*COLS+x]
 pixmap[7][0]; pixmap2[7][0]; pixmap3[56];

Pixmap
Declaration

In Javascript

Pixmap Declaration with TypedArrays

pixmap4[2]

let ROWS = 8; let COLS = 8;

//pixmap4 is utilizes a 1-d array for the whole thing

let pixmap4 = new Uint8Array(ROWS*COLS);

//Instead of storing as 0..255, can use other types

//e.g. Uint8ClampedArray, Float32Array, etc.

// Clamped here means “automatic and reasonable rounding:

// -3.9-> 0; 266.5->255 etc”

//Can we do multidimensional TypedArray

//using Arrays of arrays?

let pixmap4 = new Uint8Array(ROWS);

pixmap4[0] = new Uint8Array(COLS); //incorrect!

//for TypedArrays, we must use 1-d indexing

//e.g. [index] = [y*COLS+x]

Image Allocation
let ROWS = 8;
let COLS = 8;
let pixmap4 = Uint8Array(ROWS*COLS);

pixmap4

pixmap4[3] Memory contiguous,
but cannot index by

row / column

pixmap4[2]

pixmap4[4]

pixmap4[2][3]
We don’t have this

Encoding Color Images

• Could encode 256 colors with an unsigned char. But
what convention to use?

• One of the most common is to use 3 channels or bands

• Red-Green-Blue or RGB color is the most common --
based on how color is represented by lights.

• Coincidentally, this just happens to be related to how our
eyes work too.

NOTE: There are many schemes to represent color, most
use 3 channels. We’ll come back to this next lecture

RGB Colors

• Additive Mixing
of 3 Lights

Think about black background

RGB Color Cube

Encoding Color Channels

• Could use 8-bits, spread across all 3 channels (a bit
ugly…)

• The textbook outlines a collection of other methods. The
most common? 8-bit RGB images (24-bits per pixel)

//separate channel encoding

let red_pixmap = new Uint8Array(ROWS*COLS);

let green_pixmap = new Uint8Array(ROWS*COLS);

let blue_pixmap = new Uint8Array(ROWS*COLS);

//all together, could use an 32-bit uint,

//by standard convention we have 4 channels

let rgb_pixmap = new Uint8Array(4*ROWS*COLS);

//access colors

let index = COLS*r + c;

rgb_pixmap[4*index + 0]; //red

rgb_pixmap[4*index + 1]; //green

rgb_pixmap[4*index + 2]; //blue

 Alpha channel is skipped

RGB Pixmap
Encoding
Options

How Do We Display
Raster Images?

Optical Mixing
• To make (almost) any color, we combine light from three

channels, Red, Green, Blue

As pixels get smaller, the
light blends

LEDs
(Light-Emitting Diodes) LCD Technology

• LCDs or Liquid Crystal
Displays produce color
by selectively blocking
light through different
filters

• Pixels are organized in
various units of 3

• Light oscillates as a wave in all directions perpendicular to
its path. Polarizers selectively block certain oscillations

Polarized Light

http://www.olympusmicro.com/primer/lightandcolor/polarization.html

Twisted Nematics

ON

OFF

Black

Lit

LCD Technology
• Four basic layers (in twisted nematics

displays):

• (1) Vertical filter film to polarize the light as it
enters/exits.

• (2 – 4) Glass substrate sandwiched with
electrodes. The activation of these
electrodes will determine what light will
penetrate via twisted nematic LCDS

• (5) Horizontal polarizer to filter light.

• (6) Reflective surface or light source to send
light back to viewer.

http://en.wikipedia.org/wiki/Lcd

Sidebar: Framebuffers are used to
prepare image data for the screen
• A framebuffer is an array of memory, large enough to store

an image on the screen. Often implemented in hardware.

• A lookup table or LUT converts information from memory to
actual color responses on the display.

• Uses:

• Color correction, since display may not respond at the
same levels as how the data represents it.

• Simple example: Gamma corrections, brightness/contrast
adjustment, etc.

• Individual respond from the display (monitor) to every value of GrayScale

• Lets normalize the intensity by using float in [0,1] instead of 255 values of RGB

• such that

• 0 = black, and 1=white

• A pixel with input intensity 0.5 might look very different in different devices.

• Furthermore, the individual response is always monotonic but usually not linear.
• On top of it, viewer/illumination/other environmental factor

• So is there a subjective definition of what is gray (middle between white and black) ?

