Transformations in 2D Short version

Transformations

$$
\left[\begin{array}{c}
\cos 90^{\circ} \sin 90^{\circ} \\
-\sin 90^{\circ} \cos 90^{\circ}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=00
$$

Translations (shift) by (α, β)

- Adding a constant α to the x -coordinate of every point
- Adding a constant β to the y -coordinate of every point
- $(x, y) \rightarrow(x+\alpha, y+\beta)$

Scaling

- We can use two constants $\left(s_{x}, s_{y}\right)$ for the x-axis and the y-axis. Then we shift each point (x, y) into the point $\left(s_{x} \cdot x, s_{y} \cdot y\right)$
$\cdot(x, y) \rightarrow\left(s_{x} \cdot x, s_{y} \cdot y\right)$
- Example $(x, y) \rightarrow(x / 2, y / 2)$

The mathematician and coffee cup non-funny joke Part 1

Scaling

- Example: $(x, y) \rightarrow(0.5 x, 2 y)$

The mathematician and coffee cup non-funny joke Part 2

Solution:

1. Bring the coffee Kettle to the other table, and walk to the left table
2. Apply the solution from the previous slide

Resize the clock, without changing its center

Problem: scale the clock, but without changing its center and without effecting the green rectangle

Shearing

- If we move each point (x, y) into the point
$(x, y) \rightarrow(x+y, y)$

Shearing

- Vertical shearing shifts each column based on the x value.

$$
(x, y) \rightarrow(x, x+y)
$$

Rotation

- Rotate counterclockwise by an angle θ about the origin.

Assume we rotate p by an angle θ CCW

Starting from a point $P=(a, b)$, where will this point find itself after rotation by θ in the CounterClockwise direction?
Let $p^{\prime}=\left(x^{\prime}, y^{\prime}\right)$ denote the new location of this point. Lets compute this location:
For simplicity, assume $a^{2}+b^{2}=1$

$x^{\prime}=\cos (\phi+\theta)=$
$\cos (\phi) \cos (\theta)-\underbrace{\sin (\phi)}_{=b} \sin (\theta)$
$=a$
$y^{\prime}=\sin (\phi+\theta)=$
$\sin (\phi) \cos (\theta)+\underbrace{\cos (\phi)}_{=a} \sin (\theta)$
$\underbrace{a \sin (\theta)+y \sin (\theta)}_{=b}$
-0.1
.
$x^{\prime}=(a \cos (\theta)-b \sin (\theta),-0.2)$

Assume we rotate p by an angle θ CCW

Starting from a point $P=(a, b)$, where will this point find itself after rotation by θ in the CounterClockwise direction?
Let $p^{\prime}=\left(x^{\prime}, y^{\prime}\right)$ denote the new location of this point. Lets compute this location:
For simplicity, assume $a^{2}+b^{2}=1$

```
0.9 0=0 0
0.8
0.8
0.6
0.5
```



```
\(0.11 \phi\)
```

 -0.1

$$
\begin{aligned}
& y_{=b}^{\prime}=\sin (\phi+\theta)= \\
& \sin (\phi) \cos (\theta)+\underbrace{\cos (\phi)}_{=a} \sin (\theta)
\end{aligned}
$$

Reflection on the x-axes: $(x, y) \rightarrow(x,-y)$

Arbitrary Reflection - promo
We will get back to it later in the semester

Expressing rotations with matrices

$$
R_{\theta}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \cdot\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
a \cos \theta-b \sin \theta \\
a \sin \theta+b \cos \theta
\end{array}\right]=\left[\begin{array}{l}
a^{\prime} \\
y^{\prime}
\end{array}\right]
$$

What about other operaions

- Scaling by α ? $\quad(x, y) \rightarrow(\alpha x, \alpha y)$.

$$
\begin{aligned}
M & =\left[\begin{array}{ll}
\alpha & 0 \\
0 & \alpha
\end{array}\right], \text { and } p=\binom{x}{y} . \text { Then } \\
M p & =M\binom{x}{y}=\left[\begin{array}{ll}
\alpha & 0 \\
0 & \alpha
\end{array}\right]\binom{x}{y}=\binom{\alpha x}{\alpha y}
\end{aligned}
$$

- Reflection by the x -axis ? $(x, y) \rightarrow(x,-y) . \quad M=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
- Sheering ? e.g. $(x, y) \rightarrow(x, 2 x+y) \quad M=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$
- Translation is problematic?

