

The Simplex Algorithm

- Assume WLOG that the cost function points "downwards".
- Construct (some of) the vertices of the feasible region.
- Walk edge by edge downwards until reaching a local minimum (which is also a global minimum).
- In R^d, the number of vertices might be Θ (n^{Ld/2}).

LP History

- □ Mid 20th century: Simplex algorithm, time complexity $\Theta(n^{Ld/2})$ in the **worst** case.
- 1980's (Khachiyan) ellipsoid algorithm with time complexity poly(*n*,*d*).
- 1980's (Karmakar) interior-point algorithm with time complexity poly(n, d).
- 1984 (Megiddo) parametric search algorithm with time complexity O(C_dn) where C_d is a constant dependent only on *d*. E.g. C_d = 2^{d/2}.
- The holy grail: An algorithm with complexity independent of *d*.
- In practice the simplex algorithm is used because of its linear expected runtime.

Ð

O(n logn) 2D Linear Programming

Input:

Ð

- *n* half planes.
- Cost function that WLOG "points down".
- Algorithm:
 - 1. Partition the *n* half-planes into two groups.
 - 2. Compute, recursively, the feasible region for each group.
 - 3. Compute the intersection of the two feasible regions.
 - 4. Check the cost function on the region vertices.

Divide and Conquer – Complexity Analysis

Stage 3:

- Intersection of two convex polygons plane sweep algorithm.
- No more than four segments are ever in the SLS and no more than eight events in the EQ O(n).

Stage 4:

Ð

Find the minimal cost vertex - O(n).

 $T(n) = 2T(n/2) + O(n) \Rightarrow$ $T(n) = O(n \log n)$

O(n²) Incremental Algorithm

The idea:

- Start by intersecting two halfplanes.
- Add halfplanes one by one and update optimal vertex by solving one-dimensional LP problem on new line if needed.

Incremental Algorithm - Symbols

- h_i the *i*th half plane
- I_i the line that defines h_i
- C_i the feasible region after *i* constraints
- v_i the optimal vertex of C_i

124

*C*₃

h₃

*V*₃

 $C_1 = h_1$

 I_2

v,

- Exactly like the deterministic version, only the order of the lines is random.
- **Theorem:** The expected runtime of the random incremental algorithm (over all *n*! permutations of the input constraints) is O(*n*).

The expected runtime is: $\sum_{i=3}^{n} \left[O(1)(1 - E(x_i)) + O(i)E(x_i) \right] \le O(n) + \sum_{i=3}^{n} \left[O(i)E(x_i) \right]$ where x_i is a random variable: $x_i = \begin{cases} 1 & v_i \ne v_{i-1} & // \text{ run 1D LP} \\ 0 & v_i = v_{i-1} & // \text{ do nothing} \end{cases}$ 184

Complexity Analysis

Probability Analysis

Backward analysis

8

- **Question**: When given a solution after *i* halfplanes, what is the probability that the *last* half-plane affected the solution ?
- Answer: Exactly 2/*i*, because a change can occur only if the last halfplane inserted is one of the two halfplanes thru v_{i} . (note that v_i depends on the *i* half-planes, but not on their order)

0

Incremental O(n) Expected Time Algorithm

Construct the procedures:

- MinDisk(P) find a smallest enclosing disk for a set of points P.
- MinDisk1(P,q) find an enclosing disk for a set of points P which touches point q.
- MinDisk2(P,q₁,q₂) find an enclosing disk for a set of points P, which touches points q₁ and q₂.
- Disk (q_1, q_2, q_3) find a disk thru points q_1, q_2 and q_3 (easy).

b Characterization of the point of

