	Computational Geometry (CS 437/537) Alon Efrat

Bibljography
- Computational Geometry
de Berg, van Kreveld, Overmars, Schwarzkopf,
2nd edition, Springer Verlag, 2000.
- Computational Geometry in c
ORourke,
2nd edition, Cambridge Univ. Press, 2000.
$=$ Course notes, D. Mount
Course slides, C. Gotsman

Assessment

Nearest Neighbor

\square Problem definition:

- Input: a set of points (sites) P in the plane and a query point q.
Output: The point $p \in P$ closest to q among $\quad 0 \quad p 0^{-\infty}-q$ all points in P.

0
oP

Rules of the game:
\square One point set, multiple queries
\square Applications:
Store Locator

- Cellphones

Point Location

- Problem definition:
- Input: A partition S of the plane
into cells and a query point p.
\square Output: The cell $C \in S$ containing p.

Rules of the game: a One partition, multiple queries
\square Applications

- Nearest neighbor
- State locator.

Point in Polygon

Problem definition:
Input: a polygon P in the plane and a query point p.

- Output: true if $p \in P$, else false.

Rules of the game:

- One polygon, multiple queries

Convex Hull
\square Problem definition:

- Input: a set of points S in the plane.
- Output: Minimal convex polygon containing S.

Range Searching and Counting

\square Problem definition:

- Input: A set of points P in the
plane and a query rectangle R
- Output: (report) The subset $Q \subseteq P$ contained in R. (count) The size of Q.

Rules of the game:

- One point set, multiple queries
\square Application: Urban planning, data-
bases

Visibilitiy

\square Problem definition:
Input: a polygon P in the plane and a query point p.

- Output: Polygon $\mathrm{Q} \subseteq \mathrm{P}$, visible to p .

Rules of the game:

- One polygon, multiple queries
\square Applications: Security

Representing Geometric Elements

Representation of a line segment by four real
numbers:

- Two endpoints (p_{1} and p_{2})

One endpoint $\left(p_{1}\right)$, a slope
(α), and length (d)

- One endpoint (p_{1}), vector direction (v) and parameter interval length (t)

Parametric form

$$
p(t)=p_{1}+t\left(p_{2}-p_{1}\right)=(1-t) p_{1}+t p_{2}, \quad t \in[0,1]
$$

\square Different representations may affect the numeric accuracy of algorithms...

Orientation

Area $=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$
 $=1 / 2\left(x_{1}\left(y_{2}-y_{3}\right)-x_{2}\left(y_{1}-y_{3}\right)+x_{s}\left(y_{1}-y_{2}\right)\right)$

The sign of the area indicates the orientation of the points.
Positive area \equiv counterclockwise orientation \equiv left turn.
\square Negative area \equiv clockwise orientation $=$ right turn.
\square Question: How can this be used to determine whether a
given point is "above" or "below" or "on" a given line
segment? Is this numerically stable?

Convex Hull Algorithms

Convexity and Convex Hull
Convex Hulls - Some Facts

A set S is convex if any pair of points $p, q \in S$ satisfy $p q \subseteq S$.

The convex hull of a set S is:

- The minimal convex set that contains S, i.e. any convex set C such that $S \subseteq C$ satisfies $\mathrm{CH}(S) \subseteq C$.
- The intersection of all convex sets that contain S.
- The set of all convex combinations of $p \in S$, i.e. al points of the form:
$\sum_{i=1}^{n} \alpha_{i} p_{i}, \quad \alpha_{i} \geq 0, \sum_{i=1}^{n} \alpha_{i}=1$

Convex Hull - Naive Algorithm

Description:

- For each pair of points construct its connecting segment and supporting line.
- Find all the segments whose supporting lines divide the plane into two halves, such that one half plane contains all the other points.
- Construct the convex hull out of these segments.

Time complexity:
All pairs: $O\binom{n}{2}=O\left(\frac{n(n-1)}{2}\right)=O\left(n^{2}\right)$

- Check all points for each pair: $O(n)$
- Total: $\mathrm{O}\left(n^{3}\right)$

Possible Pitfalls

Degenerate cases - e.g. 3 collinear points
Might harm the correctness of the algorithm. Segments AB, BC and AC will all be included in the convex hull.