• Gamma-Correction. We will assume approximately that if the input is a then

gamma-Correction

• a here is the input intensity to the monitor (between 0 to 1)
• is a constant the user could change,
• If no gamma-correction is needed, then the left and right should look

the same (when viewed from a distance)
• Change a continuously to the right region, until the output looks like

the left region.
• If this happens for some value a of input intensity, we deduce that
• , or
• Now every new image, with intensity a’ , will be displayed using intensity

γ

aγ

aγ = 0.5 γ = (ln 0.5)/(ln a)

(a′)1/γ

Chessboard of
black/white

pixels

Uniform region with grey
pixels, all get input of 0.5
(before correction).

RGB Color Space
• Additive, useful for computer monitors

• Not perceptually uniform

• For example, more “greens” than “yellows”

mixture of the red, green, and blue (rR, gG, bB) primaries look identical. Figure 4.4
illustrates the concept. Three projectors are set up with overlapping beams. In the fig-
ure, the beams only partially overlap so that the mixing effect can be illustrated, but in
a color-matching experiment they would overlap perfectly. To match the lilac-colored
sample, the projectors are adjusted so that a large amount of light comes from the red
and blue projectors and a smaller amount of light comes from the green projector.

(a) (b)

G + B
+ R

Figure 4.4 A color-matching setup. (a) When the light from three projectors is combined
the results are as shown. Yellow light is a mixture of red and green. Purple light is a mixture
of red and blue. Cyan light is a mixture of blue and green. White light is a mixture of red,
green, and blue. (b) Any other color can be matched by adjusting the proportions of red,
green, and blue lights.

R

G

B

(r, g, b)

Figure 4.5 The three-dimensional space formed by three primary lights. Any internal color
can be created by varying the amount of light produced by each of the primaries.

Color Measurement 99

Converting from RGB to CMY

• Assuming RGB values are normalized (all channels
between [0,1]), the exact same color in CMY space can
be found by inverting:

Converting from CMY to CMYK

• Assuming CMY values are normalized (all channels
between [0,1]), the exact same color in CMYK is

• K is a measure of the ‘blackness’ of the color and
essentially serves as an offset after which the remaining
amounts of cyan, magenta and yellow are ‘added’

(H,C/S,L/B/V) Color Space
• Hue - what people think of

as color (color, normalized
by sensitivity)

• Saturation - purity,
distance from grey

• Also called Chroma

• Lightness - from dark to
light

• Also Brightness or Value

Hue wheel (credit: Wiki)
(not a single frequency)

The HSL color space was invented for television in 1938 by Georges Valensi as a method to add color
encoding to existing monochrome broadcasts, allowing existing receivers to receive new color broadcasts
(in black and white) without modification as the luminance (black and white) signal is broadcast unmodified.
It has been used in all major analog broadcast television encoding including NTSC, PAL and SECAM and all
major digital broadcast systems and is the basis for composite video.

CSC 433/533
Computer Graphics

Anti-Aliasing and
Signal Processing

Sampling, Smoothing and Convolutions

Recall:
Images are Functions

Domains and Ranges
• All functions have two components, the domain and

range. For the case of images, I: R → V

• The domain is:

• R, is some rectangular area (R ⊆ ℝ2)

• The range is:

• A set of possible values.

• …in the space of color values we’re encoding

Hi Everyone! Operations on Images
• Point (Range) Operations:

• Affect only the range of the image (e.g. brightness)

• Each pixel is processed separately, only depending on the color

Slides inspired from Fredo Durand

Operations on Images
• Domain Operations:

• Only move the pixels around

Slides inspired from Fredo Durand

• Neighborhood operations:

• Combine domain and range

• Each pixel evaluated by working with other pixels nearby

Operations on Images
Slides inspired from Fredo Durand

Concept for the Day:
Pixels are Samples of

Image Functions

Image Samples

• Each pixel is a sample of what?

• One interpretation: a pixel represents the intensity of
light at a single (infinitely small point in space)

• The sample is displayed in such a way as to spread the
point out across some spatial area (drawing a square of
color)

Continuous vs. Discrete

• Key Idea: An image represents data in either (both?) of

• Continuous domain: where light intensity is defined at
every (infinitesimally small) point in some projection

• Discrete domain, where intensity is defined only at a
discretely sampled set of points.

