CSC 433/533
 Computer Graphics

Review 2
Alon Efrat
Credit: Joshua Levine

Today’s Agenda

- Reminders:
- A02 questions?
- Goals for today:
- Introduce some mathematics and connect it to code

Vector Math + Coding

Vectors

What is a Vector?

- A vector describes a length and a direction
- A vector is also a tuple of numbers
- But, it often makes more sense to think in terms of the length/direction than the coordinates/numbers
- And, especially in code, we want to manipulate vectors as objects and abstract the low-level operations
- Compare with a scalar, or just a single number

Properties

- Two vectors, \mathbf{a} and \mathbf{b}, are the same (written $\mathbf{a}=\mathbf{b}$) if they have the same length and direction. (other notation: \bar{a}, \vec{a})
- A vector's length is denoted with || ||, (sometimes we just denote. When $\mathbf{a}=(\mathrm{x}, \mathrm{y})$, then $|\mathbf{a}|=\sqrt{a \cdot x^{2}+a \cdot y^{2}}$
- e.g. the length of \mathbf{a} is $\|\mathbf{a}\|$
- A unit vector has length one
- The zero vector has length zero, and undefined direction

Vector Operations

- Vectors can be added, e.g. for vectors a,b, there exists a vector $\mathbf{c}=\mathbf{a}+\mathbf{b}$
$\mathbf{a}+\mathbf{b}=(a \cdot x+b \cdot x, a \cdot y+b \cdot y)$
- Defined using the parallelogram rule: idea is to trace out the displacements and produced the combined effect
- Vectors can be negated (flip tail and head), and thus can be subtracted
- Vectors can be multiplied by a scalar, which scales the length but not the direction $\beta \mathbf{a}=(\beta a . x, \beta a . y)$

However, we can use vectors to represent positions by describing displacements from a common point

Vectors Decomposition

- By linear independence, any 2D vector can be written as a combination of any two nonzero, nonparallel vectors
- Such a pair of vectors is called a 2D basis

$$
\mathbf{c}=a_{c} \mathbf{a}+b_{c} \mathbf{b}
$$

Vector Multiplication: Dot Products

- Given two vectors \mathbf{a} and \mathbf{b}, the dot product, relates the lengths of a and \mathbf{b} with the angle ϕ between them:

$$
\begin{gathered}
\mathbf{a} \cdot \mathbf{b}=(a \cdot x \cdot b \cdot x+a \cdot y \cdot b \cdot y) \\
\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \phi
\end{gathered}
$$

- Sometimes called the scalar product, as it produces a scalar value
- Also can be used to produce the projection, $\mathbf{a} \rightarrow \mathbf{b}$, of \mathbf{a} onto \mathbf{b}
$\mathbf{a} \rightarrow \mathbf{b}=\|\mathbf{a}\| \cos \phi=\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|}$

Canonical (Cartesian) Basis

- Often, we pick two perpendicular vectors, \mathbf{x} and \mathbf{y}, to define a common basis
- Notationally the same,

$$
\mathbf{a}=x_{a} \mathbf{x}+y_{a} \mathbf{y}
$$

- But we often don't bother to mention the basis vectors, and write the vector as $\mathbf{a}=\left(\mathrm{x}_{\mathrm{a}}, \mathrm{y}_{\mathrm{a}}\right)$, or

$$
\mathbf{a}=\left[\begin{array}{l}
x_{a} \\
y_{a}
\end{array}\right]
$$

Dot Products are

 Associative and Distributive$$
\begin{gathered}
\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a} \\
\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c} \\
(k \mathbf{a}) \cdot \mathbf{b}=\mathbf{a} \cdot(k \mathbf{b})=k \mathbf{a} \cdot \mathbf{b}
\end{gathered}
$$

- And, we can also define them directly if \mathbf{a} and \mathbf{b} are expressed in Cartesian coordinates:

$$
\mathbf{a} \cdot \mathbf{b}=x_{a} x_{b}+y_{a} y_{b}
$$

3D Vectors

- Same idea as 2D, except these vectors are defined typically with a basis of three vectors
- Still just a direction and a magnitude
- But, useful for describing objects in three-dimensional space
- Most operations exactly the same, e.g. dot products:

$$
\mathbf{a} \cdot \mathbf{b}=x_{a} x_{b}+y_{a} y_{b}+z_{a} z_{b}
$$

Cross Products
 - Since the cross product is always orthogonal to the pair

 of vectors, we can define our 3D Cartesian coordinate space with it:$$
\begin{array}{ll}
\mathbf{x}=(1,0,0) & \mathbf{x} \times \mathbf{y}=+\mathbf{z} \\
\mathbf{y}=(0,1,0) & \mathbf{y} \times \mathbf{z}=-\mathbf{z} \\
\mathbf{z}=(0,0,1) & \mathbf{z} \times \mathbf{y}=-\mathbf{x} \\
& \mathbf{z} \times \mathbf{x}=+\mathbf{y} \\
& \mathbf{x} \times \mathbf{z}=-\mathbf{v}
\end{array}
$$

