

On the Agenda

Linear programming
Duality
Smallest enclosing disk

Linear Programming - Example

Define:

- i - types of foods ($1 \leq i \leq \mathrm{d}$).
- j - types of vitamins ($1 \leq j \leq n$).
- x_{i} - the amount of food of type i.
- $a_{i f}$ - the amount of vitamin j in one unit of food i.
- c_{i} - the number of calories in one unit of food i.
- b_{j} - minimal required amount of vitamin j.

Constraints (we need to consume some minimal amount of each vitamin):

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 d} x_{d} \geq b_{1} \\
& \vdots \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n d} x_{d} \geq b_{n}
\end{aligned}
$$

Minimize: the total number of calories consumed:
$C(x)=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{d} x_{d}$

Linear Programming - The Geometry

Each constraint defines defines a half-space region in d-dimensional space.
The feasible region is the (convex) intersection of these half-spaces.

We will treat the case $d=2$, where each constraint defines a half-plane.

More Geometry

The solution to the linear program is a
point in the feasible region that is
extreme in the direction of the target function.

Theorem: Any bounded linear program that is feasible has a unique solution, which is a vertex of the feasible region. Proof: Convexity ...

Degenerate Cases

The feasible region may be:

- Empty
- Unbounded

The solution may be:

- Not unique

The Simplex Algorithm

Assume WLOG that the cost function points "downwards".
Construct (some of) the vertices of the
feasible region.
Walk edge by edge downwards until
reaching a local minimum (which is also a global minimum).

In R^{d}, the number of vertices might be Θ ($n^{\text {L }} \mathrm{d} / 2 \mathrm{~J}$).

74.

LP History

Mid $20^{\text {th }}$ century: Simplex algorithm, time complexity $\Theta\left(n^{\lfloor\mathrm{d} / 2\rfloor}\right)$ in the worst case.
1980's (Khachiyan) ellipsoid algorithm with time complexity poly(n, d).
1980's (Karmakar) interior-point algorithm with time complexity poly (n, d).
1984 (Megiddo) - parametric search algorithm with time
complexity $\mathrm{O}\left(C_{d} n\right)$ where C_{d} is a constant dependent only on
d. E.g. $C_{d}=2^{d n 2}$.

The holy grail: An algorithm with complexity independent of d.

In practice the simplex algorithm is used because of its linear expected runtime.

Divide and Conquer - Complexity Analysis
Stage 3:

- Intersection of two convex polygons plane sweep algorithm.
- No more than four segments are ever in the SLS and no more than eight events in the $\mathrm{EQ}-\mathrm{O}(n)$.
Stage 4:
\square Find the minimal cost vertex $-\mathrm{O}(n)$.

$$
\begin{aligned}
& \mathrm{T}(n)=2 \mathrm{~T}(n / 2)+\mathrm{O}(n) \Rightarrow \\
& \mathrm{T}(n)=\mathrm{O}(n \log n)
\end{aligned}
$$

$O\left(n^{2}\right)$ Incremental Algorithm

The idea:
■ Start by intersecting two halfplanes.

- Add halifplanes one by one and update optimal vertex by solving one-dimensional LP problem on new line if needed.

Incremental Algorithm - Symbols

h_{i} the ih half plane
I_{i} the line that defines h_{i}
C_{i} the feasible region after i constraints

v_{i} the optimal vertex of C_{i}

Incremental Algorithm Basic Theorem

Theorem:

1. if $v_{i-1} \in h_{i j}$, then $v_{i}=v_{i-1} . / / O(1)$ check, nothing to do
2. if $v_{i-1} \notin h_{i ;}$, then either
$C_{F}=\varnothing \quad / /$ terminate or $C_{i}=C_{i-1} \cap h_{i}$ and v_{i} lies on $t_{\mathrm{i}} \quad / /$ run 1D LP

Proof:

1. Trivial. Otherwise v_{i} would not have been optimum before.

Assume that v_{i} is not on $I_{i} \cdot v_{i}$ must be in C_{i-1} By convexity, also the line $v_{i} v_{i-1}$ is in C_{i-1}.

Consider point v_{i} - the intersection of $v_{i} v_{i-1}$ with I_{i}, v_{i} is in both C_{i-1} and C_{i}, and is better than v_{i-}.

Contradiction.

Finding v_{i} given I_{i}
(one-dimensional LP)

Intersect each $h_{j}(j<1)$ with i_{i}, generating $i-1$ rays representing (unbounded) intervals. Intersect the $i-1$ intervals in $O(i)$ time.
If the intersection is empty then report no solution, else report the lowest point.

$$
T(n)=\sum_{i=3}^{n} O(i)=O\left(n^{2}\right)
$$

Incremental Algorithm - O(n) Randomized Version

Exactly like the deterministic version, only the order of the lines is random.

Theorem: The expected runtime of the random incremental algorithm (over all n ! permutations of the input constraints) is $\mathrm{O}(n)$.