• This seem like a philosophical discussions without clear practical
applications. Surprisingly, it has very concrete algorithmic
applications.

Converting Between Image Domains

• When an image is acquired,
an image is sampled from
some continuous domain
to a discrete domain.

• Reconstruction converts
digital back to continuous.

• The reconstructed image
can then be resampled
and quantized back to the
discrete domain.

//scale factor

let k = 4;

//create an output greyscale image that is both

//k times as wide and k times as tall

Uint8Array output = new Uint8Array((k*W)*(k*H));

//copy the pixels over

for (let row = 0, row < H; row++) {

 for (let col = 0; col < W; col++) {

 let index = row*W + col;

 let index2 = (k*row)*W + (k*col);

 output[index2] = input[index];

 }

}

Naive Image
Rescaling Code

What’s the Problem?

• The output image has gaps!

• Why: we skip a many of the pixels in the output.

• Why don’t we fix this by changing the code to at least put
some color at each pixel of the output?

//scale factor

let k = 4;

//create an output greyscale image that is both

//k times as wide and k times as tall

Uint8Array output = new Uint8Array((k*W)*(k*H));

//copy the pixels over

for (let row = 0, row < H; row++) {

 for (let col = 0; col < W; col++) {

 let index = row*W + col;

 let index2 = (k*row)*W + (k*col);

 output[index2] = input[index];

 }

}

Naive Image
Rescaling Code

//scale factor

let k = 4;

//create an output greyscale image that is both

//k times as wide and k times as tall

Uint8Array output = new Uint8Array((k*W)*(k*H));

//Loop over each output pixel instead.

for (let row = 0, row < k*H; row++) {

 for (let col = 0; col < k*W; col++) {

 let index = (row/k)*W + (col/k);

 let index2 = row*k*W + col;

 output[index2] = input[index];

 }

}

“Inverse” Image
Rescaling Code Inverse Image Rescaling

100x100 image

Not great, but could become worse

400x400 image

What’s the Problem?

• The output image is too “blocky”

• Why: because our image reconstruction rounds the index
to the nearest integer pixel coordinates

• Rounding to the “nearest” is why this type of
interpolation is called nearest neighbor interpolation

Sampling Artifacts /
Aliasing

Motivation: Digital Audio
• Acquisition of images takes a continuous object and converts

this signal to something digital

• Two types of artifacts:

• Undersampling artifacts: on acquisition side

• Reconstruction artifacts: when the samples are interpreted

Undersampling Artifacts

Image Reduction
• Consider reducing the high resolution image:

Shannon-
Nyquist

Theorem
(not needed for the

exam)

• The sampling frequency must be double the highest
frequency of the content.

• If there are any higher frequencies in the data, or the
sampling rate is too low, aliasing, happens

• Named this because the discrete signal “pretends” to
be something lower frequency

S-N Theorem IllustratedSampling Theory
How many samples are enough to avoid aliasing?

$ How many samples are required to represent
a given signal without loss of information?

$ What signals can be reconstructed without loss
for a given sampling rate?

S-N Theorem IllustratedSampling Theory
How many samples are enough to avoid aliasing?

$ How many samples are required to represent
a given signal without loss of information?

$ What signals can be reconstructed without loss
for a given sampling rate?

S-N Theorem IllustratedSampling Theory
How many samples are enough to avoid aliasing?

$ How many samples are required to represent
a given signal without loss of information?

$ What signals can be reconstructed without loss
for a given sampling rate?

S-N Theorem IllustratedSampling Theory
How many samples are enough to avoid aliasing?

$ How many samples are required to represent
a given signal without loss of information?

$ What signals can be reconstructed without loss
for a given sampling rate?

Shannon-Nyquist TheoremSampling Theorem
• A signal can be reconstructed from its samples,

iff the original signal has no content >=
1/2 the sampling frequency - Shannon

Figure 14.17 FvDFH Under-sampling

Aliasing will occur if the signal is under-sampled

Aliasing in images

Two outcomes of under-sampling

1) Moire Pattern
2) Rasterization

Moire Patterns

Aliasing for edges

Each pixel is effected by nearby pixels
For example, even though the input image image is black/white,
We allow grey values for output pixels.