Numerical problems - We might conclude that none of the three segments belongs to the convex hull.

Convex Hull - Graham's Scan

aldeas: Sort the points according to their x coordinates. First we construct only the upper CH .
-Process the points from the leftmost to rightmost.
Maintain the upper CH of all points from the leftmost one to the
currently processed scanned point.
Develop the left-turn critiria for the last 3 processed points:
kif we need to turn left when traveling along these points, the middle one is NOT on the upper CH, and we delete it.
Note: After deletion, we have new 3 points to consider.

The Algorithm

\square Sort the points in increasing order of x-coord:

$$
p_{1}, \ldots, p_{n}
$$

/* Note - this is the only part not done in $\mathrm{O}(\mathrm{n})$ time */
$\square \operatorname{Push}\left(S, p_{1}\right)$; Push(S, p_{2});
\square For $i=3$ to n do

- While Size $(S) \geq 2$ and

11 Orient $\left(p_{i}\right.$ top (S),second $\left.(S)\right) \leq 0 \quad / *$ left turn */ - do Pop (S);

- Push (S, p_{i}):

P Print (S);

271.
281.

Graham's Scan - Time Complexity

Sorting - O($n \log n$)
\square If D_{i} is number of points popped on processing p_{i}

$$
\text { time }=\sum_{i=1}^{n}\left(D_{i}+1\right)=n+\sum_{i=1}^{n} D_{i}
$$

Each point is pushed on the stack only once.
Once a point is popped - it cannot be popped again.
\square Hence

$$
\sum_{i=1}^{n} D_{i} \leq n
$$

\square Question: What is actually $\sum_{i=1}^{n} D_{i} \leq n$?

Graham's Scan-a Variant

Assume the points are given in increasing x-coors order.
\square Time Complexity: $\mathrm{O}(n \log n)$
○

0

O
\square Question: What are the pros and cons of this algorithm relative to the previous ?

Convex Hull - Divide and Conquer
Algorithm:

- Find a point with a median x coordinate (time: $\mathrm{O}(n)$)
Compute the convex hull of each half (recursive execution)
- Combine the two convex hulls by finding common tangents.
This can be done in $\mathrm{O}(n)$.
Complexity: $\mathrm{O}(n \log n)$

$$
T(n)=2 T\left(\frac{n}{2}\right)+O(n)
$$

Finding Common Tangents

To find lower tangent:
\square Find a - the rightmost point of $\left.H_{A}\right\} O(n)$
\square Find b - the leftmost point of H_{B}
$\mathrm{O}(\mathrm{n})$
\square While $a b$ is not a lower tangent for H_{A} and H_{B}, do:
\square If $a b$ is not a lower tangent to H_{A} do $a=a-1$
\square / \star Move one point clockwise */
\square If $a b$ is not a lower tangent to H_{B} do $b=b-1$
$\square / *$ Move one point counterclockwise */
Finding Common Tangents

Finding Common Tangenis

Finding Common Tangents
Finding Common Tangenis

Finding Common Tangents

Output-Sensitive Convex Hull Gift Wrapping

Algorithm:

- Find a point p_{1} on the convex hull (e.g. the lowest point).
\square Rotate counterclockwise a line through p_{1} until it touches one of the other points (start from a horizontal orientation).
Question: How is this done?
- Repeat the last step for the new point.

Stop when p_{1} is reached again.
\square Time Complexity: $O(n h)$, where n is the input size and h is the output (hull) size.
\square Best alg in 2D:O(nlog $h)$

General Position

\square When designing a geometric algorithm, we first make some simplifying assumptions, e.g:

- No 3 colinear points.
- No two points with the same x coordinate. - etc.
\square Later, we consider the general case:
- How should the algorithm react to degenerate cases ?
- Will the correctness be preserved?
- Will the runtime remain the same ?

Lower Bound for Convex Hull
A reduction from sorting to convex hull is:

- Given n real values x_{i} generate n 2D points on the graph of a convex function, e.g. $\left(x_{i}, x_{\mathrm{i}}^{2}\right)$.
\square Compute the (ordered) convex hull of the points.
- The order of the convex hull points is the numerical order of the X_{i}.
$\square \mathrm{SoCH}=\Omega(n \lg n)$

501.
