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15. 25. 

  Problem: Given a set of n points in 
Rd, preprocess them such that 
reporting or counting the k points 
inside a d-dimensional axis-parallel 
box will be most efficient. "

  Desired output-sensitive query time 
complexity – O(k+f(n)) for reporting 
and O(f(n)) for counting, where f(n)=o
(n), e.g. f(n)=logn."

  Sample application: Report all cities 
within 100 mile radius of Boston."
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35. 

  In a one-dimensional world, points are 
real numbers and the query is two 
numbers (a,b)."

  Simple O(logn) algorithm:"
"   Preprocessing: Sort points in O(nlogn)."
"   Query: (Binary) search for a and b in list  

             in O(logn).!
" "          List all values inbetween."

  Cannot be easily generalized to higher 
dimensions (why not ?)."
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45. 

 Range tree solution:"
"   Sort points."
"   Construct a binary balanced 

tree, storing the points in its 
leaves. "

"   Each tree node stores the 
largest value of its left sub-tree."
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55. 
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  Required time for finding a leaf: O(log 
n)."

  Find the two boundaries of the given 
range in the leaves u and v. "

  Report all the leaves in maximal 
subtrees between u and v."

  Mark the vertex at which the search 
paths diverge as V-split. "
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  Continue to find the two boundaries, reporting values in the 
subtrees:"
"When going left (right), report the entire right (left) subtree."

  When reaching a leaf, check it exhaustively."
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65. 

 Build a data structure storing a “small” number of 
canonical subsets, such that:"
"   The c.s. may overlap."
"   Every query may be answered as the union of a “small” 

number of c.s."
 The geometry of the space enables this."

 Two extremes:"
"   Singletons – O(k) query time, even for counting."
"   Power set – O(1) query time. O(2n) storage."



2 

75. 

1 

1 3 4 7 9 12 14 15 17 20 22 24 25 27 29 31 

4 9 14 17 22 25 29 

3 12 20 27 

7 24 

15 

2 23 

u v 

{3} 

{4,7} 

{9,12,14,15} 

{17,20} 

{22} 

V-split 

canonical subset 

canonical subsets are subtrees 

85. 

  Given a set of points in 2D."
  Bound the points by a rectangle."
  Split the points into two (almost) equal size 

groups, using a horizontal or vertical line."
  Continue recursively to partition the subsets, 

until they are small enough."
  Canonical subsets are subtrees."

95. 

  Partitions 2D space into 
axis-aligned rectangular 
regions."

  Nodes represent partition 
lines, and leaves represent 
input points."
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construction complexity: 

105. 

  Each node in the tree defines 
an axis-parallel rectangle in the 
plane, bounded by the lines 
marked by this vertexʼs 
ancestors."

  Label each node with the 
number of points in that 
rectangle. "
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115. 

  Given an axis-parallel 
range query R, search 
for this range in the tree. "

  Traverse only subtrees 
which represent regions 
intersecting R."

  If a subtree is contained 
entirely in R:"
"   Counting: Add its 

count."
"   Reporting:               

Report entire         
subtree."
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125. 

  k nodes are reported.  How much time is spent on internal nodes?  
The nodes visited are those that are stabbed by R but not 
contained in R. How many such nodes are there ?"

  Theorem:  Every side of R stabs O(√n) cells of the tree."
  Proof:  Extend the side to a full line (WLOG - horizontal): "

"   In the first level it stabs two children."
"   In the next level it stabs (only) two of the four grandchildren.                                       "
"   Thus, the recursive equation is:"

  Total query time:  O(√n + k)."
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135. 

 For a d-dimensional space:"
"   Construction time: O(d nlogn)."
"   Space Complexity: O(dn)."
"   Query time complexity: O(dn1-1/d+k)."

Question: Are kd trees useful for non-orthogonal 
range queries, e.g. disks, convex polygons ?  

Fact: Using interval trees, orthogonal range 
queries may be solved in O(logd-1n+k) time and 
O(nlogd-1n) space. 


