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11. 21. 

!   Computational Geometry!
!de Berg, van Kreveld, Overmars, Schwarzkopf, !

    2nd edition, Springer Verlag, 2000.!

!   Computational Geometry in C!
!OʼRourke,!

    2nd edition, Cambridge Univ. Press, 2000.!

!   Course notes, D. Mount!
!   Course slides, C. Gotsman!

31. 

!   6 Homework Assignments (65%). Primarily theoretical 
problems.!
!   (7 homework, only the 6 better ones are counted)!

!   Final Exam (10%)!
!   Midterm (10%)!
!   Max(Final, Midterm) (10%)!

!   Class Participation (5%).!

Grads have one more question in each hw. !

41. 

  Introduction !
  Basic techniques!
  Basic data structures!
  Polygon triangulation !
  Linear programming !
  Range searching !
  Point location !
  Voronoi diagrams !
  Duality and Arrangements!
  Delaunay triangulations !
  Computer graphics applications!

51. 

Questions ?!

61. 

 Sample problems !
 Basic concepts!
 Convex hull algorithms!
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71. 

 Problem definition:!
!   Input: a set of points (sites) P in the plane 

and a query point q.!
!   Output: The point p∈P closest to q among 

all points in P.!

 Rules of the game:!
!   One point set, multiple queries!

 Applications: !
!   Store Locator!
!   Cellphones!

P 

q p 

81. 

 Problem definition:!
!   Input: a set of points (sites) P in the plane.!

!   Output: A planar subdivision S into cells. One 
cell per site.  A a point q lies in the cell 
corresponding to a site p∈P iff p is the nearest 
site to q.!

S 

p 
q 

91. 

  Problem definition:!
!   Input: A partition S of the plane 

into cells and a query point p.!

!   Output:  The cell C ∈ S containing p.!

  Rules of the game:!
!   One partition, multiple queries!

  Applications: !
!   Nearest neighbor!
!   State locator.!

S 

p 

C 

101. 

P 

 Problem definition:!
!   Input: a polygon P in the plane and a query 

point p.!
!   Output: true if p∈P, else false. ! !!

 Rules of the game:!
!   One polygon, multiple queries!

p 

111. 

CH(S) 

S 

 Problem definition:!
!   Input: a set of points S in the plane.!

!   Output: Minimal convex polygon containing S.
! !!

121. 

  Problem definition:!
!   Input: Obstacles locations and 

query endpoints s and t.!

!   Output: the shortest path 
between s and t that avoids all 
obstacles.!

  Application: Robotics.!
s 

t 
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131. 

P   Problem definition:!
!   Input: A set of points P in the 

plane and a query rectangle R!

!   Output:  (report) The subset Q ⊆ P contained in R.!
                  (count)  The size of Q.!

R 

Q 

  Rules of the game:!
!   One point set, multiple queries.!

  Application: Urban planning, data-
bases!

141. 

P 

 Problem definition:!
!   Input: a polygon P in the plane and a query 

point p.!
!   Output: Polygon Q ⊆ P, visible to p. !

 Rules of the game:!
!   One polygon, multiple queries!

 Applications: Security!

p 
Q 

151. 161. 

171. 

Questions ?!

181. 

Basic Concepts!
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191. 

“Nickname”!Definition!Symbol!

“≤”!∃N,C ∀n>N f(n)/g(n) ≤ C!f(n) = O(g(n))!

“≥”!g(n) = O(f(n))!f(n) = Ω(g(n))!

201. 

  Representation of a line 
segment by four real 
numbers:!
!   Two endpoints (p1 and p2) !
!   One endpoint (p1), a slope 

(α), and length (d)!
!   One endpoint (p1), vector 

direction (v) and parameter 
interval length (t)!

!   Parametric form!

 Different representations may affect the numeric 
accuracy of algorithms…!

p1 

p2 

d 

α 
v 

211. 

  The sign of the area indicates the orientation of the points.!
  Positive area ≡ counterclockwise orientation ≡ left turn.!
  Negative area ≡ clockwise orientation ≡ right turn.!

  Question: How can this be used to determine whether a 
given point is “above” or “below” or “on” a given line 
segment ? Is this numerically stable ?!

(x1,y1) 

(x2,y2) (x3,y3) 

+ 

=1/2 ( x1(y2 –y3)- x2(y1-y3)+x3(y1-y2) ) 

221. 

Convex Hull Algorithms!

231. 

CH(S) 

  A set S is convex if any pair of points p,q ∈ S 
satisfy pq ⊆ S.!

p 

q 

non-convex 

q 

p 

convex 
  The convex hull of a set S is:!

