

Each trapezoid or triangle is determined:

- By two vertices that define vertical sides; and
- By two segments that define nonvertical sides.

A refinement of the original map.

Given a query point q how can we find the trapezoid containing q ?
Assume a search-structure node s is given
(initially the root of the DAG)
Search (q, s) :
/* Query point q, search-structure node s. */
If s is a segment-endpoint then
$\square q$ is to the right of s : go right;

- q is to the left of s : go left;
- /*No use of the y-coordinates of s */
- Else:

If s is a segment:

- q is below s : go right;
- q is above s : go left;

116.

Compute the expected depth of D :
q : A point, to be searched for in D.
p_{i} : The probability that a new node was created in the path leading to q in the $f^{\text {th }}$ iteration.

Compute p_{i} by backward analysis:
$\Delta_{q}\left(M_{i-1}\right)$: The trapezoid containing q in M_{i-1}.
Since a new node was created, $\Delta_{q}\left(M_{i}\right) \neq \Delta_{q}\left(M_{i-1}\right)$.
Delete s_{i} from M_{i}.
$\operatorname{Prob}\left[\Delta_{q}\left(M_{i}\right) \neq \Delta_{q}\left(M_{i-1}\right)\right] \leq 4 / i$.

Average-Case Analysis

Compute the expected depth of D :
q : A point, to be searched for in D.
p_{i} : The probability that a new node was created in the path leading to q in the $i^{\text {ih }}$ iteration.

Compute p_{i} by backward analysis:
$\Delta_{q}\left(M_{i-1}\right)$: The trapezoid containing q in M_{i-1}.
Since a new node was created, $\Delta_{q}\left(M_{i}\right) \neq \Delta_{q}\left(M_{i-1}\right)$.
Delete s_{i} from M_{i}.
$\operatorname{Prob}\left[\Delta_{q}\left(M_{i}\right) \neq \Delta_{q}\left(M_{i-1}\right)\right] \leq 4 / i$.

The expected length of the path leading to q :
$\mathrm{E}\left[\sum_{i=1}^{n} x_{i}\right]=\sum_{i=1}^{n} \mathrm{E}\left[x_{i}\right] \leq \sum_{i=1}^{n}\left(3 p_{i}\right) \leq \sum_{i=1}^{n} \frac{12}{i}=\mathrm{O}(\log n)$.

