

 $\Box \Delta_{q}(M_{i+1})$: The trapezoid containing *q* in M_{i+1} .

- □ Since a new node was created, $\Delta_a(M_i) \neq \Delta_a(M_{i+1})$.

 \Box Delete s_i from M_i .

 $\mathsf{Prob}[\Delta_o(M_i) \neq \Delta_o(M_{i+1})] \le 4/i.$

Average-Case Analysis Compute the expected depth of D: *q*: A point, to be searched for in *D*. \square p_i : The probability that a new node was created in the path leading to q in the i^{th} iteration. Compute p_i by backward analysis: $\Box \Delta_{q}(M_{i,1})$: The trapezoid containing *q* in $M_{i,1}$. Since a new node was created, $\Delta_a(M_i) \neq \Delta_a(M_{i+1})$. \Box Delete s_i from M_i . $\mathsf{Prob}[\Delta_a(M_i) \neq \Delta_a(M_{i+1})] \le 4/i.$

