
1

15. 25.

  Problem: Given a set of n points in
Rd, preprocess them such that
reporting or counting the k points
inside a d-dimensional axis-parallel
box will be most efficient. "

  Desired output-sensitive query time
complexity – O(k+f(n)) for reporting
and O(f(n)) for counting, where f(n)=o
(n), e.g. f(n)=logn."

  Sample application: Report all cities
within 100 mile radius of Boston."

X

Y

35.

  In a one-dimensional world, points are
real numbers and the query is two
numbers (a,b)."

  Simple O(logn) algorithm:"
"   Preprocessing: Sort points in O(nlogn)."
"   Query: (Binary) search for a and b in list  

 in O(logn).!
" " List all values inbetween."

  Cannot be easily generalized to higher
dimensions (why not ?)."

a b

45.

 Range tree solution:"
"   Sort points."
"   Construct a binary balanced

tree, storing the points in its
leaves. "

"   Each tree node stores the
largest value of its left sub-tree."

-4 -2 0 1 3 5 7 11

1

-2 5

7 3 0 4-

0 1 3 5 7 11 -2 -4

55.

5

  Required time for finding a leaf: O(log
n)."

  Find the two boundaries of the given
range in the leaves u and v. "

  Report all the leaves in maximal
subtrees between u and v."

  Mark the vertex at which the search
paths diverge as V-split. "

1

-2 5

7 3 0 -4

0 1 3 5 7 11 -2 -4

Input Range: 3.5-8.2

1

11 7

V-split

  Continue to find the two boundaries, reporting values in the
subtrees:"
"When going left (right), report the entire right (left) subtree."

  When reaching a leaf, check it exhaustively."

5

3 7

65.

 Build a data structure storing a “small” number of
canonical subsets, such that:"
"   The c.s. may overlap."
"   Every query may be answered as the union of a “small”

number of c.s."
 The geometry of the space enables this."

 Two extremes:"
"   Singletons – O(k) query time, even for counting."
"   Power set – O(1) query time. O(2n) storage."

2

75.

1

1 3 4 7 9 12 14 15 17 20 22 24 25 27 29 31

4 9 14 17 22 25 29

3 12 20 27

7 24

15

2 23

u v

{3}

{4,7}

{9,12,14,15}

{17,20}

{22}

V-split

canonical subset

canonical subsets are subtrees

85.

  Given a set of points in 2D."
  Bound the points by a rectangle."
  Split the points into two (almost) equal size

groups, using a horizontal or vertical line."
  Continue recursively to partition the subsets,

until they are small enough."
  Canonical subsets are subtrees."

95.

  Partitions 2D space into
axis-aligned rectangular
regions."

  Nodes represent partition
lines, and leaves represent
input points."

L1

L2 L3

L7 L6 L5 L4

C D E F G H B A

L1

L3 L2

L4

L5

L6

L7

B
A

C
D

E
F

G H

construction complexity:

105.

  Each node in the tree defines
an axis-parallel rectangle in the
plane, bounded by the lines
marked by this vertexʼs
ancestors."

  Label each node with the
number of points in that 
rectangle. "

L1

L2 L3

L7 L6 L5 L4

C D E F G H B A

L5

L1

L3 L2

L4
L6

L7

B
A

C

D

E
F

G
H

8

4 4

2 2 2 2

115.

  Given an axis-parallel
range query R, search
for this range in the tree. "

  Traverse only subtrees
which represent regions
intersecting R."

  If a subtree is contained
entirely in R:"
"   Counting: Add its

count."
"   Reporting:

Report entire
subtree."

L1

L2 L3

L7 L6 L5 L4

C D E F G

H

B A

L5

L1

L3 L2

L4
L6

L7

B
A

C

D

E
F

G H
L1

L2

L4

A B

L5

C

R

I
L8

L8

I

9

4 5

2 2 2 3

2

125.

  k nodes are reported. How much time is spent on internal nodes?
The nodes visited are those that are stabbed by R but not
contained in R. How many such nodes are there ?"

  Theorem: Every side of R stabs O(√n) cells of the tree."
  Proof: Extend the side to a full line (WLOG - horizontal): "

"   In the first level it stabs two children."
"   In the next level it stabs (only) two of the four grandchildren. "
"   Thus, the recursive equation is:"

  Total query time: O(√n + k)."

3

135.

 For a d-dimensional space:"
"   Construction time: O(d nlogn)."
"   Space Complexity: O(dn)."
"   Query time complexity: O(dn1-1/d+k)."

Question: Are kd trees useful for non-orthogonal
range queries, e.g. disks, convex polygons ?

Fact: Using interval trees, orthogonal range
queries may be solved in O(logd-1n+k) time and
O(nlogd-1n) space.