Complexity Analysis

The expected runtime is:

$$
\sum_{i=3}^{n}\left[O(1)\left(1-E\left(x_{i}\right)\right)+O(i) E\left(x_{i}\right)\right] \leq O(n)+\sum_{i=3}^{n}\left[O(i) E\left(x_{i}\right)\right]
$$

where x_{i} is a random variable:

$$
x_{i}=\left\{\begin{array}{lll}
1 & v_{i} \neq v_{i-1} & \text { // run 1D LP } \\
0 & v_{i}=v_{i-1} & \text { // do nothing }
\end{array}\right.
$$

Probability Analysis

Backward analysis

Question: When given a solution after i halfplanes, what is the probability that the last half-plane affected the solution ?

Answer: Exactly $2 /$, because a change can occur only if the last halfplane inserted is one of the two halfplanes thru v_{i}.
(note that v_{i} depends on the i half-planes, but not on their order)
-

Complexity Analysis

$E\left(x_{i}\right)=\operatorname{Pr}\left(v_{i} \neq v_{i-1}\right) \approx \frac{2}{i}$
$O(n)+\sum_{i=1}^{n} O(i) E\left(x_{i}\right)=O(n)+O\left(\sum_{i=1}^{n} i \cdot \frac{2}{i}\right)=O(n)$
204.

Just to Make Sure ...

False Claim:

- The probabilistic analysis is for the average input. Hence there exist bad sets of constraints for which the algorithm's expected runtime is more than $\mathrm{O}(n)$, and there exist good sets of constraints for which the algorithm's expected runtime is less than $\mathrm{O}(n)$.

True Claim:

- The probabilistic analysis is valid for all inputs. The expected complexity is over all permutations of this input.

Smallest Enclosing Disk

Input: n points.
Output: Disk with minimal radius that contains all the points.

Theorem: For any finite set of points in general position, the smallest enclosing disk either has at least three points on its boundary, or two points which form a diameter. If there are three points, they subdivide the circle into three arcs of length no more than π each. Prove !

This immediately implies a $\mathrm{O}\left(n^{4}\right)$ algorithm (why ?).

Incremental O(n) Expected Time Algorithm

Construct the procedures:

- MinDisk(P) - find a smallest enclosing disk for a set of points P.
- MinDisk1 (P, q) - find an enclosing disk for a set of points P which touches point q.
- MinDisk2($\left.P, q_{1}, q_{2}\right)$ - find an enclosing disk for a set of points
P, which touches points q_{1} and q_{2}.
- Disk $\left(q_{1}, q_{2}, q_{3}\right)$ - find a disk thru points $q_{1} \cdot q_{2}$ and q_{3} (easy).

Basic Theorem

Theorem: Using an incremental algorithm, where D_{i} is the updated disk after seeing the first i points p_{1}, \ldots, p_{i} : If $p_{i} \notin D_{i-1}$ then p_{i} is on the boundary of D_{i}.

Proof:

Observation: If $r_{1}<r_{2}$ then $a<\pi$.

$$
\begin{aligned}
& \square p_{1} \notin D_{i-1} \Rightarrow r_{1}<r_{2} \Rightarrow>a<\pi \\
& p_{1} \notin \partial D_{i-1} \Rightarrow q_{1}, q_{2}, q_{3} \in D_{i-1} \\
& \quad \Rightarrow \operatorname{Arc}\left(q_{1}, q_{3}\right)>\pi . \text { Contradiction. }
\end{aligned}
$$

Incremental Algorithm

MinDisk(P)
$D_{2}=$ the minimal disk through p_{1} and p_{2}.
For each point p_{i} in random order ($3 \leq i \leq n$):
\square If $p_{i} \in D_{i-1}$ then $D_{i}=D_{i-1} \quad / /$ do nothing

- Else $D_{i}=\operatorname{MinDisk1}\left(P_{i-1}, p_{i}\right)$. // look for other two points on disk

Return D_{n}

Incremental Algorithm
MinDisk1 (P, q)
$D_{1}=$ the minimal disk through q and p_{1}.
For each point $p_{i}(2 \leq i \leq n)$:
\square If $p_{i} \in D_{i-1}$ then $D_{i}=D_{i-1} / /$ do nothing

- Else $D_{i}=\operatorname{Min} \operatorname{Disk} 2\left(P_{i-1}, q, p_{i}\right)$. // look for other one point on disk

Return D_{n}

Incremental Algorithm

$\operatorname{MinDisk2}\left(P, q_{1}, q_{2}\right)$
$D_{0}=$ the minimal disk through q_{1} and q_{2}.
For each point $p_{i}(1 \leq i \leq n)$:

- If $p_{i} \in D_{i-1}$ then $D_{i}=D_{i-1} / /$ do nothing

■ Else $D_{i}=\operatorname{Disk}\left(q_{1}, q_{2}, p_{i}\right)$. // form disk
Return D_{n}
274.

Complexity Analysis

Use backward analysis on point ordering.
Total time complexity:

$$
\sum_{i=1}^{n} O(i) \frac{3}{i}=O(n)
$$

Linear expected runtime.
Worst case: $\mathrm{O}\left(n^{3}\right)$.