Convolution

Each pixel is effected by nearby pixels
For example, even though the image is black/white,
We allow grey values

Neighborhood Filtering
(Schematic)

pixel i

f(Ni)

original image filtered image

neighborhood Ni of i

An Example: Mean Filtering
• Mean filters sum all of the pixels in a local neighborhood Ni and divide by the total number, computing the average pixel.

• Said another way, we replace each pixel as a linear combination of its neighbors (with equal weights!)

• To find the new color of a pixel j, we will look at , defined as the (say) neighborhood, and set

• Where the Ni is a square, we call these box filters

• Think about it as a weighted average:

• The weights are convex combination. Meaning that they are all positive, and . For

example,

Nj 3 × 3

w1…wk w1 + w2 + …wk = 1

w1 = w2 = w3 =
1
3

f(Nj) =
1

|Nj | ∑
pk∈Nj

Ck

f(Ni) = ∑
pixel j in the rergion N i

wjCj

Box Filtering Box Filtering

Convolution
• This process of adding up pixels multiplied by various

weights is called convolution

1 3 2
1 2 2
3 1 2kernel H

new pixel color = 30/16

original image G filtered image G*H

neighborhood Ni of i

1/16
1 2 1
2 4 2
1 2 1

Kernels
• Convolution employs a rectangular grid of coefficients,

known as a kernel

• Kernels are like a neighborhood mask, they specify which
elements of the image are in the neighborhood and their
relative weights.

• A kernel is a set of weights that is applied to
corresponding input samples that are summed to
produce the output sample.

• For smoothing purposes, the sum of weights must be 1

1
9 (

1 1 1
1 1 1
1 1 1) 1

37

1 1 1 1 1
1 2 2 2 1
1 2 5 2 1
1 2 2 2 1
1 1 1 1 1

1
13 (

1 1 1
1 5 1
1 1 1)

One-dimensional Convolution

• Can be expressed by the following equation, which takes a filter H and
convolves it with G:

• Equivalent to sliding a window

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.002

0.004

0.006

0.008

0.01

0.012Low pass and hight pass filters

0 10 20 30 40 50 60 70 80 90 100
-4

-2

0

2

4
original signal y

0 10 20 30 40 50 60 70 80 90 100
-4

-2

0

2

4
Low Pass filter. Signal y after convolution with gaussian

0 10 20 30 40 50 60 70 80 90 100
-4

-2

0

2

4
signal vs. High Pass Filter: y-conv(y,w)

We convolved the
original signal y with
this gaussian

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.002

0.004

0.006

0.008

0.01

0.012Low pass and hight pass filters - another example

We convolved the
original signal y with
this gaussian

0 10 20 30 40 50 60 70 80 90 100

0

2

4

6

original signal y

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6
Low Pass filter. Signal y after convolution with gaussian

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

4

6
 High Pass Filter: y-conv(y,w)

Convolution is a
Moving, Weighted

Average

• Mathematically, this is
equivalent to
integrating the product
of a and b with a shift
in the domain

• Compare a to a*b on
the right

2-Dimensional Version
• Given an image a and a kernel b with (2r+1)2 values, the

convolution of a with b is given below as a*b:

• The (i-i’) and (j-j’) terms can be understood as reflections
of the kernel about the central vertical and horizontal axes.

• The kernel weights are multiplied by the corresponding
image samples and then summed together.

A Note on Indexing
• Convolution reflects the filter to preserve orientation.

• Correlation does not have this reflection.

• But we often use them interchangeably since most kernels are symmetric!!

G*H

Given kernel H =
Convolution reflects
and shifts the kernel

An Illustration

An
Illustration

Convolution Can Also Convert
from Discrete to Continuous

• Discrete signal a

• Continuous filter f

• Output a*f defined
on positions x as
opposed to
discrete pixels i

Back to Image Rescaling

100x100 image

Filtering helps to reconstruct
the signal better when rescaling

Reconstructed w/ Discrete-to-ContinuousInverse Rescaling

//scale factor

let k = 4;

//create an output greyscale image that is both

//k times as wide and k times as tall

Uint8Array output = new Uint8Array((k*W)*(k*H));

//Loop over each output pixel instead.

for (let row = 0, row < k*H; row++) {

 for (let col = 0; col < k*W; col++) {

 let x = col/k;

 let y = row/k;

 let index = row*k*W + col;

 output[index] = reconstruct(input,x,y);