- In practice though (and the book derives this), we use the following to compute cross products:
$\mathbf{a} \times \mathbf{b}=\left(y_{a} z_{b}-z_{a} y_{b}, z_{a} x_{b}-x_{a} z_{b}, x_{a} y_{b}-y_{a} x_{b}\right)$

Cross Products

- In 3D, another way to "multiply" two vectors is the cross product, $\mathbf{a} \times \mathbf{b}$:

$$
\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\| \sin \phi
$$

- $\|\mathbf{a} \times \mathbf{b}\|$ is always the area of the parallelogram formed by \mathbf{a} and \mathbf{b}, and $\mathbf{a} \times \mathbf{b}$ is always in the direction perpendicular (two possible answers).
- A screw turned from \mathbf{a} to \mathbf{b} will progress in the direction $\mathbf{a} \times \mathbf{b}$
- Cross products distribute, but order matters:

$$
\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c}
$$

$$
\begin{aligned}
\mathbf{a} \times(k \mathbf{b}) & =k(\mathbf{a} \times \mathbf{b}) \\
\mathbf{a} \times \mathbf{b} & =-(\mathbf{b} \times \mathbf{a})
\end{aligned}
$$

Checking orientation
 Assume \mathbf{a}, \mathbf{b} are in 2D $(\mathbf{z}=\mathbf{0})$. There are 3 possible scenarios.

a might be counter-clockwise (ccw) of \mathbf{b}
a might be clockwise (cw) of \mathbf{b}

$x_{a} y_{b}-y_{a} x_{b}>0$
\mathbf{a} is counter-clockwise (ccw) of b
\mathbf{a} is collinear with \mathbf{b}

$x_{a} y_{b}-y_{a} x_{b}<0$
\mathbf{a} is clockwise (cw) of \mathbf{b}

$x_{a} y_{b}-y_{a} x_{b}=0$
a, b collinear

This will provide a convenient way to check if a triangle with vertices u, v, w (when vertices are given to us in this order) is CCW or CW

What is Rendering?

Rendering

Two Ways to Think About Rendering

- Object-Ordered
- Decide, for every object in the scene, its contribution to the image
- Image-Ordered
- Decide, for every pixel in the image, its contribution from every object

Two Ways to Think About Rendering

- Object-Ordered or Rasterization

```
for each object {
```

 for each image pixel \{
 if (object affects pixel)
 \{
 do something
 \}
 \}
 \}

- Image-Ordered or Ray Tracing
for each image pixel \{
 \{
do something
\}
\}
\}

Basics of Ray Tracing

Idea of Ray Tracing

- Ask first, for each pixel: what belongs at that pixel?
- Answer: The set of objects that are visible if we were standing on one side of the image looking into the scene

Idea: Using Paths of Light to Model Visibility

Using Paths of Light to Model Visibility

Some arrive at

Using Paths of Light to Model Visibility

Using Paths of Light to Model Visibility
\downarrow But Most Do Not!

Forwarding vs Backward Tracing

- Idea: Trace rays from light source to image
- This is slow!
- Better idea: Trace rays from image to light source

Ray Tracing Algorithm

Ray Tracing Algorithm

for each pixel \{

Cameras and Perspective

If illumination is uniform and directional-free (ambient light): for each pixel \{
compute viewing ray
intersect ray with scene
copy the color of the object at this point to this pixel.