!   The minimal convex set that contains S, i.e. any 
convex set C such that S ⊆ C satisfies CH(S) ⊆ C.!

!   The intersection of all convex sets that contain S.!
!   The set of all convex combinations of pi∈S, i.e. all 

points of the form:! S 

p 

q 

non-convex 

q 

p 

convex 

241. 

CH(S) 

  The convex hull of a set is unique.!
  The boundary of the convex hull of a point set is a polygon 

on a subset of the points.!

S 
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251. 

  Description: !
!   For each pair of points construct its 

connecting segment and supporting line.!
!   Find all the segments whose supporting 

lines divide the plane into two halves, such 
that one half plane contains all the other 
points. !

!   Construct the convex hull out of these 
segments. !

  Time complexity: !
!   All pairs: !

!   Check all points for each pair: O(n)!
!   Total: O(n3)!

261. 

  Degenerate cases – e.g. 3 collinear points. 
Might harm the correctness of the algorithm. 
Segments AB, BC and AC will all be included 
in the convex hull.!

  Numerical problems – We might conclude that none of 
the three segments belongs to the convex hull.!

A 

B 

C 

271. 

 Ideas: Sort the points according to their x coordinates. First we 
construct only the upper  CH.!
 Process the points from the leftmost to rightmost.!
 Maintain the upper CH of all points from the leftmost one to the 
currently processed scanned point.  !
 Develop the left-turn critiria for the last 3 processed points: !

 if we need to turn left when traveling along these points, the 
middle one is NOT on the upper CH, and we delete it. !
 Note: After deletion, we have new  3 points to consider. !

281. 

 Sort the points in increasing order of x-coord: !
            p1 ,.., pn.!
!/* Note – this is the only part not done in O(n) time */!

 Push(S,p1); Push(S,p2);!
 For i = 3 to n do!

!   While Size(S) ≥ 2 and  !
!  Orient( pi, top(S),second(S)) ≤ 0     /* left turn */!

!  do  Pop(S);!
!   Push(S,pi);!

 Print(S);!
1 

2 

3 

4 

5 

6 

7 

8 

291. 

  Sorting – O(n log n)!
  If Di is number of points popped on processing pi, !

  Each point is pushed on the stack only once.!
  Once a point is popped – it cannot be popped again.!

  Hence !

  Question: What is actually                          ?!

301. 

 Assume the points are given in 
increasing x-coord order.!

 Time Complexity: O(n log n)!

 Question: What are the pros and 
cons of this algorithm relative to the 
previous ?!
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311. 

 Algorithm:!
!   Find a point with a median x 

coordinate (time: O(n))!
!   Compute the convex hull of each half 

(recursive execution)!
!   Combine the two convex hulls by 

finding common tangents.!
    This can be done in O(n).!

 Complexity: O(n log n)!

321. 

A tangent line – a line cutting the CH at a single point 

Consider a line passing through a vertex v  of HB, How can we 
determine if v is a tangent to HB. !

HB!

v 

a 

v- 

V+ 

u 

u+ 

u- 

331. 

To find lower tangent:!

 Find a - the rightmost point of HA!
 Find b – the leftmost point of HB!

O(n) 

  While ab is not a lower tangent for HA and HB, do:!
  If ab is not a lower tangent to HA do a = a-1!

 /* Move one point clockwise */!

  If ab is not a lower tangent to HB do b = b-1 !
 /* Move one point counterclockwise */!

341. 

HB 
HA 

351. 361. 
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371. 381. 

391. 401. 

411. 421. 
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431. 441. 

451. 461. 

471. 481. 

 Algorithm:!
!   Find a point p1 on the convex hull (e.g. the 

lowest point).!
!   Rotate counterclockwise a line through p1 

until it touches one of the other points (start 
from a horizontal orientation).!
!Question: How is this done ?!

!   Repeat the last step for the new point.!
!   Stop when p1 is reached again.!

 Time Complexity: O(nh), where n is the input size and h is 
the output (hull) size.!

 Best alg in 2D: O(n log h ) !
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491. 

 When designing a geometric algorithm, we first make 
some simplifying assumptions, e.g:!
!   No 3 colinear points.!
!   No two points with the same x coordinate.!
!   etc. !

 Later, we consider the general case: !
!   How should the algorithm react to degenerate cases ?  !
!   Will the correctness be preserved ? !
!   Will the runtime remain the same ?!

501. 

 A reduction from sorting to 
convex hull is: !
!   Given n real values xi, 

generate n 2D points on the 
graph of a convex function, 
e.g. (xi,xi

2).!
!   Compute the (ordered) convex 

hull of the points.!
!   The order of the convex hull 

points is the numerical order of 
the xi.!

 So CH=Ω(nlgn)!


