Transformations in 2D Short version

Something to be careful about with hw1

Transformations

$$\begin{bmatrix} \cos 90^\circ & \sin 90^\circ \\ -\sin 90^\circ & \cos 90^\circ \end{bmatrix} \begin{bmatrix} \Omega_1 \\ \Omega_2 \end{bmatrix} = \begin{bmatrix} \mathfrak{D} & \mathfrak{D} \\ \mathfrak{D} & \mathfrak{D} \end{bmatrix}$$

Translations (shift) by(α, β)

- Adding a constant β to the y-coordinate of every point
- $(x, y) \rightarrow (x + \alpha, y + \beta)$

The mathematician and coffee cup non-funny joke Part 2

Solution:

- 1. Bring the coffee Kettle to the other table, and walk to the left table
- 2. Apply the solution from the previous slide

Problem: scale the clock, but without changing its center and without effecting the green rectangle

• If we move each point (x,y) into the point $(x,y) \rightarrow (x+y, y)$

Shearing

• Vertical shearing shifts each column based on the x value. $(x, y) \rightarrow (x, x + y)$

Expressing rotations with matrices $\theta = 14^{\circ}$ **δ**7 P'=(x',y')=P rotated by angle θ 6.5 b=sin(φ) $P=(a,b)=(cos(\phi), sin(\phi))$ $\overline{\psi + \theta}$ b= sin φ $a=(cos(\phi), 0)$ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 $x'=(a \cos(\theta) - b \sin(\theta), -0.2)$ $\begin{bmatrix} -\sin\theta\\ \cos\theta \end{bmatrix} \cdot \begin{bmatrix} a\\ b \end{bmatrix} = \begin{bmatrix} a\cos\theta - b\sin\theta\\ a\sin\theta + b\cos\theta \end{bmatrix} = \begin{bmatrix} a'\\ y' \end{bmatrix}$ $\cos\theta$ $R_{\theta} =$ $\sin\theta$

What about other operaions

• Scaling by α ? $(x, y) \rightarrow (\alpha x, \alpha y)$.

$$M = \begin{bmatrix} \alpha & 0 \\ 0 & \alpha \end{bmatrix}, \text{ and } p = \begin{pmatrix} x \\ y \end{pmatrix}. \text{ Then}$$
$$Mp = M \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} \alpha & 0 \\ 0 & \alpha \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha x \\ \alpha y \end{pmatrix}$$

Reflection by the x-axis ?
$$(x, y) \rightarrow (x, -y)$$
. $M = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

• Sheering ? e.g.
$$(x, y) \to (x, 2x + y)$$
 $M = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$

• Translation is problematic ?

0

Concatenation

- A very common scenario need to apply the same transformation on many points in the scene. (the same transformation applied to each point).
- Recall matrix multiplication is associative $A(B \cdot C) = (A \cdot B) \cdot C = A \cdot B \cdot C$?
- So for a point p, we can understand the expression $(M_3\cdot M_2\cdot M_1)p$ as a three step process
- Apply the transformation M_1 on p, (that is, compute $M_1 \cdot p$. Then
- Apply M_2 on the result. That is, compute $M_2 \cdot M_1 \cdot p$.
- Apply M_3 on the result that is, computer $M_3 \cdot (M_2 \cdot (M_1 p))$
- Alternatively (and usually more efficient) compute $M' = M_3 \cdot M_2 \cdot M_1$, and for every point p, compute $M' \cdot p$.

Homogeneous coordinates

- We represent a point p = (x, y) using 3 numbers $p = (x, y, w)_h$
- What are the coordinates of this point in Euclidean Cartesian representation ? p = (x/w, y/w) = (x, y, w)_h
- So $(4,2)_{Cartesian} = (4,2,1)_{homog} = (8, 4, 2)_h = (2, 1, 0.5)_{homog}$
- Warning, this is a point in 2D, (not a point in \mathbb{R}^3). On the other hand...
- The point $(4,2,8)_{Cartesian} = (4,2,8,1)_{homog} = (8, 4, 16, 2)_h = (2, 1,4, 0.5)_{homog}$ is a point in 3D.

Homogenous transformations are extremely useful in multiple graphics settings - including translations

Γ	1	0	α		$\begin{bmatrix} x_0 \end{bmatrix}$		$x_0 + \alpha \cdot 1$	
	0	1	β	•	<i>y</i> ₀	=	$y_0 + \beta \cdot 1$	=
	0	0	1		1	h	1 · 1	

• That is, this transformation performs translation by α and β : (x, y) \rightarrow ($x + \alpha, y + \beta$)

https://www.geogebra.org/classic/hpqxbcmd

Homogenous transformations cont - the matrices of the other transformation

Identity Matrix and Inverse matrix The matrix $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ is called the identity matrix. Note that for every matrix M, it holds that $M \cdot I = I \cdot M = 1$ Note that for every matrix M, it holds that $M \cdot I = I \cdot M = 1$ For a matrix M, we denote by M^{-1} a matrix M such that $M \cdot M^{-1} = I$ Question: What is the inverse of $\begin{bmatrix} 1 & 0 & \alpha \\ 0 & 1 & \beta \\ 0 & 0 & 1 \end{bmatrix}$??

Rotations - more perspective (not in syllabus)

- If z_1, z_2 are complex numbers $z_1 = x_1 + iy_1, z_2 = x_2 + iy_2$
- Then $z_1 \cdot z_2$ is a new complex number, whose length is $|z_1 \cdot z_2| = |z_2| \cdot |z_2|$, and whose angle is the sum of angles of z_1, z_2

 $\arg(z_1 \cdot z_2) = \arg(z_1) + \arg(z_2)$

We also know that $z_1 \cdot z_2 = x_1 x_2 - y_1 y_2 + i(x_1 y_2 + x_2 y_1)$

•Now, if $z_2 = \cos \theta + i \sin \theta$, (fixed for the transformation) and Z_1 is a pixel, then multiply z_1 by z_2 will not change the length of z_1 but it will change its argument. To be precise, it will rotate z_1 by $arg(z_2)$.

then
$$z_1 \cdot z_2 = \underbrace{x_1 \cos \theta - y_1 \sin \theta + i}_{real \ part = x'} \underbrace{(x_1 \sin \theta + y_1 \cos \theta)}_{=y'}$$

-This is useful when studying quaternions - (which are useful for 3D animation) $_{\underline{youtube}}$

Rotations - more perspectives Transforming from one coordinate system to another

- From Linear algebra: A **basis** $\{\vec{v}_1, \vec{v}_2...\vec{v}_d\}$ is a set of vectors such that every point *p* in a space(plane/space...) could be expressed as a linear combination. $p = \alpha_1 \cdot \vec{v}_1 + \alpha_2 \vec{v}_2 + ... + \alpha_d \cdot \vec{v}_d ...$
- and in addition, we could not drop any of these vectors.
- The space is **spanned** by this basis.
- Multiplication by a matrix M is a linear operation: That is
- $M \cdot \vec{0} = \vec{0}$
- $M \cdot (\vec{u} + \vec{v}) = M\vec{u} + M\vec{v}$
- $M(\alpha \vec{u}) = \alpha(M \vec{u})$

• We are all very familiar with the basis $\vec{X} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\vec{Y} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