Commonly, we need slightly more involved

Linear Perspective

- Standard approach is to project objects to an image plane so that straight lines in the scene stay straight lines on the image
- Two approaches:
- Parallel projection: Results in orthographic views
- Perspective projection: Results in perspective views

Perspective Views

- But, objects that are further away should look smaller!
- Instead, we can project objects through a single viewpoint and record where they hit the plane.
- Lines which are paper in 3D might be non-parallel in the view

Perspective

Oblique

Orthographic Views

- Points in 3D are moved along parallel lines to the image plane.
- Resulting view determined solely by choice of projection direction and orientation/position of image plane

Pinhole Cameras

- Idea: Consider a box with a tiny hole. All light that passes through this hole will hit the opposite side
- Produced image inverts

Camera Obscura

- Gemma Frisius, 16th century

Defining Rays

Simplified Pinhole Cameras

- Instead, we can place the eye at the pinhole and consider the eye-image pyramid (sometimes called view frustum)

Mathematical Description of a Ray

- Two components:
- An origin, or a position that the ray starts from
- A direction, or a vector pointing in the direction the ray travels
- Not necessarily unit length, but it's sometimes helpful to think of these as normalized

Mathematical Description of a Ray

- Rays define a family of points, $\mathbf{p}(t)$, using a parametric definition
- $\mathbf{p}(t)=\mathbf{o}+t \mathbf{d}, \mathbf{o}$ is the origin and \mathbf{d} the direction
- Typically, $t \geq 0$ is a non-negative number

```
                            p(1)
```


Defining o and d in Perspective

 Projection- Given a viewpoint, e, and a position on the image plane, s

$$
\mathbf{0}=\mathbf{e}
$$

$$
\mathbf{d}=\mathbf{s}-\mathbf{e}
$$

- And thus $\mathbf{p}(t)=\mathbf{e}+t(\mathbf{s}-\mathbf{e})$

Orthographic vs. Perspective Rays

Parallel projection same direction, different origins

Perspective projection same origin, different directions

Pixel-to-Image Mapping

- Exactly where are pixels located? Must convert from pixel coordinates (i,j) to positions in 3D space (u, v, w)
- What should w be?

Camera Components

- Definition of an image plane
- Both in terms of pixel resolution AND position in 3D space or more frequently in field of view and/or distance
- Viewpoint
- View direction
- Up vector (note that is not necessarily the "up" of the geometric scene

Ray Generation in 2D

From 2D to 3D

- Moving from 2D to 3D is essentially the same thing once you can define the positions of pixels in uvw space
- Following the convention of the book, \mathbf{w} is the negated viewpoint vector
- The up vector, v, can be used to define a local coordinate space by computing u

In the Assignment

- An eye position
- A position to lookat, which is centered in the image
- w can be defined using eye and lookat as well as the distance D, together with the up vector
- A fov_angle for the vertical FOV
- The FOV defines the height of the image plane in world space
- You can then use this to compu the width of the image plane in world space using the aspect ratio (rows/columns) of the image
- Using the number of rows/columns you can then sample u, v

Defining a Plane

- Let h be a plane with normal n , and containing a point \mathbf{a}. Let p be some other point. Then p is on this plane if and only if (iff) $\mathbf{p} \cdot \mathbf{n}=\mathbf{a} \cdot \mathbf{n}$
- Proof. Consider the segment $\mathrm{p}-\mathrm{a}$. p is on the plane iff $\mathrm{p}-\mathrm{a}$ is orthogonal to n . Using the property of dot product $(\mathbf{p}-\mathbf{a}) \cdot \mathbf{n}=|\mathbf{p}-\mathbf{a}||\mathbf{n}| \cos \alpha$
- Here α is the angle between them. Now $\cos (90)=0$. So if p on this plane then $\mathbf{p} \cdot \mathbf{n}=\mathbf{a} \cdot \mathbf{n}$ implying
- If $\mathbf{p} \mathbf{n}>\mathbf{a} \boldsymbol{n}$ then \mathbf{p} lives on the "front" side of the plane (in the direction pointed to by the normal
- $\mathbf{p} \mathbf{n}$-an <0 means that \mathbf{p} lives on the "back" side.
- Sometimes used as $f(p)=\mathbf{0}$ iff " p on the plane". So the function $f(p)$ is $f(p)=(p-a) n$
- If we have 3 points $\mathrm{a}, \mathrm{p}, \mathrm{q}$ all on the plane, then we can compute a normal $\mathbf{n}=(\mathbf{p}-\mathbf{a}) \times(\mathbf{q}-\mathbf{a})$. (cross product).