Concatenation

- A very common scenario - need to apply the same transformation on many points in the scene. (the same transformation applied to each point).
- Recall - matrix multiplication is associative $A(B \cdot C)=(A \cdot B) \cdot C=A \cdot B \cdot C$?
- So for a point p , we can understand the expression $\left(M_{3} \cdot M_{2} \cdot M_{1}\right) p$ as a three step process
- Apply the transformation M_{1} on p, (that is, compute $M_{1} \cdot p$. Then
- Apply M_{2} on the result. That is, compute $M_{2} \cdot M_{1} \cdot p$.
- Apply M_{3} on the result - that is, computer $M_{3} \cdot\left(M_{2} \cdot\left(M_{1} p\right)\right)$
- Alternatively (and usually more efficient) - compute $M^{\prime}=M_{3} \cdot M_{2} \cdot M_{1}$, and for every point p, compute $M^{\prime} \cdot p$.

Homogenous transformations are extremely useful in multiple graphics settings - including translations

$$
\left[\begin{array}{ccc}
1 & 0 & \alpha \\
0 & 1 & \beta \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
x_{0} \\
y_{0} \\
1
\end{array}\right]_{h}=\left[\begin{array}{c}
x_{0}+\alpha \cdot 1 \\
y_{0}+\beta \cdot 1 \\
1 \cdot 1
\end{array}\right]=
$$

- That is, this transformation performs translation by α and β : $(x, y) \rightarrow(x+\alpha, y+\beta)$
https://www.geogebra.org/classic/hpqxbcmd

Homogeneous coordinates

- We represent a point $p=(x, y)$ using 3 numbers $p=(x, y, w)_{h}$
- What are the coordinates of this point in Euclidean Cartesian representation? $p=(x / w, y / w)=(x, y, w)_{h}$
- So $(4,2)_{\text {Cartesian }}=(4,2,1)_{\text {homog }}=(8,4,2)_{h}=(2,1,0.5)_{\text {homog }}$
- Warning, this is a point in 2 D , (not a point in \mathbb{R}^{3}). On the other hand..
- The point
$(4,2,8)_{\text {Cartesian }}=(4,2,8,1)_{\text {homog }}=(8,4,16,2)_{h}=(2,1,4,0.5)_{\text {homog }}$ is a point in 3 D .

> Homogenous transformations cont - the matrices of the other transformation
> - If $M=\left[\begin{array}{lll}a & b & 0 \\ c & d & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1}\end{array}\right]$ then $M \cdot\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$ is just like $\overbrace{\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]}^{M^{\prime}}\left[\begin{array}{l}x \\ y\end{array}\right]$. That is, we can ignore the red part - Example $\overbrace{\left[\begin{array}{cc}1 / 2 & 0 \\ 0 & 1 / 2\end{array}\right]}^{M^{\prime}}\left[\begin{array}{l}x \\ y\end{array}\right]$ Scaling by $1 / 2$. Have the same effect as $\quad M=\left[\begin{array}{ccc}1 / 2 & 0 & 0 \\ 0 & 1 / 2 & 0 \\ \mathbf{0} & \mathbf{0} & \mathbf{1}\end{array}\right]$
> - $M=\left[\begin{array}{lll}a & b & \alpha \\ c & d & \beta \\ 0 & 0 & 1\end{array}\right]$ has the same effect as (first) apply $\left.\frac{{ }_{\left[\begin{array}{l}a \\ a\end{array}\right.}^{b}}{c} \begin{array}{l}d\end{array}\right]$ on p , and then translate by (α, β). - Example: $M=\left[\begin{array}{ccc}1 / 2 & 0 & 2 \\ 0 & 1 / 2 & 3 \\ 0 & 0 & 1\end{array}\right]$ scale by $1 / 2$, and then translate by $(2,3)$

- In most cases, the last row of M is $[0,0,1]$. We will change it only when discussing projections.

