
1

16. 26.

 Preprocess a planar map S.
Given a query point p, report
the face of S containing p.!

 Goal: O(n)-size data structure
that enables O(log n) query time."

 Application: Which state is Boston
located in?"

 Trivial Solution: O(n) query time, where
n is the complexity of the map. Why? "

S

p

A

D

E

G

F

C

B

36.

 Draw vertical lines through all
the vertices of the subdivision."

 Store the x-coordinates of the
vertices in an ordered binary
tree."

 Within each slab, sort the
segments separately along y."

 Query time: O(log n)."
 Problem: Too delicate

subdivision, of size Θ(n2) in the
worst case."
"(Give such an example!)"

46.

  Construct a bounding box."
  Assume general position: unique x

coordinates."

  Extend upward and downward the vertical
line from each vertex until it touches another
segment."

  This works also for
noncrossing line
segments."

56.

 Contains triangles
and trapezoids."

 Each trapezoid or triangle is determined:"
"   By two vertices that define vertical sides; and"
"   By two segments that define nonvertical sides."

 A refinement of the original map."
66.

"Every trapezoid (triangle) Δ is defined by"
  Left(Δ): "The left segment of Δ "

"   (actually it is enough (will see later why) only an endpoint
intersecting by the segment. "

"   It is either right endpoint or a left endpoint;"
  Right(Δ): "a segment endpoint (right or left);"
  Top(Δ): "a segment;"
  Bottom(Δ): "a segment."

2

76. 86.

  Possibly by DCEL."

An alternative:"
For each trapezoid store:"
  The vertices that define its right and

left sides;"
  The top and bottom segments;"
  The (up to two) neighboring

trapezoids on right and left;"
  (Optional) The neighboring

trapezoids from above and below.
This number might be linear in n, so
only the leftmost of these trapezoids
is stored."

96.

Q1

P1 Q2

P3

S3

B

C

S1

P2

A

S3 S2

D E F G D H

Q3

S2 S3

J K

106.

Q1

P1 Q2

P3

S3

B

C

S1

P2

A

S3 S2

D E F G D H

Q3

S2 S3

J K

B
A

C

D

E

F

H

G

J
K

P1
P2

P3

Q1

Q2

Q3

S1

S3

S2

116.

Given a query point q how can we find the trapezoid containing q ? !

Assume a search-structure node s is given ""
"(initially the root of the DAG)"

Search(q, s): "
  /* Query point q, search-structure node s. */!
  If s is a segment-endpoint then"

"   q is to the right of s: go right;"
"   q is to the left of s: go left;"
"   /*No use of the y-coordinates of s */ !
"   Else: "

  If s is a segment:"
"   q is below s: go right;"
"   q is above s: go left;"

126.

Q1

P1 Q2

P3

S3

B

C

S1

P2

A

S3 S2

D E F G D H

Q3

S2 S3

J K

B
A

C

D

E

F

H

G

J
K

P1
P2

P3

Q1

Q2

Q3

S1

S3

S2

3

136.

  Find a Bounding Box."
  Randomly permute the segments."
  Insert the segments one by one

into the map. "
  Update the map and search

structure in each insertion. "
  The map is independent of the

order of insertion and its size is Θ
(n). "

  The DAG and its size depends on
the order of insertion."

146.

  Find in the existing structure the
face that contains the left endpoint of
the new segment. "

  Find all other trapezoids intersected
by this segment by moving to the
right. "

  Update the map Mi and the
DAG Di."

156.

The segment is contained entirely
in one trapezoid."

  In Mi: Split the trapezoid into
four trapezoids."

  In Di: The leaf is replaced by a
subtree."

 O(1) time." Pi

A

Qi

B C

Si

D

A

B

C

D

T

M

Qi

Pi

166.

The ith segment intersects
ki>1 trapezoids."

 Split trapezoids. "
 Merge trapezoids that

can be united."
 O(ki) time."

176.

 Each inner
trapezoid in Di
is replaced by:"

 Each outer
trapezoid in Di
is replaced by:"

Si

A B

Qi

A

Si

B C

A
B Si

186.

Si Si

C

Si

E B D F

K

A

B

C

D

E

F K
G

H

Si

H A G

L

 Leaves are eliminated and
replaced by one common leaf."

 O(ki) time."

L

4

196.

 Each segment adds trees of depth
at most 3, so the depth of Di is ≤ 3i."

 Query time (depth of Di): O
(i), Θ(i) in the worst case."

 The ith segment – si - may intersect
with ki = O(i) trapezoids !"

 The size of D and its construction
time is in the worst case:"

206.

 One segment may affect 
many trapezoids"

 One trapezoid may affect 
at most four segments" Δ

216.

Compute the expected depth of D:"
 q: A point, to be searched for in D.!
 pi: The probability that a new node was created in

the path leading to q in the ith iteration.	

Compute pi by backward analysis:"
 Δq(Mi-1): The trapezoid containing q in Mi-1."
 Since a new node was created, Δq(Mi) ≠ Δq(Mi-1)."
 Delete si from Mi."
"Prob[Δq(Mi) ≠ Δq(Mi-1)] ≤ 4/i. !

226.

Compute the expected depth of D:"
 q: A point, to be searched for in D.!
 pi: The probability that a new node was created in

the path leading to q in the ith iteration.	

Compute pi by backward analysis:"
 Δq(Mi-1): The trapezoid containing q in Mi-1."
 Since a new node was created, Δq(Mi) ≠ Δq(Mi-1)."
 Delete si from Mi."
"Prob[Δq(Mi) ≠ Δq(Mi-1)] ≤ 4/i. !

236.

 xi: The number of nodes created in the ith
iteration in the path leading to the leaf q."

 The expected length of the path leading to q:"
q

246.

 The expected size is O(n)!
 The expected query time is O(log n)!

 (The proof from this point are not required, but
we will handwave a bit)!

5

256.

 Define an indicator"

 ki: Number of leaves created in the ith iteration."
 Si: The set of the first i segments."
 Average on s:"

Δ

266.

276.

Finding
the first

trapezoid

The rest of
the work in
the ith step