- Warning: The term "normal" does not mean that it was normalized

Intersecting Objects

for each pixel \{
compute viewing ray
intersect ray with scene
compute illumination at intersection
store resulting color at pixel
\}

Ray-Plane Intersection

- A ray $\mathbf{p}(t)=\mathbf{o}+t \mathbf{d}$
- Two conditions must be satisfied:
- Must be on a ray: $\mathbf{p}(t)=\mathbf{o}+t \mathbf{d}$
- Must be on the plane: $f(\mathbf{p})=(\mathbf{p}-\mathbf{a}) \cdot \mathbf{n}=0$
- Can substitute the equations and solve for t in $f(\mathbf{p}(t))$:

$$
(\mathbf{o}+t \mathbf{d}-\mathbf{a}) \cdot \mathbf{n}=0
$$

- This means that $t_{\text {hit }}=((\mathbf{a}-\mathbf{o}) \cdot \mathbf{n}) /(\mathbf{d} \cdot \mathbf{n})$. The intersection point is $\mathbf{o}+t_{h i t} \mathbf{d}$

Revisiting dot product: projections

Let \mathbf{u}, \mathbf{v} be orthonormal vectors (orthogonal and unit length). \mathbf{r} is another vector
$\mathbf{r} \cdot \mathbf{u}=|\mathbf{r}||\mathbf{u}| \cos \alpha=|\mathbf{r}| \cos \alpha$
is the projection of \mathbf{r} on the direction of \mathbf{u}
the length of the "shadow" that \mathbf{r} cast on the line containing \mathbf{u} Sounds obvious when the coordinate system is xyz
But also true if the system is rotated

Ray-Sphere Intersection

- Two conditions must be satisfied:
- Must be on a ray: $\mathbf{p}(t)=\mathbf{o}+t \mathbf{d}$
- Must be on a sphere: $f(\mathbf{p})=(\mathbf{p}-\mathbf{c}) \cdot(\mathbf{p}-\mathbf{c})-R^{2}=0$
- Can substitute the equations and solve for t in $f(\mathbf{p}(t))$:

$$
(\mathbf{o}+t \mathbf{d}-\mathbf{c}) \cdot(\mathbf{o}+t \mathbf{d}-\mathbf{c})-R^{2}=0
$$

- Solving for t is a quadratic equation

Defining a Sphere

- We can define a sphere of radius R, centered at position \mathbf{c}, using the implicit form

$$
f(\mathbf{p})=(\mathbf{p}-\mathbf{c}) \cdot(\mathbf{p}-\mathbf{c})-R^{2}=0
$$

- Any point \mathbf{p} that satisfies the above lives on the sphere

Ray-Sphere Intersection

- Solve $(\mathbf{o}+t \mathbf{d}-\mathbf{c}) \cdot(\mathbf{o}+t \mathbf{d}-\mathbf{c})-R^{2}=0$ for t :
- Rearrange terms:

$$
(\mathbf{d} \cdot \mathbf{d}) t^{2}+(2 \mathbf{d} \cdot(\mathbf{o}-\mathbf{c})) t+(\mathbf{o}-\mathbf{c}) \cdot(\mathbf{o}-\mathbf{c})-R^{2}=0
$$

- Solve the quadratic equation $\mathrm{A} t^{2}+\mathrm{B} t+\mathrm{C}=0$ where
- $A=(\mathbf{d} \cdot \mathbf{d})$
- $B=2^{*} \mathbf{d} \cdot(\mathbf{o}-\mathbf{c})$
- $\mathrm{C}=(\mathbf{o}-\mathrm{c}) \cdot(\mathrm{o}-\mathrm{c})-R^{2}$

Ray-Sphere Intersection

- Number of intersections dictated by the discriminant
- In the case of two solutions, prefer the one with lower t

Defining a Plane

- A point \mathbf{p} that satisfies the following implicit form lives on a plane through point a that has normal \mathbf{n}

$$
f(\mathbf{p})=(\mathbf{p}-\mathbf{a}) \cdot \mathbf{n}=0
$$

- $f(\mathbf{p})>0$ lives on the "front" side of the plane (in the direction pointed to by the normal
- $f(\mathbf{p})<0$ lives on the "back" side

Geometric Method (instead of Algebraic)

```
Ray: \(P=P_{0}+t V\)
Sphere: \(\mathrm{IP}-\mathrm{O}^{2}-\mathrm{r}^{2}=0\)
    Geometric Method
\(\mathrm{L}=\mathrm{O}-\mathrm{P}_{0}\)
\(t_{\mathrm{ca}}=\mathrm{L} \cdot \mathrm{V}\)
if \(\left(\mathrm{t}_{\mathrm{ca}}<0\right)\) return 0
\(\mathrm{d}^{2}=\mathrm{L} \cdot \mathrm{L}-\mathrm{t}_{\mathrm{ca}}{ }^{2}\)
if \(\left(d^{2}>r^{2}\right)\) return 0
\(t_{\mathrm{hc}}=\operatorname{sqrt}\left(\mathrm{r}^{2}-\mathrm{d}^{2}\right)\)
\(\mathrm{t}=\mathrm{t}_{\mathrm{ca}}-\mathrm{t}_{\mathrm{hc}}\) and \(\mathrm{t}_{\mathrm{ca}}+\mathrm{t}_{\mathrm{hc}}\)
\(P=P_{0}+t V\)
```