 }

}

Discrete-Continuous
Image Rescaling Code

Types of Filters:
Smoothing

Smoothing Spatial Filters
• Any weighted filter with positive values will smooth in some way, examples:

• Normally, we use integers in the filter, and then divide by the sum
(computationally more efficient)

• These are also called blurring or low-pass filters

Smoothing Kernels Box Filter
Box filter

⌦

Thursday, February 16, 12

Note this brown strip

Gaussian Filter
Nice and smooth: Gaussian

⌦

Thursday, February 16, 12

Same brown strip

Gaussians
• Gaussian kernel is parameterized on the

standard deviation σ

• Large σ’s reduce the center peak and spread
the information across a larger area

• Smaller σ’s create a thinner and taller peak

• Gaussians are smooth everywhere.

• Gaussians have infinite support

• >0 everywhere

• But often truncate to 2σ or 3σ

• Volume =1 (sum of weights =1)

http://en.wikipedia.org/wiki/Gaussian_function

Smoothing Comparison

Smoothing the Smoothing
Filters

• Box * Box = Tent (Pyramid)

• Tent * Tent = Bell Types of Filters:
Sharpening

Sharpening (Idea)Sharpening

- =

=+k*

High pass

Sharpened
image

Input blurred

High passInput

Thursday, February 16, 12

Another example
Original Image, Imaged convolved

Left: difference (only boundaries are non-black)
Right Imaged minus differences convolved

Sharpening is a Convolution
• This procedure can then expressed as a single kernel

• Assume that I = I*d and Ilow = I*fg,σ.

• d is the discrete identify function (kernel with 1 in center, 0 elsewhere)

• fg,σ is a smoothing filter (e.g. Gaussian of width σ).

• This leads to:

Sharpening is a Convolution
Note: could also

define d as

0 0 0

0 1 0

0 0 0

Unsharp Masks
• Sharpening is often called “unsharp mask” because

photographers used to sandwich a negative with a blurry
positive film in order to sharpen

http://www.tech-diy.com/UnsharpMasks.htm

Edge Enhancement
• The parameter 𝛂 controls how much of the source image

is passed through to the sharpened image.

Defining Edges
• Sharpening uses negative weights to enhance regions where

the image is changing rapidly

• These rapid transitions between light and dark regions are
called edges

• Smoothing reduces the strength of edges, sharpening
strengthens them.

• Also called high-pass filters

• Idea: smoothing filters are weighted averages, or integrals.
Sharpening filters are weighted differences, or derivatives!

Edges (Review?) Derivatives via
Finite Differences

• We can approximate the derivative with a kernel w:

∂f(x, y)
∂x

≈
f(x + h, y) − f(x − h, y)

2h
≈

f(x + 1,y) − f(x − 1,y)
2

Taking Derivatives with Convolution

Gradients with Finite Differences
• These partial derivatives approximate the image gradient, ∇I.

• Gradients are the unique direction where the image is changing the
most rapidly, like a slope in high dimensions

• We can separate them into components kernels Gx, Gy. ∇I = (Gx, Gy)

Gradients Gx, Gy
Gradient: finite difference

• horizontal gradient [[-1, 1]]
• vertical gradient: [[-1], [1]]

Horizontal
gradient
(absolute

value)

Vertical
gradient
(absolute

value)

Gradient
magnitude

Thursday, February 16, 12

|Gx| |Gy|

|G| = √(Gx2 + Gy2)

|G|

Effects of
Rescaling Why Use Both 𝛂, 𝛃?

• Consider two rescaled source
samples of S rescaled to S’.

• Calculate the contrast (the
absolute difference) between the
source and destination, called 𝚫S
and 𝚫S’.

• Now consider the relative change
in contrast between the source
and destination.

Why Use Both 𝛂, 𝛃?
• The relative change in contrast can be simplified as

• Thus, gain (𝛂) controls the change in contrast.

