Compuitilional Geometiry

Chapter 7

Voronoi Díagrams

Voronoi Díagram

- Input: A set of points locations (sites) in the plane.
- Output: A planar subdivision into cells. Each cell contains all the points for which a certain site is the closest.

Application: Nearest-neighbor queries (by point location in the diagram).

The bisector between two points is a line.

Voronoi Diagram

Assume no four sites are co-circular.
The Voronoi diagram is a planar graph, whose vertices are equidistant from three sites, and edges equidistant from two sites.

The convex hull of the sites are those who have an unbounded cell. Prove !

Consiruct a bisector between one site and all others.
A Voronoi cell is the intersection of all half-planes defined by the bisectors.

Time complexity: $O(n \log n)$ for each cell.

Corollary: Each cell in a Voronoi
diagram is a convex polygon, possibly unbounded.

Voronoi Diagram

A Voronoi diagram of n distinct sites contains n cells.
\square One cell can have complexity $n-1$, but not all the cells can.

- The number of vertices $V \leq 2 n-5$

The number of edges $E \leq 3 n-6$

- The number of faces $F=n$

Voronoi Diagram Properties
A vertex of a Voronoi diagram is the center of a circle passing through three sites.
\square Each point on an edge is the center of a circle passing through two sites.