Constructing Orthonormal Bases from a Pair of Vectors

- Given two vectors a and \mathbf{b}, which might not be orthonormal to begin with:

$$
\begin{aligned}
\mathbf{w} & =\frac{\mathbf{a}}{\|\mathbf{a}\|}, \\
\mathbf{u} & =\frac{\mathbf{b} \times \mathbf{w}}{\|\mathbf{b} \mathbf{w}\|}, \\
\mathbf{v} & =\mathbf{w} \times \mathbf{u}
\end{aligned}
$$

- In this case, \mathbf{w} will align with \mathbf{a} and \mathbf{v} will be the closest vector to \mathbf{b} that is perpendicular to \mathbf{w}

Ray Generation in 2D
 - The image plane (should actually call it "image line")

- Our algorithm will assign a color to each pixel, by tracing a ray through the pixel and check the color of the object it hits
- User determined the location \mathbf{e} of the camera, the direction \mathbf{w} through, and

The user specifies the field of view angle fov_angle.
We need to calculate the distance D to the image plane

Ray Generation in 2D

Ray Generation in 2D

Calculating all the rays

$$
\overrightarrow{\mathbf{p}}_{\mathbf{i}}=\mathbf{e}+x_{i} \overrightarrow{\mathbf{u}}+D \overrightarrow{\mathbf{w}}
$$

In the Assignment

- An eye position
- A position to lookat, which is centered in the image
- w can be defined use eye and lookat as well as d
- An up vector, not necessarily $\mathbf{v !}$ (but the vectors v up w in the same plane)
- A fov_angle for the vertical FOV
- The FOV defines the height of the image plane in world space
- Each pixel is a square, but number of pixels rows vs columns might be different
- You can then use this to compute the width of the image plane in world space using the aspect ratio (rows) columns) of the image
- Using the number of rows/columns you can then sample u, v

We use a terminology that is very common Not always most intuitive

$$
u_{i}=i \cdot 2 / N_{\text {cols }}, \quad i=0, \pm 1, \pm 2, \ldots \pm N_{\text {cols }} / 2
$$

From 2D to 3D

- Moving from 2D to 3D is essentially the same thing once you can define the positions of pixels in uvw space
from now on, we use d to denote distance to image plane
- Following the convention of the book \mathbf{w} is the negated viewpoint vector
- The up vector, v, can be used to define a local coordinate space by computing
u

Intersecting Objects

for each pixel \{
compute viewing ray
intersect ray with scene
compute illumination at intersection
store resulting color at pixel

Defining a Plane

- Let h be a plane with normal \mathbf{n}, and containing a point \mathbf{a}. Let p be some other point. Then p is on this plane if and only if (iff) $\mathbf{p} \cdot \mathbf{n}=\mathbf{a} \cdot \mathbf{n}$
- Proof. Consider the segment $p-a$. p is on the plane iff $p-a$ is orthogonal to n. Using the property of dot product $(\mathbf{p}-\mathbf{a}) \cdot \mathbf{n}=|\mathbf{p}-\mathbf{a}||\mathbf{n}| \cos \alpha$
- Here α is the angle between them. Now $\cos (90)=0$. So if p on this plane then $\mathbf{p} \cdot \mathbf{n}=\mathbf{a} \cdot \mathbf{n}$ implying
- If $\mathbf{p} \mathbf{n}>\mathbf{a} \mathbf{n}$ then \mathbf{p} lives on the "front" side of the plane (in the direction pointed to by the normal
- p \mathbf{n}-an <0 means that \mathbf{p} lives on the "back" side.
- Sometimes used as $\mathbf{f}(\mathbf{p})=\mathbf{0}$ iff "p on the plane". So the function $f(p)$ is $f(p)=(p-a) n$
- If we have 3 points $\mathrm{a}, \mathrm{p}, \mathrm{q}$ all on the plane, then we can compute a normal $\mathbf{n}=(\mathbf{p}-\mathbf{a}) \times(\mathbf{q}-\mathbf{a})$. (cross product).

- Warning: The term "normal" does not mean that it was normalized.