• Whereas bias (𝛃) does not affect the contrast

• Bias, however, controls the final brightness of the rescaled image. Negative bias
darkens and positive bias brightens the image

Sidebar: Relating
Contrast Sensitivities to

Signal Processing

Contrast Sensitivity Function
Campbell-Robson Chart

de
cr

ea
si

ng
 c

on
tr

as
t

increasing spatial frequency

Contrast Sensitivity Function
Campbell-Robson Chart

de
cr

ea
si

ng
 c

on
tr

as
t

increasing spatial frequency

Where the bands
can be distinguished
depends on both the
person and distance

Contrast Sensitivities Vary by Channel

4

Contrast Sensitivity Function (CSF)

Tuesday, March 6, 12

Photoshop demo
• Image > Mode > Lab color
• Go to channel panel, select Lightness
• Filter > Blur > Gaussian Blur , e.g. 4 pixel radius

–very noticeable
• Undo, then select a & b channels
• Filter > Blur > Gaussian Blur , same radius

–hardly visible effect

Original Blur Lightness Blur a & b
Tuesday, March 6, 12

Important: Clamping

• Rescaling may produce samples that lie outside of the
output images (e.g. below 0 or above 255 in 8-bit images)

• Clamping the output values ensures that the output
samples are truncated to the 8-bit dynamic range limit

• Note that clamping does ‘lose’ information, since it
truncates.

Rescaling
Examples

gain = 1, bias = 55 gain = 1, bias = -55

gain = 2, bias=0 gain = .5, bias=0

Rescaling Color Images
• Often, it is desirable to apply different gain and bias values to each channel of a color image

separately

• Example: A color image that utilizes the HSB (Hue-Saturation-Brightness) color model.

•

• Since all color information is contained in the H and S channels, it may be useful to adjust
ONLY the brightness, encoded in channel B, without altering the color of the image in any
way.

• Rescaling the channels of a color image in a non-uniform manner is also possible rescaling each
color channel separately.

Credit “Learn Ui Design Blog”

Example: Gamma Correction

s = r𝛄

Putting it all together:
Gain, Bias, and Gamma

• Cout = (𝛂Cin + 𝛃)𝛄

• 𝛂 is known as gain
(exposure)

• 𝛃 is known as bias (offset)

• 𝛄 maps to a non-linear
curve (gamma correction)

242 Chapter 4: Tonemapping

 y Controlling Photoshop’s Highlight Compression method

1 In the 32-bit Preview Options dialog box, set
Method to Highlight Compression.

2 Choose IMAGE > ADJUSTMENTS > EXPOSURE
and play with the sliders in the Exposure dialog.
These sliders behave in a slightly different way
than they normally do because highlight details
always have the right of way. Nevertheless, they
are extremely interactive and easy to control.

3 When you’re happy with the tonal distribution,
just bake it all down by performing the bit depth
conversion in the IMAGE > MODE menu with the
Highlight Compression method.

This mode works great when your major
concern is to protect the highlight details. As
long as Highlight Compression is activated as
the display method, the histogram is always
anchored on the brightest end. Exposure and
Gamma sliders now control how steep the loga-
rithmic intensity decay across the midtones

and shadows is. You can push exposure adjust-
ments much further than you normally could
because highlights will only get increasingly
compressed instead of blowing out to white.
Even though this mode is listed as having no
options, it is actually one of the most versatile
and intuitive ones. You have the entire toolkit

Figure 4-5: The trick for controlling the Highlight
Compression method is to enable it in the View menu first.

Figure 4-6: Now Photoshop’s simple Exposure adjustment can be
used to interactively tweak the look.

Figure 4-7: The actual tonemapping dialog has no options,
but that’s okay. You don’t need them anymore.

Image of Photoshop from 
Christian Bloch - The HDRI Handbook 2.0

Dynamic Range

The World is a High Dynamic Range (HDR)
1:1

1:1,500

1:25,000

1:400,000

1:2,000,000,000

Examples
• Inside is too dark
• Outside is too bright

• Sun overexposed
• Foreground too dark

Tuesday, March 6, 12

Examples
Inside is too dark

Outside is too bright

Sun overexposed
Foreground too dark

Dynamic Range in Displays?

• Range of pure black vs. pure white?

Tuesday, March 6, 12

Dynamic Range in Displays?Picture dynamic range
• Typically 1: 20 or 1:50

–Black is ~ 50x darker than white

• Max 1:500

10-6 106

10-6 106

Real world

Picture

Low contrast
Tuesday, March 6, 12

Problem: Displaying the Information
• Problem: How should we map scene radiances (up to 1:100,000) to

display radiances (only around 1:100) to produce a satisfactory image?

