
1

15.

Computational GeometryComputational Geometry

Chapter 5Chapter 5

Range SearchingRange Searching

Orthogonal Range SearchingOrthogonal Range Searching

� Problem: Given a set of n points in
Rd, preprocess them such that
reporting or counting the k points
inside a d-dimensional axis-parallel
box will be most efficient.

� Desired output-sensitive query time
complexity – O(k+f(n)) for reporting
and O(f(n)) for counting, where
f(n)=o(n), e.g. f(n)=logn.

� Sample application: Report all cities
within 100 mile radius of Boston.

X

Y

Range Searching Range Searching –– 1D1D

� In a one-dimensional world, points are
real numbers and the query is two
numbers (a,b).

� Simple O(logn) algorithm:
Preprocessing: Sort points in O(nlogn).
Query: (Binary) search for a and b in list

in O(logn).
List all values in-between.

� Cannot be easily generalized to higher
dimensions (why not ?).

a b

Range Searching Range Searching –– 1D Tree1D Tree

� Range tree solution:
Sort points.
Construct a binary balanced
tree, storing the points in its
leaves.
Each tree node stores the
largest value of its left sub-tree.

� (keys are stored only in leaves.
Internal nodes stores separators –
for navigating search in the tree)

-4 -2 0 1 3 5 7 11

1

-2 5

7304-

0 1 3 5 7 11-2-4

5

Range Searching in 1D TreeRange Searching in 1D Tree

� Required time for finding a leaf: O(log n).
� Find the two boundaries of the given

range in the leaves u and v.
� Report all the leaves in maximal

subtrees between u and v.

� Mark the vertex at which the search
paths diverge as V-split.

1

-2 5

730-4

0 1 3 5 7 11-2-4

Input Range: 3.5-8.2

1

117

V-split

� Continue to find the two boundaries, reporting values in the
subtrees:
When going left (right), report the entire right (left) subtree.

� When reaching a leaf, check it exhaustively.

5

3 7

General IdeaGeneral Idea

� Build a data structure storing a “small” number of
canonical subsets, such that:

The c.s. (canonical subset) may overlap.
Every query may be answered as the union of a “small”
number of c.s.

� The geometry of the space enables this.

2

ExampleExample

1

1 3 4 7 9 12 14 15 17 20 22 24 25 27 29 31

4 9 14 17 22 25 29

3 12 20 27

7 24

15

2 23

u v

{3}

{4,7}

{9,12,14,15}

{17,20}

{22}

V-split

canonical subset

canonical subsets are subtrees

2D2D--TreesTrees

� Given a set of points in 2D.
� Bound the points by a rectangle.
� Split the points into two (almost) equal size

groups, using a horizontal or vertical line.
� Continue recursively to partition the subsets,

until they are small enough.
� Canonical subsets are subtrees.

2D2D--TreeTree

� Partitions 2D space into
axis-aligned rectangular
regions.

� Nodes represent partition
lines, and leaves represent
input points.

L1

L2 L3

L7L6L5L4

C D E F G HBA

L1

L3L2

L4

L5

L6

L7

B
A

C

D

E
F

G H

(1) 1

()
() 2 1

2

() (log)

O n

T n n
O n T n

T n O n n

=
= + >

=

construction complexity:

Range Counting/ReportingRange Counting/Reporting

� Each node in the tree defines
an axis-parallel rectangle in the
plane, bounded by the lines
marked by this vertex’s
ancestors.

� Label each node with the
number of points in that
rectangle.

L1

L2 L3

L7L6L5L4

C D E F G HBA

L5

L1

L3
L2

L4
L6

L7

B
A

C

D

E
F

G
H

8

4 4

22 2 2

Range Counting/ReportingRange Counting/Reporting

� Given an axis-parallel
range query R, search
for this range in the tree.

� Traverse only subtrees
which represent regions
intersecting R.

� If a subtree is contained
entirely in R:

Counting:
Add its count.

Reporting:
Report entire subtree.

L1

L2 L3

L7L6L5L4

C D E F G

H

BA

L5

L1

L3
L2

L4
L6

L7

B
A

C

D

E

F

G H
L1

L2

L4

A B

L5

C

R

I
L8

L8

I

9

4 5

2 2 2 3

2

Runtime ComplexityRuntime Complexity

� How much time is spent on internal nodes? The nodes visited are those
that are stabbed by R but not contained in R. How many such nodes are
there ?

� Theorem: Every side of R stabs O(√n) cells of the tree.
� Proof: Extend the side to a full line (WLOG - horizontal):

In the first level it stabs two children.
In the next level it stabs (only) two of the four grandchildren.

Thus, the recursive equation is:

� Total query time for reporting: O(√n + k).
� Total query time for counting O(√n).
� Total query time for emptiness ????

()

1 1

()
2 2

4

n

Q n n
Q otherwise

O n

=
= +

=

3

KdKd--Trees Trees –– Higher DimensionsHigher Dimensions

� For a d-dimensional space:
Construction time: O(d n log n).
Space Complexity: O(dn).
Query time complexity: O(dn1-1/d+k).

Question: Are kd trees useful for non-orthogonal
range queries, e.g. disks, convex polygons ?