Ray-Plane Intersection

- A ray $\mathbf{p}(t)=\mathbf{o}+t \mathbf{d}$
- Two conditions must be satisfied:
- Must be on a ray: $\mathbf{p}(t)=\mathbf{o}+t \mathbf{d}$
- Must be on the plane: $f(\mathbf{p})=(\mathbf{p}-\mathbf{a}) \cdot \mathbf{n}=0$
- Can substitute the equations and solve for t in $f(\mathbf{p}(t))$:

$$
(\mathbf{o}+t \mathbf{d}-\mathbf{a}) \cdot \mathbf{n}=0
$$

- This means that $t_{\text {hit }}=((\mathbf{a}-\mathbf{o}) \cdot \mathbf{n}) /(\mathbf{d} \cdot \mathbf{n})$. The intersection point is $\mathbf{o}+t_{h i t} \mathbf{d}$

Revisiting dot product: projections

Let \mathbf{u}, \mathbf{v} be orthonormal vectors (orthogonal and unit length). \mathbf{r} is another vector $\mathbf{r} \cdot \mathbf{u}=|\mathbf{r}||\mathbf{u}| \cos \alpha=|\mathbf{r}| \cos \alpha$
is the projection of \mathbf{r} on the direction of \mathbf{u}
the length of the "shadow" that \mathbf{r} cast on the line containing \mathbf{u} Sounds obvious when the coordinate system is xyz But also true if the system is rotated

Barycentric Coordinates

- A coordinate system to write all points \mathbf{p} as a weighted sum of the vertices

$$
\begin{aligned}
& \mathbf{p}=\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c} \\
& \alpha+\beta+\gamma=1
\end{aligned}
$$

- Equivalently, α, β, γ are the proportions of area of subtriangles relative total area, A

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{a}} / \mathrm{A}=\alpha \\
& \mathrm{A}_{\mathrm{b}} / \mathrm{A}=\beta
\end{aligned}
$$

$$
\mathrm{A}_{\mathrm{c}} / \mathrm{A}=\gamma
$$

- Triangle interior test:

$$
\alpha>0, \beta>0, \text { and } \gamma>0
$$

Barycentric Coordinates

- Also related to distances

- And, they provide a basis relative to the edge vectors

$$
\begin{aligned}
& \alpha=1-\beta-\gamma \\
& \mathbf{p}=\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a})
\end{aligned}
$$

Barycentric Ray-Triangle Intersection

- Two conditions must be satisfied:
- Must be on a ray: $\mathbf{p}(t)=\mathbf{o}+t \mathbf{d}$
- Must be in the triangle: $\mathbf{p}=\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a})$
- So, set them equal and solve for t, β, γ :

$$
\mathbf{o}+t \mathbf{d}=\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a})
$$

- This is possible to solve because you have 3 equations and 3 unknowns

Barycentric Coordinates

- This basis defines the plane of the triangle

- In this view, the triangle interior test becomes:

$$
\beta>0, \gamma>0, \beta+\gamma \leq 1
$$

Our images so far

- With only eye-ray generation and scene intersection

```
    let hit surf = undefined;
    ..
    scene.surfaces.forEach( function(surf) {
        if (surf.intersect(eye, dir, ...)) {
        hit_surf = surf;
    }
    });
    c = hit_surf.ambient;
    Image.update(p, c);
}
```

Each surface storing a single ambient color

Shading

- Goal: Compute light reflected toward camera
- Inputs:
- eye direction
- light direction (for each of many lights)
- surface normal
- surface parameters (color, shininess, ...)

Light Sources

- There are many types of possible ways to model light, but for now we'll focus on point lights
- Point lights are defined by a position \mathbf{p} that irradiates equally in all directions
- Technically, illumination from real point sources falls off relative to distance squared, but we will ignore this for now.

Normals

- The amount of light that reflects from a surface towards the eye depends on orientation of the surface at that point
- A normal vector describes the direction that is orthogonal to the surface at that point
- What are normal vectors for planes and triangles?
- n, the vector we already were storing!
- What are normal vectors for spheres?
- Given a point \mathbf{p} on the sphere $\mathbf{n}=(\mathbf{p}-\mathbf{c}) /\|\mathbf{p}-\mathbf{c}\|$

Lambertian (Diffuse) Shading

- Lets think about the intensity of the light in terms of energy reflected toward the viewer.
- Consider a door illuminated by a flashlight (see below).
- Lets think about the intensity reflected from the door as the door rotates.
- Let I denote the total light energy that the flashlight emits per second (can think about it as \#photons / second)
- The Intensity of the light reflected from the door is $\frac{k_{\boldsymbol{d}} \cdot I}{\text { The area of the illumninated portion }}$
- Intensity before $-k_{d} I /|e|$ (where \mathbf{e} is the illuminated part)
- Intensity after $-k_{d} I /|f|$ (where f is the illuminated part)

