

## Orthogonal Range Searching

- Problem: <u>Given</u> a set of *n* points in R<sup>d</sup>, <u>preprocess</u> them such that <u>reporting</u> or <u>counting</u> the *k* points inside a *d*-dimensional axis-parallel box will be most efficient.
- Desired output-sensitive query time complexity – O(k+f(n)) for reporting and O(f(n)) for counting, where f(n)=o(n), e.g. f(n)=logn.
- Sample application: Report all cities within 100 mile radius of Boston.













#### 2D-Trees Given a set of points in 2D. Bound the points by a rectangle. □ Split the points into two (almost) equal size groups, using a horizontal or vertical line. Continue recursively to partition the subsets, until they are small enough. Canonical subsets are subtrees. C • ۲ • •• ۲ • • • • • • •







# **Runtime Complexity**

- How much time is spent on internal nodes? The nodes visited are those that are stabbed by R but not contained in R. How many such nodes are there?
- **Theorem**: Every side of *R* stabs  $O(\sqrt{n})$  cells of the tree.
- Proof: Extend the side to a full line (WLOG horizontal):
- In the first level it stabs two children.
  In the next level it stabs (only) two of the four grandchildren.
  Thus, the recursive equation is:

$$Q(n) = \begin{cases} 1 & n = 1\\ 2 + 2Q\left(\frac{n}{4}\right) & otherwise \end{cases}$$

- **D** Total query time for reporting:  $O(\sqrt{n} + k)$ . =  $O(\sqrt{n})$
- **Total query time for counting O**( $\sqrt{n}$ ).
- Total query time for emptiness ????

# Kd-Trees – Higher Dimensions

■ For a *d*-dimensional space:

- Construction time: O(d n log n).
- Space Complexity: O(dn).
- Query time complexity: O(*dn*<sup>1-1/d</sup>+*k*).

#### Question: Are kd trees useful for non-orthogonal range queries, e.g. disks, convex polygons

Fact: Using interval trees and segment trees, orthogonal range queries may be solved in  $O(\log^{d-1}n+k)$  time and  $O(n \log^{d-1}n)$  space.

## Segment Trees

Segment trees are structures for storing sets S of n segments, which support the following operations:

- insertion of a segment
- deletion of segment
- stabbing queries:

For a given point p, report all segments of S that contain p (that are stabbed by A)

In their 2D version, (2 levels trees) answer queries of the form: Preprocess a set S of axis-parallel rectangles, so that for every query point we can report all rectangle containing it in  $O(\log^2 n + k)$  time, where k is the output size.





A segment *s* is in  $S_a$  iff  $\underline{u}$  is the first node from the root, such that s contains  $I_a$ .

that is, s contains  $I_u$  but s does not contain  $I_{parent(u)}$ 





Construction of a segment tree with n intervals is possible in time





### Query set of rectangles (cont)

Given a set *S* of *n* rectangle in 2D, all intersecting a vertical line *l*, preprocess *S* so that given a query point q on *l*, we can find all rectangle of *S* containing q in O(log n+k),





Perform a query with q in this tree.

#### Query set of rectangles (cont)

Given a set *S* of *n* rectangle in 2D, all crossing a vertical strip *l* from left to right (their x-projection contains the x-projection of *l*), preprocess *S* so that given a query point *q* inside *l*, we can find all rectangle of *S* containing *q* in  $O(\log n+k)$ ,



Answer: Build a 1D segment tree on the intersection of each rectangle with *l* 

Perform a query with q in this tree.

### Applications for 2D

Given a set *S* of n axis-para rectangles in 2D, preprocess *S* so that given a query point, we can find all points of S inside R in  $O(\log n+k)$ , where *k* is the output size



Build a 1D segment tree T on the projections of each rectangle on the x-axis.

Each node u in T corresponds to an interval  $I_u$  on the x-axis, and to a set  $S_u$  of rectangles whose x-projection contains  $I_u$ 

Build a tree  $T_u$  on the y-projections of the rectangles in  $S_u$ 

To answer a query  $q=(x_0, y_0)$ , find a set of  $O(\log n)$  nodes of T whose interval  $I_a$ , contains  $x_0$ . Query each tree  $T_u$  with  $y_0$ .

### 2D Segment tree -Analysis

Space – the size of T is O(n log n) Each tree  $T_u$  has size O( $|S_u| \log |S_u|$ ) = O( $|S_u| \log n$ )

Total space O(n log<sup>2</sup> n )

Query time: We perform a search in T, giving O( log n) nodes, and perform a search in each such node u, (in O( log  $|S_u|) = O(\log n)$ )

Total O(log<sup>2</sup> n)

Construction –  $O(n \log^2 n)$ 

#### Range space for points sets

Given a set S of n points in 2D, preprocess S so that given a query vertical strip R, we can find all points of S inside R in  $O(\log n+k)$ , where k is the output size



Since we care only about the x-axis of the coordinate, we construct a range tree on their x-coordinates. Once the query strip is given, express the answer as a union of  $O(\log n)$  subtrees. (that is, canonical sets).

The range of reported canonical subset is fully contained inside X(R) the X-projection of R

### Applications for 2D

Given a set *S* of *n* points in 2D, preprocess *S* so that given a query axis-parallel rectangle *R*, we can find all points of *S* inside *R* in  $O(\log^2 n+k)$ , where *k* is the output size

т

First project the points on the *x*-axis, and built a range tree *T*.

Each node of T also points to a range tree of the points in these subset, sorted by their Y-coordinate.

### Back to 1D – interval trees

Given a set *S* of *n* segments in 1D, preprocess *S* so that given a query point *q*, we can find all segments of *S* containing *q* in  $O(\log n+k)$ , where *k* is the output size.

Note – segment tree answers this query, but needs  $\theta(\ n \ log \ n)$ space

We use interval trees: The root is associated with the set  $S_{root(T)}$  of all segments of S containing the point m, where m is the median of the endpoints of all segments of S. Also store lists  $L_{root(T)}$  and  $R_{root(T)}$  of all endpoints sorted.

The left (resp. right) subtree is constructed recursively of all segment completely to the left (right) of m.