• Goal: match limited contrast of the display medium while preserving
details

• Solution: Tone Mapping

Problem 2: Display the information
• Match limited contrast of the medium
• Preserve details

10-6 106

10-6 106

Real world

Picture

Low contrast

High dynamic range

Tuesday, March 6, 12

First solution: Linear mapping
• We will find the pixels with min and max intensity in the

input image.

• Map them to the min and max intensities of the display

• Everything in between is mapped linearly.

Problem 2: Display the information
• Match limited contrast of the medium
• Preserve details

10-6 106

10-6 106

Real world

Picture

Low contrast

High dynamic range

Tuesday, March 6, 12

Without HDR + Tone Mapping

Without HDR & tone mapping

Tuesday, March 6, 12

No single global exFrom Durand and Dorsey. No single global exposure can preserve both the colors of the sky and the details of the
 landscape, as shown on the rightmost images.

With HDR + Tone Mapping

With HDR & tone mapping

Tuesday, March 6, 12

Recap

Detail

Color

Intensity Large scale

Fast
Bilateral
Filter
IN LOG

Reduce
contrast

Detail

Large scale

Color

Preserve!

Input HDR image Output

detail=
input log - large scale

Tuesday, March 6, 12

high frequencies

Soothing
(using a Gaussian,
box filter, or other) low frequencies

I(x, y) = Intensity

g(x, y) = h(x, y) ⋆ G

h(x, y) = I(x, y) − (I ⋆ G)

(α ⋅ g(x . y) + β)γ

Actually
I(x, y) = log10(Intensity) (α ⋅ g(x , y) + β)γ + h(x , y)

Before

http://abduzeedo.com/20-beautiful-hdr-pictures

Not All Tone Mapping Produces Extreme
Results, Sometimes Just Beautiful Ones

http://luminous-landscape.com/essays/hdr-plea.shtml

Check (recommended)

Tone Mapping

Question: But why do we need more than 100 levels of intensity (luminance) if in the input file we only have 256
values of intensities (RGB) ?

Answer: Not all file format has so few levels.

Even PPM could have 2 bytes per channel, so 2562=65536 levels per channel.

Other formats gives much wider range:

Radiance RGBE Format (.hdr)

(145, 215, 87, 149) =

(145, 215, 87) * 2^(149-128) =

(1190000, 1760000, 713000)

(145, 215, 87, 103) =

(145, 215, 87) * 2^(103-128) =

(0.00000432, 0.00000641, 0.00000259)

Ward, Greg. "Real Pixels," in Graphics Gems IV, edited by James Arvo, Academic Press, 1994

Radiance!format!(.pic,!.hdr,!.rad)!

Red Green Blue Exponent

32 bits/pixel

Slide stolen from Alyosha Efros who stole it from Paul Debevec

The Radiance map

Thursday, March 8, 12

The Radiance
Map

Radiance Definition: much of the
power (in watts) is emitted by a cm2
surface will be received by an optical
system looking at that surface from a
specified angle of view.

Linearly scaled to
display device

Slide stolen from Alyosha Efros who stole it from Paul Debevec

The Radiance mapThe Radiance
Map Approach: Visual Matching

• We do not need to reproduce the true radiance as long as
it gives us a visual match.

Eyes and Dynamic Range
• We're sensitive to change (multiplicative)

• A ratio of 1:2 is perceived as the same contrast as a ratio
of 100 to 200

• Use the log domain as much as possible

• But, eyes are not photometers

• Dynamic adaptation (very local in retina)

• Different sensitivity to spatial frequencies

Headlights
are ON in

both
photos

Can we just scale? Maybe!

• For a color image, try to convert the
input (world) luminance Lw to a target
display luminance Ld

• This type of scaling works (sometimes).
In particular, it works best in the log
and/or exponential domains

• log10(x)=1+log10(y) means x=10y

• The base of the log is not important,
as long as we are consistent in the
mapping

!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$

%

&

=

!
!
!

"

#

$
$
$

%

&

w

w
d

w

w
d

w

w
d

d

d

d

L
BL

L
GL

L
RL

B
G
R

What scale value to use?
How about Gamma compression

• Cout = Cin𝛄, where 0 < 𝛄 < 1 applied to each R,G,B channel

• Colors are washed out, why?