$\frac{|e|}{|f|}=\cos \alpha$ or $|f|=|e| \frac{1}{\cos \alpha}$ Implyting that $\frac{k_{d} I}{|f|}=\frac{k_{d} I}{|e| \frac{1}{\cos \alpha}}=\frac{k_{d} I}{|e|} \cos \alpha$
But $1 / / e$ is the intensity of the reflected light for the before at the "before" stage.
Conclusion - the intensity decrease by a factor of $\cos (\alpha)$
But $\cos (\alpha)$ is just the dot product of two vectors:

1) Normal of the door, and, 2) direction to the light source

Lambertian (Diffuse) Shading

- Simple model: amount of energy from a light source depends on the direction at which the light ray hits the surface
- Results in shading that is view independent

Lambertian Shading

- k_{d} is a property of the surface itself (3 constants - one per each color channel)
- Produces matte appearance of varying intensities

$k_{d} \longrightarrow$

Toward Specular Shading:

Perfect Mirror

- Many real surfaces show some degree of shininess that produce specular reflections
- These effects move as the viewpoint changes (as oppose to diffuse and ambient shading)
- Idea: produce reflection when \mathbf{v} and \mathbf{I} are symmetrically positioned across the surface normal

Reflection

casting another ray into the scene from the hit point

- Direction $\mathbf{r}=\mathbf{d}-2(\mathbf{d} \cdot \mathbf{n}) \mathbf{n}$
- \mathbf{r} - reflected ray toward the eye, \mathbf{d} - ray from lamp. \boldsymbol{n} is a unit vector orthogonal to the plane.
- Proof
- (handwave) $r=(r . x$, r.y) and $d=(d . x, d . y)$
- r and d have the same x-value, but opposite y-value: $r . x=d . x$ and $r . y=-r . y=r . y+(-2 r . y)=r . y-2(n \cdot r)$
- (d $\cdot \mathbf{n}) \mathrm{n}=(0$, r.y).

- These effects move as the viewpoint changes (as oppose to diffuse and ambient shading)
- Idea: produce reflection when \mathbf{v} and \mathbf{I} are symmetrically and l are symmetrically
positioned across the surface normal
- Many real surfaces show some degree of shininess that produce specular reflections whatever object this hits
- color $+=k_{m} *$ ray_cast()

Blinn-Phong (Specular) Shading

Blinn-Phong (Specular) Shading

- For any two unit vectors \vec{v}, \vec{l}, the vector \mathbf{n} is a bisector of the angle between these vectors.
- Normalize v + 1
 point where \mathbf{h} is the normal \mathbf{n}
- Diffuse reflection. Reflect large value for points where \mathbf{h} is "almost" n
- Phong heuristic:

Blinn-Phong Decomposed

Blinn-Phong Shading

- Increasing p narrows the lobe
- This is kind of a hack, but it does look good

$p \longrightarrow$

Snell's Law

- Governs the angle at which a refracted ray bends
- Computation based on refraction index (confusingly denoted n_{t}) of the mediums. The mediums here are air and glass. They air has refraction index $n=1$, while the glass has refraction index n_{t}

- Snell law: $\mathrm{n}_{\mathrm{t}} \sin \theta=\mathrm{n} \sin \phi$

Putting it all together

- Usually include ambient, diffuse, and specular in one model

$$
\begin{gathered}
L=L_{a}+L_{d}+L_{s} \\
L=k_{a} I_{a}+k_{d} I \max (0, \mathbf{n} \cdot \mathbf{l})+k_{s} I \max (0, \mathbf{n} \cdot \mathbf{h})^{p}
\end{gathered}
$$

- And, the final result accumulates for all lights in the scene

$$
L=k_{a} I_{a}+\sum_{i}\left(k_{d} I_{i} \max \left(0, \mathbf{n} \cdot \mathbf{l}_{i}\right)+k_{s} I_{i} \max \left(0, \mathbf{n} \cdot \mathbf{h}_{i}\right)^{p}\right)
$$

- Be careful of overflowing! You may need to clamp colors, especially if there are many lights.