Fact: Using interval trees and segment trees,
orthogonal range queries may be solved in
O(logd-1n+k) time and O(n logd-1n) space.

Segment TreesSegment Trees

Segment trees are structures for storing sets S of n
segments, which support the following operations:

- insertion of a segment

- deletion of segment

- stabbing queries:
For a given point p, report all segments
of S that contain p (that are stabbed by A)

In their 2D version, (2 levels trees) answer queries of the
form: Preprocess a set S of axis-parallel rectangles, so that
for every query point we can report all rectangle containing it
in O(log2 n +k) time, where k is the output size.

Segment tree definitionSegment tree definition

The minimal intervals (separating between segments endpoints)
determine elementary intervals.

Construct hierarchy of the intervals: A binary tree of the minimal
intervals (sorted), where each internal node u corresponds to an
interval Iu, which is the union of minimal intervals of its decedent
leaves. It also stores a set Su of S of segments.

A segment s is in Su iff u is the first node from the root, such that s
contains Iu.

that is, s contains Iu but s does not contain Iparent(u)

A
B C D

E F

Minimal
intervals

intervals

Input
segments

Algorithm for answering stabbing queriesAlgorithm for answering stabbing queries
A

B C D
E F

procedure report (u: node ; x: point):
report all segments of Su ;
if u is leafthenfinish else
{ if (u has left childv and x ∈ Iv)

thenreport(v, x);
if (u has left childw and x ∈ Iw)

thenreport(w, x); } //no need to visit both children

Using the segment tree all segment that contain a query point
can be reported in time O(log n + k), where k is the number of
reported segments.

(a bit overkilling – can be done using an interval tree)

- The output can be expressed as O(log n) canonical sets.

Size of a Segment TreeSize of a Segment Tree

I

In each level of the tree, a segment s can be stored at at most two
nodes.

Each segment of I appears in at the most O(log n) nodes.

Construction of a segment tree with n intervals is possible in
time O(n log n).

Applications for 2D Applications for 2D –– Query set of Query set of

rectangles rectangles
Given a set S of n axis-para rectangles in 2D, preprocess S so
that given a query point, we can find all points of S inside R in
O(log n+k), where k is the output size

4

Query set of rectangles (cont) Query set of rectangles (cont)

Given a set S of n rectangle in 2D, all intersecting a vertical line l,
preprocessS so that given a query point q on l, we can find all
rectangle of S containing q in O(log n+k),

l

Answer:
Build a 1D segment tree on the intersection of
each rectangle with l

Perform a query with q in this tree.

q

Query set of rectangles (cont)Query set of rectangles (cont)

Given a set S of n rectangle in 2D, all crossing a vertical strip l
from left to right (their x-projection contains the x-projection ofl),
preprocessS so that given a query point q inside l, we can find
all rectangle of S containing q in O(log n+k),

l

Answer:
Build a 1D segment tree on the intersection of
each rectangle with l

Perform a query with q in this tree.

q

Applications for 2D Applications for 2D

Given a set S of n axis-para rectangles in 2D, preprocess S so
that given a query point, we can find all points of S inside R in
O(log n+k), where k is the output size

Answer:
Build a 1D segment tree T on the projections of each
rectangle on the x-axis.

Each node u in T corresponds to an interval Iu on the x-axis,
and to a set Su of rectangles whose x-projection contains Iu

Build a tree Tu on the y-projections of the rectangles in Su

To answer a query q=(x0,y0) , find a set of O(log n) nodes of
T whose interval Iu, contains x0.
Query each tree Tu with y0.

2D Segment tree 2D Segment tree --Analysis Analysis

Space – the size of T is O(n log n)
Each tree Tu has size O(|Su| log |Su|) = O(|Su| log n)

Total space O(n log2 n)

Query time: We perform a search in T, giving O(log n) nodes,
and perform a search in each such node u,

(in O(log |Su|)= O(log n))

Total O(log2 n)

Construction – O(n log2 n)

Range space for points sets Range space for points sets

Given a set S of n points in 2D, preprocess S so that given a
query vertical strip R, we can find all points of S inside R in
O(log n+k), where k is the output size

Since we care only about the x-axis of the
coordinate, we construct a range tree on
their x-coordinates. Once the query strip is
given, express the answer as a union of
O(log n) subtrees. (that is, canonical sets).

The range of reported canonical subset is
fully contained inside X(R) the X-projection
of R

Applications for 2DApplications for 2D

Given a set S of n points in 2D, preprocess S so that given a
query axis-parallel rectangle R, we can find all points of S inside
R in O(log2 n+k), where k is the output size

First project the points on the x-axis, and
built a range tree T.

Each node of T also points to a range tree of
the points in these subset, sorted by their Y-
coordinate.

T

5

Back to 1D Back to 1D –– interval trees interval trees

Given a set S of n segments in 1D, preprocess S so that given a
query point q, we can find all segments of S containing q in
O(log n+k), where k is the output size.

Note – segment tree answers this query, but needs θ(n log n)
space

interval trees: We use
The root is associated with the set Sroot(T) of all segments of S
containing the point m, where m is the median of the endpoints of all
segments of S.
Also store lists Lroot(T) and Rroot(T) of all endpoints sorted.

The left (resp. right) subtree is constructed recursively of all segment
completely to the left (right) of m.