Rotations - more perspective (not in syllabus)

- If z_{1}, z_{2} are complex numbers $z_{1}=x_{1}+i y_{1}, z_{2}=x_{2}+i y_{2}$
- Then $z_{1} \cdot z_{2}$ is a new complex number, whose length is $\left|z_{1} \cdot z_{2}\right|=\left|z_{2}\right| \cdot\left|z_{2}\right|$, and whose angle is the sum of angles of z_{1}, z_{2}

$$
\begin{aligned}
& \arg \left(z_{1} \cdot z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right) \\
& \text { We also know that } z_{1} \cdot z_{2}=x_{1} x_{2}-y_{1} y_{2}+i\left(x_{1} y_{2}+x_{2} y_{1}\right)
\end{aligned}
$$

-Now, if $z_{2}=\cos \theta+i \sin \theta$, (fixed for the transformation) and Z_{1} is a pixel, then multiply z_{1} by z_{2} will not change the length of z_{1} but it will change its argument. To be precise, it will rotate z_{1} by $\arg \left(z_{2}\right)$.

$$
\text { then } z_{1} \cdot z_{2}=\underbrace{x_{1} \cos \theta-y_{1} \sin \theta}_{\text {real part }=x^{\prime}}+\underbrace{i\left(x_{1} \sin \theta+y_{1} \cos \theta\right)}_{=y^{\prime}}
$$

-This is useful when studying quaternions - (which are useful for 3D animation) youtube

Identity Matrix and Inverse matrix

- The matrix $I=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ is called the identity matrix.
- Note that for every matrix M , it holds that $M \cdot I=I \cdot M=1$
- For a matrix M , we denote by M^{-1} a matrix M such that $M \cdot M^{-1}=I$
- Question: What is the inverse of $\left[\begin{array}{lll}1 & 0 & \alpha \\ 0 & 1 & \beta \\ 0 & 0 & 1\end{array}\right]$??

Rotations - more perspectives
Transforming from one coordinate system to another

- From Linear algebra: A basis $\left\{\vec{v}_{1}, \vec{v}_{2} \ldots \vec{v}_{d}\right\}$ is a set of vectors such that every point p in a space(plane/space...) could be expressed as a linear combination. $p=\alpha_{1} \cdot \vec{v}_{1}+\alpha_{2} \vec{v}_{2}+\ldots+\alpha_{d} \cdot \vec{v}_{d} \ldots$
- and in addition, we could not drop any of these vectors.
- The space is spanned by this basis
- Multiplication by a matrix M is a linear operation: That is
- $M \cdot \overrightarrow{0}=\overrightarrow{0}$
- $M \cdot(\vec{u}+\vec{v})=M \vec{u}+M \vec{v}$
- $M(\alpha \vec{u})=\alpha(M \vec{u})$
- We are all very familiar with the basis $\vec{X}=\binom{1}{0}$ and $\vec{Y}=\binom{0}{1}$