Snell's Law

- Working with cosine's are easier because we can use dot products
- Can derive the vector for the refraction direction t as
$\mathbf{t}=\frac{n(\mathbf{d}+\mathbf{n} \cos \theta))}{n_{t}}-\mathbf{n} \cos \phi$

$$
=\frac{n(\mathbf{d}-\mathbf{n}(\mathbf{d} \cdot \mathbf{n}))}{n_{t}}-\mathbf{n} \sqrt{1-\frac{n^{2}\left(1-(\mathbf{d} \cdot \mathbf{n})^{2}\right)}{n_{t}^{2}}}
$$

Shadows

- Idea: after finding the closest hit, cast a ray to each light source to determine if it is visible
- Be careful not to intersect with the object itself. Two solutions:
- Only check for hits against all other surfaces
- Start shadow rays a tiny distance away from the hit point by adjusting $t_{\text {min }}$

Reflection

- Ideal specular reflection, or mirror reflection, can be modeled by casting another ray into the scene from the hit point

- Direction $\mathbf{r}=\mathbf{d}-2(\mathbf{d} \cdot \mathbf{n}) \mathbf{n}$
- One can then recursively accumulate some amount of color from whatever object this hits
- color += k_{m} *ray_cast()

Ideal Reflection: One Ray Per Bounce

Other Uses of Distribution Ray Tracing

Glossy Reflection: Compute Many Rays per Bounce and Average

Variation in this distribution is controlled by the glossiness of the surface

Problem: Hard Shadows

- One shadow ray per intersection per point light source

no shadow rays

Soft Shadows

Hard shadows

Soft shadows

Soft Shadows

Computing Soft Shadows

- Model light sources as spanning an area
- Sample random positions on area light source and average rays

Problem: Aliasing
Drawing a black line on a white board

Some pixels need to be rendered as gray, with gray level=
Area of black region in pixel Area of pixel

- Problem: Hard to calculate how much of the pixel is covered
- Solution: Random sample points in the pixel.
- Calculate what is the percentage of the point of each color

Antialiasing w/ Supersampling

- Cast multiple rays per pixel, average result

Problem: Aliasing

Distribution Antialiasing

Multiple rays per pixel
Distribution Antialiasing w/
Random Sampling

Remove Moiré patterns

Distribution Antialiasing w/ Regular Sampling

Multiple rays per pixel

Random Sampling Could Miss Regions Without Enough Sampling

Stratified (Jittered) Sampling

Problem: Exposure Time

Real Sensors Take Time to Acquire

Problem: Exposure Time Real Sensors Take Time to Acquire

Shading on surfaces

- In practice, we have colors given either to each pixel (texture), or color for each vertex. The discussion below is only about shading
- For simplicity, assume surface has uniform color
- Problem: How could we produce the shading ? Shedding requires normal for each pixels
- If we are happy with a polyhedra surface - just compute for each face the normal.
- If on the other hand, the surface interpolates a smooth surface (e.g. a sphere), we should think about other alternative

Shading on Surfaces

- In practice, we have colors given either to each pixel (texture), or color for each vertex. The discussion below is only about shading
- For simplicity, assume surface has uniform color
- Problem: How could we produce the shading ? Shedding requires normal for each pixels
- If we are happy with a polyhedra surface - just compute for each face the normal. - If on the other hand, the surface interpolates a smooth surface (e.g. a sphere), we should think about other alternative

Results of Gouraud Shading Pipeline

Better shading (but slower): Phong Interpolation Shading

- Think about a triangle with vertices v_{1}, v_{2}, v_{3} or a billboard with corners $p_{L L}, p_{U L}, p_{L R}, p_{U R}$, compute the normals at the corners.
- For each pixel p on this triangle or billboard, express p as the convex combination of this corners (needs to compute the weights)
- (for a triangle) $p=\alpha_{1} p_{1}+\alpha_{2} p_{2}+\alpha_{3} p_{3} \quad$ (barycentric coordinates)
- (for a recitingle)

$$
p=\alpha \beta \cdot P_{U L}+(1-\alpha) \beta \cdot \quad P_{U R}+\alpha(1-\beta) P_{L L}+(1-\alpha)(1-\beta) P_{L R}
$$

- Compute its interpolated normals $\vec{n}=\alpha_{1} \vec{n}_{1}+\alpha_{2} \vec{n}_{2}+\alpha_{3} \vec{n}_{3}$
- Normalize its length
- Use this normal (for each pixel) to compute its shading, as if it is the real normal
- See formula on whiteboard
- Caution: interpolated normals must be of unit length
- Caution: Don't confuse with Phong Specular Shading
- (same person, two different concept)

Results of Gouraud Shading Pipeline

Results of Phong Shading Pipeline

