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16. 26. 

 Preprocess a planar map S.              
Given a query point p, report                 
the face of S containing p.!

 Goal: O(n)-size data structure              
that enables O(log n) query time."

 Application: Which state is Boston 
located in?"

 Trivial Solution:  O(n) query time, where 
n is the complexity of the map.  Why? "
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36. 

 Draw vertical lines through all 
the vertices of the subdivision."

 Store the x-coordinates of the 
vertices in an ordered binary 
tree."

 Within each slab, sort the 
segments separately along y."

 Query time:  O(log n)."
 Problem:  Too delicate 

subdivision, of size Θ(n2) in the 
worst case."
"(Give such an example!)"

46. 

  Construct a bounding box."
  Assume general position:  unique x 

coordinates."

  Extend upward and downward the vertical 
line from each vertex until it touches another 
segment."

  This works also for                                                           
noncrossing line                                                                  
segments."

56. 

 Contains triangles                                              
and trapezoids."

 Each trapezoid or triangle is determined:"
"   By two vertices that define vertical sides; and"
"   By two segments that define nonvertical sides."

 A refinement of the original map."
66. 

"Every trapezoid (triangle) Δ is defined by"
  Left(Δ): "The left segment of Δ "

"   (actually it is enough (will see later why) only an endpoint 
intersecting by the segment.  "

"   It is either right  endpoint or a left endpoint;"
  Right(Δ): "a segment endpoint (right or left);"
  Top(Δ): "a segment;"
  Bottom(Δ): "a segment."
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76. 86. 

  Possibly by DCEL."

An alternative:"
For each trapezoid store:"
  The vertices that define its right and 

left sides;"
  The top and bottom segments;"
  The (up to two) neighboring 

trapezoids on right and left;"
  (Optional)  The neighboring 

trapezoids from above and below.  
This number might be linear in n, so 
only the leftmost of these trapezoids 
is stored."
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106. 
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116. 

Given a query point q how can we find the trapezoid containing q ? !

Assume a search-structure node s is given ""
"(initially the root of the DAG)"

Search(q, s):  "
  /* Query point q, search-structure node s. */!
  If s is a segment-endpoint then"

"   q is to the right of s:  go right;"
"   q is to the left of s:  go left;"
"   /*No use of the y-coordinates of s  */ !
"   Else: "

  If s is a segment:"
"   q is below s:  go right;"
"   q is above s:  go left;"

126. 
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136. 

  Find a Bounding Box."
  Randomly permute the segments."
  Insert the segments one by one 

into the map. "
  Update the map and search 

structure in each insertion. "
  The map is independent of the 

order of insertion and its size is Θ
(n). "

  The DAG and its size depends on 
the order of insertion."

146. 

  Find in the existing structure the 
face that contains the left endpoint of 
the new segment.  "

  Find all other trapezoids intersected 
by this segment by moving to the 
right. "

  Update the map Mi and the            
DAG Di."

156. 

The segment is contained entirely 
in one trapezoid."

  In Mi:  Split the trapezoid into 
four trapezoids."

  In Di:  The leaf is replaced by a 
subtree."

 O(1) time." Pi 
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166. 

The ith segment intersects 
ki>1 trapezoids."

 Split trapezoids. "
 Merge trapezoids that 

can be united."
 O(ki) time."

176. 

 Each inner 
trapezoid in Di 
is replaced by:"

 Each outer 
trapezoid in Di 
is replaced by:"
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186. 
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 Leaves are eliminated and 
replaced by one common leaf."

 O(ki) time."

L 
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196. 

 Each segment adds trees of depth 
at most 3, so the depth of Di is ≤ 3i."

 Query time (depth of Di):           O
(i),  Θ(i) in the worst case."

 The ith segment – si - may intersect 
with ki = O(i) trapezoids !"

 The size of D and its construction 
time is in the worst case:"

206. 

 One segment may affect 
many trapezoids"

 One trapezoid may affect 
at most four segments" Δ 

216. 

Compute the expected depth of D:"
 q:  A point, to be searched for in D.!
 pi:  The probability that a new node was created in 

the path leading to q in the ith iteration.	

Compute pi by backward analysis:"
 Δq(Mi-1):  The trapezoid containing q in Mi-1."
 Since a new node was created, Δq(Mi) ≠ Δq(Mi-1)."
 Delete si from Mi."
"Prob[Δq(Mi) ≠ Δq(Mi-1)] ≤ 4/i.  !

226. 

Compute the expected depth of D:"
 q:  A point, to be searched for in D.!
 pi:  The probability that a new node was created in 

the path leading to q in the ith iteration.	

Compute pi by backward analysis:"
 Δq(Mi-1):  The trapezoid containing q in Mi-1."
 Since a new node was created, Δq(Mi) ≠ Δq(Mi-1)."
 Delete si from Mi."
"Prob[Δq(Mi) ≠ Δq(Mi-1)] ≤ 4/i.  !

236. 

 xi:  The number of nodes created in the ith 
iteration in the path leading to the leaf q."

 The expected length of the path leading to q:"
q 

246. 

 The expected size is O(n)!
 The expected query time is O( log n )!

 (The proof from this point are not required, but 
we will handwave a bit )!
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256. 

 Define an indicator"

 ki:  Number of leaves created in the ith iteration."
 Si:  The set of the first i segments."
 Average on s:"

Δ 

266. 

276. 

Finding 
the first 

trapezoid 

The rest of 
the work in 
the ith step 