Naïve: Gamma compression
• X −> Xγ (where γ=0.5 in our case)

• But… colors are washed-out. Why?
Input Gamma

applied
independently
on R, G & B

Tuesday, March 6, 12

Gamma compression on Intensity

• Colors ok, but details in intensity are blurry

Gamma compression on intensity
• Colors are OK,

but details (intensity high-frequency) are muddy

Gamma on intensityIntensity

Color

Tuesday, March 6, 12

Oppenheim 1968, Chiu et al. 1993
• Reduce contrast of low-frequencies

• Keep mid and high frequencies

Oppenheim 1968, Chiu et al. 1993
• Reduce contrast of low-frequencies
• Keep mid and high frequencies

Reduce low frequencyLow-freq.

High-freq.

Color

Tuesday, March 6, 12

The halo nightmare
• For strong edges
• Because they contain high frequency

Reduce low frequencyLow-freq.

High-freq.

Color

Tuesday, March 6, 12

Our approach
• Do not blur across edges
• Non-linear filtering

OutputLarge-scale

Detail

Color

Tuesday, March 6, 12

Start with Gaussian filtering
• Here, input is a step function + noise

output input

€

J

€

=

€

f

€

⊗

€

I

Tuesday, March 6, 12

Gaussian filter as weighted average
• Weight of ξ depends on distance to x

output input

€

ξ

∑

€

f (x,ξ)

€

I(ξ)

ξ
x

x
ξ

€

J(x)

€

=

Tuesday, March 6, 12

The importance of convex combinations

When we smooth, or interpolate we usually use wighted average.

J(x) = ∑
weight function

f(x, ξ) I(ξ)⏟
Intensity

Which functions could f(x,) be -

ξ

x is the point where we need the answer
 is nearby point ξ

f(x, ξ) = max {0,
3
α2

−
3
α3

max(|x − ξ . x | , |y − ξ . y |)}

G(x, ξ . x, ξ . y) =
1

2πσ
e− 1

2σ2 (x−ξ.x)2+(y−ξ.y)2

We will try to make sure that sum of weights =1 (this is called convex combination)

See example of bilinear interpolation on the whiteboard

 is the width of the base of the pyramid. So in Fig(a), =4 α α

The problem of edges
• Here, “pollutes” our estimate J(x)
• It is too different

output input

x
ξ

Ι(ξ)
I(x)

Ι(ξ)

€

ξ

∑

€

f (x,ξ)

€

I(ξ)

€

J(x)

€

=

Tuesday, March 6, 12

• To correct it, we will have to change the averaging.

• Remember that during the smoothing, we will first sum for all point near x.

• To resolve the halo problem, We will avoid summing if is very far from
∑ I(ξ) ξ

I(ξ) I(ξ) I(x)

Principle of Bilateral filtering
[Tomasi and Manduchi 1998]

• Penalty g on the intensity difference

output input

€

J(x)

€

=

€

1
k(x)

€

ξ

∑

€

f (x,ξ)

€

g(I(ξ) − I(x))

€

I(ξ)

x Ι(ξ)
I(x)

Tuesday, March 6, 12

Remember that the sum of weights must be 1.
What to do if we skip some terms ?
We will divide the total sum by k(x)

 if a is close to b, and zero otherwiseg(|a − b |) = 1

Bilateral filtering
[Tomasi and Manduchi 1998]

• Spatial Gaussian f

output input

€

J(x)

€

=

€

1
k(x)

€

ξ

∑

€

f (x,ξ)

€

g(I(ξ) − I(x))

€

I(ξ)

x ξ

x

Tuesday, March 6, 12

Remember that the sum of weights must be 1.
What to do if we skip some terms ?
We will divide the total sum by k(x)

Bilateral filtering
[Tomasi and Manduchi 1998]

• Spatial Gaussian f
• Gaussian g on the intensity difference

output input

€

J(x)

€

=

€

1
k(x)

€

ξ

∑

€

f (x,ξ)

€

g(I(ξ) − I(x))

€

I(ξ)

x Ι(ξ)
I(x)

Tuesday, March 6, 12

Normalization factor
[Tomasi and Manduchi 1998]

• k(x)=

output input

€

J(x)

€

=

€

1
k(x)

€

ξ

∑

€

f (x,ξ)

€

g(I(ξ) − I(x))

€

I(ξ)

€

ξ

∑

€

f (x,ξ)

€

g(I(ξ) − I(x))

Tuesday, March 6, 12

