Computational Geometry

Chapter 3

Polygons and Triangulation

Art Geillery Problem

Given a simple polygon P, say that two points p and q can see each other if the open segment $p q$ lies entirely within P.
\square A point guards a region $R \subseteq P$ if p sees all $q \in R$.

Given a polygon P, what is the
 minimal number of guards required to guard P, and what are their locations ?

On the Agenda
The Art Gallery Problem
Polygon Triangulation

Observalions

The entire interior of a convex polygon is visible from any interior point.

$$
\begin{aligned}
& \text { A star-shaped polygon requires } \\
& \text { only one guard located in its } \\
& \text { kernel. }
\end{aligned}
$$

Art Gallery Problem - Ecisy Upper Bound

n-2 guards suffice:

- Subdivide the polygon into $n-2$ triangles (triangulation)
- Place one guard in each triangle.

Theorem: Any simple planar polygon with n vertices has a triangulation of size $n-2$

Diagonals in Polygons

A diagonal of a polygon P is a line segment connecting two vertices which lies entirely within P.

Theorem: Any polygon with $n>3$ vertices has a diagonal, which may be found in $\mathrm{O}(n)$ time.

\square Proof: Find the leftmost vertex v. Connect its two neighbors u and w. If this is not a diagonal there are other vertices inside the triangle $u v w$. Connect v with the vertex v furthest from the segment $u w$.

Question: Why not connect v with the second leftmost vertex?

$O\left(n^{2}\right)$ Polygon Triangulation

Theorem: Every simple polygon with n vertices has a triangulation consisting of $n-3$ diagonals and $n-2$ triangles.

- Proof: By induction on n :
- Basis: A triangle ($n=3$) has a triangulation (itself) with no diagonals and one triangle.
- Induction: for a $n+1$ vertex polygon, construct a diagonal dividing the polygon into two polygons with n_{1} and n_{2} vertices such that $n_{1}+n_{2}-2=n$. Triangulate the two parts of the polygon. There are now $n_{1}-3+n_{2}-3+1=n-3$ diagonals and $n_{1}-2+n_{2}-2=n-2$ triangles.

Art Gallery Problem - Upper Bound

Color the triangulated polygon vertices with three colors such that there is no edge between two vertices with the same color.
\square Pick a color which is least used. This color cannot appear more than $\lfloor n / 3\rfloor$ times.
\square Place a guard on each vertex with this color. Each

triangle has only one guarded vertex, but this guard covers all triangles incident on the vertex.
$\square \Rightarrow$ New upper bound: $\lfloor n / 3\rfloor$
[n/3] - Tightit Bound

There exists a polygon with n vertices, for which n/3 guards are necessary.

Theorem: Every

- Proof: By induction on n.

- Basis: Trivial if $n=3$.
- Induction: Cut off an ear. 3 -color the $n-1$ vertex remainder. Color the nth vertex with the third color different from the two on its supporting edge.

Triangulation Algorithm - cont.

1) Partition the polygon into y-monotone pieces.
2) Triangulate each y-monotone piece separately.

Y-Monotone Polygons

\square Classify polygon vertices:

- A start (resp., end) vertex is one whose interior angle is less than π and its two neighboring vertices both lie below (resp., above) it.
- A split (resp., merge) vertex is one whose interior angle is greater than π and its two neighboring vertices both lie below (resp., above) it.
\square All other vertices are regular.

Monotone Partifioning

Classify all vertices.
Sweep the polygon from top to bottom.
Maintain the edges intersected by the sweep line in a sweep line status (SLS sorted by x coordinate).
Maintain vertex events in an event queue (EQ sorted by y coordinate).
Eliminate split/merge vertices by connecting them to other vertices.

- For each edge e, define helper (e) as the lowest vertex (seen so far) above the sweep line visible to the right of the edge.

helper(e) is initialized to the upper endpoint of e.

Monotone Partitioning Algoritiom

Input: A counterclockwise ordered list of vertices. The edge e_{i} immediately follows the vertex v_{i}.
\square Construct an EQ on the vertices of P using y coordinates. (In case two or more vertices have the same y coordinates, the vertex with the smaller x-coordinate has a higher priority.)
Initialize SLS to be empty.
While EQ is not empty:

- Pop vertex v;
- Handle v.
(No new events are generated during execution.)
Idea: No split/merge vertex remains unhandled!

Monotone Partititioning

\square Handling a start vertex (v_{i}):

- Add e_{i} to SLS
- helper(e_{i}) := v_{i}

Monotone Paritifioning

\square Handling an end vertex $\left(\mathrm{v}_{\mathrm{i}}\right)$:

- If helper $\left(\mathrm{e}_{\mathrm{i}-1}\right)$ is a merge vertex, then connect v_{i} to helper $\left(\mathrm{e}_{\mathrm{i}-1}\right)$
- Remove $\mathrm{e}_{\mathrm{i}-1}$ from SLS

193.

Monotone Partitioning

\square Handling a merge vertex $\left(v_{i}\right)$:
\square If helper $\left(\mathrm{e}_{\mathrm{i}-1}\right)$ is a merge vertex, then connect v_{i} to helper $\left(\mathrm{e}_{\mathrm{i}-1}\right)$

- Remove $\mathrm{e}_{\mathrm{i}-1}$ from SLS
\square Find in SLS the edge e_{j} directly to the left of v_{i}
- If helper(e_{i}) is a merge vertex, then connect v_{i} to helper $\left(\mathrm{e}_{\mathrm{j}}\right)$
- helper $\left(\mathrm{e}_{\mathrm{j}}\right):=\mathrm{v}_{\mathrm{i}}$

213.

Monotone Partitioning

\square Handling a regular vertex $\left(\mathrm{v}_{\mathrm{i}}\right)$:

- If the polygon's interior lies to the left of v_{i} then:
II Find in SLS the edge e_{j} directly to the left of v_{i}
II If helper(e_{i}) is a merge vertex then connect v_{i} to helper $\left(\mathrm{e}_{\mathrm{i}}\right)$
II helper $\left(\mathrm{e}_{\mathrm{i}}\right):=\mathrm{v}_{\mathrm{i}}$
- Else:

II If helper $\left(\mathrm{e}_{\mathrm{i}-1}\right)$ is a merge vertex then connect v_{i} to helper $\left(\mathrm{e}_{\mathrm{i}-1}\right)$
11 Remove $\mathrm{e}_{\mathrm{i}-1}$ from SLS
11 Insert e into SLS
11 helper $\left(\mathrm{e}_{\mathrm{i}}\right):=\mathrm{v}_{\mathrm{i}}$

Triangulating a Y-monotone Polygon In Theory

Sweep the polygon from top to bottom.
Greedily triangulate anything possible above the sweep line, and then forget about this region.
When we process a vertex v the
When we process a vertex v, the unhandled region above it always has a simple structure: wo y-monotone (left and right) one edge. If a chain consists of two or more edges, it is reflex and the other chain consists of single edge whose bottom endpoint has not been handled yet.
Each diagonal is added in $\mathrm{O}(1)$ time.

233.

Triangulating a Y-monotone polygon
 In Practice

Continue sweeping while one chain contains only one edge, while the other edge is concave.
When a "convex edge" appears in the concave chain (or a second edge appears in the other one), triangulate as much as possible using a "fan'
Time complexity: $O(n)$, where n is the complexity of the polygon.

Question: Why?!