We can express rotation by creating a new basis of \mathbb{R}^{2}

- To specify a rotation, it is sufficient to create a new coordinates system, and specify what is the correspondence between the old and new basis.
- To be precise, create \mathbf{M}, such that the it's column of \mathbf{M} is the i^{\prime} th vector (represented as a linear combination of the basis)
- The text above is probably very cryptic without multiple examples
- "Tricky" way to find rotation matrix. If \vec{X}, \vec{Y} are unit vectors in the old coordinate system, then we could think abo rotation as rotating the coordinates systems as well, and after the rotation we expect
- $\vec{X} \xrightarrow[\text { by } \theta]{\text { Rotation }} \overrightarrow{X^{\prime}}$ and $\vec{Y} \xrightarrow[\text { by } \theta]{\text { Rotation }} \overrightarrow{Y^{\prime}}$. Let R_{θ} be the rotation matrix. This means $R_{\theta} \cdot\left[\begin{array}{l}1 \\ 0\end{array}\right]=\overrightarrow{X^{\prime}} \quad$ and $\quad R_{\theta} \cdot\left[\begin{array}{l}0 \\ 1\end{array}\right]=\overrightarrow{Y^{\prime}}$.
- But $R_{\theta} \cdot\left[\begin{array}{l}1 \\ 0\end{array}\right]=\overrightarrow{X^{\prime}}$ is just the first column of R_{θ}. And $R_{\theta} \cdot\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is the second column.
- Lets try: Write $R_{\theta}=\left[\begin{array}{cc}\vdots & \vdots \\ \vec{X}^{\prime} & \overrightarrow{Y^{\prime}} \\ \vdots & \vdots\end{array}\right]$.
- then for every data point $C=(\alpha, \beta)$, we could write (in a somehow obnoxious way) $C=\alpha \vec{X}+\beta \vec{Y}$.
$R_{\theta} \cdot C=\left[\begin{array}{cc}\vdots & \vdots \\ \vec{X}^{\prime} & \overrightarrow{Y^{\prime}} \\ \vdots & \vdots\end{array}\right](\alpha \vec{X}+\beta \vec{Y}) \stackrel{\text { linearity }}{=} \alpha\left[\begin{array}{cc}\vdots & \vdots \\ \vec{X}^{\prime} & \overrightarrow{Y^{\prime}} \\ \vdots & \vdots\end{array}\right] \vec{X}+\beta\left[\begin{array}{cc}\vdots & \vdots \\ \vec{X}^{\prime} & \overrightarrow{Y^{\prime}} \\ \vdots & \vdots\end{array}\right] \vec{Y}=\alpha \overrightarrow{X^{\prime}}+\beta \overrightarrow{C^{\prime}}$

We can express rotation by creating a new basis of \mathbb{R}^{2}

- This is going to be extremely useful when discussing rotations in 3 D
- To specify a rotation, it it s sufficient to create a new coordinates system, and specify what is the correspondence between the old and new basis
- To be precise, create M , such that the it's column of M is the i ith vector (represented as a linear combination of the old basis)
- The text above is probably very cryptic without multiple examples
- "Trick" way to find rotation matrix If \vec{X}, \vec{Y} are unit vectors in the old coordinate system, then we could think about the rotation as rotating the coordinates

- But $R_{\theta} .\left[\begin{array}{l}1 \\ 0\end{array}\right]=\vec{X}$ is isust the firist column of R_{θ}. And R_{θ}. $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is the second column.
- Lets try: Wite $R_{\theta}=\left[\begin{array}{cc}\vdots & \vdots \\ \bar{X}^{\prime} & \vec{Y}^{\prime} \\ \vdots & \vdots\end{array}\right]$
- then for every data point $C=(\alpha, \beta)$, we could write (in a somenow obnoxious way) $C=\alpha \vec{X}+\beta \bar{Y}$
- $R_{\theta} \cdot C=\left[\begin{array}{cc}\vdots & \vdots \\ \vec{X}^{\prime} & \overrightarrow{Y^{\prime}} \\ \vdots & \vdots\end{array}\right](\alpha \vec{X}+\beta \vec{Y}){ }^{\text {linearity }} \alpha\left[\begin{array}{cc}\vdots & \vdots \\ \vec{X}^{\prime} & \vec{Y}^{\prime} \\ \vdots & \vdots\end{array}\right] \vec{X}+\beta\left[\begin{array}{cc}\vdots & \vdots \\ \vec{X}^{\prime} & \overrightarrow{Y^{\prime}} \\ \vdots & \vdots\end{array}\right] \vec{Y}=\alpha \overrightarrow{X^{\prime}}+\beta \overrightarrow{C^{\prime}}=C^{\prime}$

Important take home message: To find the rotation matrix, just create a matrix where each column is one of the new basis vector (witten using coordinates of
the old coordinate system)

