Tone Reproduction Tone corrections HDR and other applications of convolutions

Dynamic range of Eye vs Dynamic Range of Monitor

- Brightness (informally Luminosity) how much energy (in watts)
- This is different than colors
- Croud approximation R+G+B

With HDR & tone mapping

Problem 2: Display the information

- 2. Format of files of images with HDR
- 3. Changing intensities of images without changing colors: RGB vs HSV
- 4. Correct each pixel individually: (locall operations:) α, β, γ corrections (gain, bias)
- 5. Big topic: Global operations: Convolution, high-pass low-pass filters

Sun overexposed Foreground too dark

Briefly: How to store HDR images

- Options: PPM could use 2 bytes 2¹⁶ bytes for R,G,B for each pixel
- Other options: Use a long float (8 bytes) for each value of R,G,B -overkill
- · Common formats to be discussed later

Radiance RGBE Format (.hdr)

32 bits/pixel			
			
Red	Green	Blue	Exponent
(145, 215, 87, 149) =		(145, 215, 87, 103) =	
(145, 215, 87) * 2^(149-128) =		$(145, 215, 87) * 2^{(103-128)} =$	
1190000 1760000 713000		0.00000432 0.00000641 0.00000259	
Ward, Greg. "Real Pixels," in Graphics Gems IV, edited by James Arvo, Academic Press, 1994			

How not to change the color:

- We will modify the intensity I = (R + G + B)/3.
- For each pixel, we will map its original intensity *I* to a target intensity *I'* (devil in details)
- . Then will apply: $NewRGB = OldRGB \cdot \left(\frac{1}{r'}\right)$
- The perception of the color should stay the same.
- Terms that we will use interchangeably (though they are not identical: Intensity I, lightness L , Brighntess B.

First Example: Linear Rescaling

- · Brightness (informally Luminosity) how much energy (in watts)
- Rescaling is a point processing technique that alters the contrast and/or brightness of an image.
- In photography, exposure is a measure of how much light is projected onto the imaging sensor.
 - Overexposure: more light than what the sensor can measure.
 - Underexposure: sensor is unable to detect the light.
- Images which are underexposed or overexposed can frequently be improved by brightening or darkening them.
- The contrast of an image can be altered to bring out the internal structure of the image.

Rescaling Math

 Given a sample C_{in} of the source image, rescaling computes the output sample, C_{out}, using the scaling function

 $C_{out} = \alpha C_{in} + \beta$

- α is a real-valued scaling factor known as gain
- + β is a real-valued scaling factor known as \mbox{bias}

Why Use Both α , β ?

The relative change in contrast can be simplified as

$$\frac{\Delta S'}{\Delta S} = \frac{|(\alpha S_1 + \beta) - (\alpha S_2 + \beta)|}{|S_1 - S_2|}$$
$$= \frac{|\alpha| \cdot |S_1 - S_2|}{|S_1 - S_2|}$$
$$= |\alpha|.$$

- Thus, gain (α) controls the change in contrast.
- Whereas bias (β) does not affect the contrast
- Bias, however, controls the final **brightness** of the rescaled image. Negative bias darkens and positive bias brightens the image

Another idea: γ -correction

- Instead of
 - $New_Intensity(p) = \alpha \cdot Old_Intensity + \beta$
 - Do

New_Intensity(p) =
$$(\alpha \cdot Old_Intensity + \beta)$$

×γ

Here
$$0 \le \gamma \le 1$$

This is equivalent to Calculate $log_2(Intensity)$ Multiply by γ Calculate 2^{this} value

The World is a High Dynamic Range (HDR) 1:1 1:1,500 1:25,000 1:400,000 1:2,000,000,000

Eyes and Dynamic Range • We're sensitive to change (multiplicative) · A ratio of 1:2 is perceived as the same contrast as a ratio of 100 to 200

- Use the log domain as much as possible
- But, eyes are not photometers
 - Dynamic adaptation (very local in retina)
 - · Different sensitivity to spatial frequencies

it gives us a visual match.

Without HDR & tone mapping

With HDR & tone mapping

With HDR + Tone Mapping

· Means: Some neighborhoods must be treed different than others

Consider only the radiance map (the intensity at each pixel)

- Will produce two maps of intensities:
 - $I_{slow}(x, y)$ changes slow, but large amplitude and large contrast
 - $I_{fast}(x, y)$ changes rapidly, but small amplitude.
 - (α, β, γ) -correction will be applied only to I_{slow}
 - Put them back together

https://www.geogebra.org/m/w6qnvw9g

Geanna & eon pression on intensity

· Colors ok, but details in intensity are blurry

Oppehaim19668, Ctrituettell. 1993

- Reduce contrast of low-frequencies
- · Keep mid and high frequencies

The halo nightmare

- For strong edges
- Because they contain high frequency

Tuesday, March 6, 12

esdav. March 6. 12

