Computational Geometry

Chapter 8
Delaunay Triangulation 18. 18.

A triangulation of set of points in the plane is a partition of the convex hull to triangles whose vertices are the points, and are empty of other points.
There are an exponential number of triangulations of a point set.

Motivation

Assume a height value is associated with each point.
A triangulation of the points defines a piecewiselinear surface of triangular patches.

Piecewise Linear Interpolation

The height of a point P inside a triangle is determined by the height of the triangle vertices, and the location of P.
The result depends on the triangulation.

Barycentric Coordinates

Any point inside a triangle can be expressed uniquely as a convex combination of the triangle vertices:

$$
\begin{aligned}
& p=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3} \\
& \alpha_{i}=\frac{A_{i}}{A_{1}+A_{2}+A_{3}} \\
& \alpha_{i} \geq 0, \alpha_{1}+\alpha_{2}+\alpha_{3}=1
\end{aligned}
$$

58

Piecewise Linear Interpolation
$x_{P}=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}$
$y_{P}=\alpha_{1} y_{1}+\alpha_{2} y_{2}+\alpha_{3} y_{3}$
\downarrow
$z_{p}=\alpha_{1} z_{1}+\alpha_{2} z_{2}+\alpha_{3} z_{3}$

68.

An $O\left(n^{3}\right)$ Triangulation Algorithm

Repeat until impossible:

- Select two sites.
- If the edge connecting them does not intersect previous edges, keep it.
 78.

An O(nlogn) Triangulation Algorithm

Construct the convex hull, and connect one arbitrary vertex to all others.
Insert the other sites one after the other.
Two possibilities:

- Inside a triangle (one triangle becomes three).

- On an edge (two triangles become four)

88.

The Number of Triangles

The number of triangles in a triangulation of n points depends on the number of vertices h on the convex hull.

98.

"Quality" Triangulations

Let $\alpha(T)=\left(\alpha_{1}, \alpha_{2}, . ., \alpha_{3 t}\right)$ be the vector of angles in the triangulation T in increasing order.
A triangulation T_{1} will be "better" than T_{2} if $\alpha\left(T_{1}\right)>\alpha$
(T_{2}) lexicographically.
The Delaunay triangulation is the "best".

108.

Thales' Theorem

Let C be a circle, and $/$ a line intersecting C at points a and b. Let p, q, r and s be points lying on the same side of l, where p and q are on C, r inside C and s outside C. Then:

$$
\angle a r b>\angle a p b=\angle a q b>\angle a s b
$$

Improving a Triangulation

In any convex quadrangle, an edge flip is possible. If this flip improves the triangulation locally, it also improves the global triangulation.

If an edge flip improves the triangulation, the first edge is called illegal.

Illegal Edges

Lemma: An edge pq is illegal iff one of its opposite vertices is inside the circle defined by the other three vertices.
Proof: By Thales' theorem.

Theorem: A Delaunay triangulation does not contain illegal edges.
Corollary: A triangle is Delaunay iff the circle through its vertices is empty of other sites (the empty-circle condition). Corollary: The Delaunay triangulation is not unique if more than three sites are co-circular.

$O\left(n^{4}\right)$ Delaunay Triangulation Algorithm

Repeat until impossible:

- Select a triple of sites.
- If the circle through them is empty of other sites, keep the triangle whose vertices are the triple.

The In-Circle Test

Theorem: If a, b, c, d form a CCW convex polygon, then d lies in the circle determined by a, b and c iff:

$$
\operatorname{det}\left(\begin{array}{llll}
a_{x} & a_{y} & a_{x}^{2}+a_{y}^{2} & 1 \\
b_{x} & b_{y} & b_{x}^{2}+b_{y}^{2} & 1 \\
c_{x} & c_{y} & c_{x}^{2}+c_{y}^{2} & 1 \\
d_{x} & d_{y} & d_{x}^{2}+d_{y}^{2} & 1
\end{array}\right)>0
$$

Proof: We prove that equality holds if the points are co-circular. There exists a center q and radius r such that:

$$
\left(a_{x}-q_{x}\right)^{2}+\left(a_{y}-q_{y}\right)^{2}=r^{2}
$$

and similarly for b, c, d :

$$
\left(\begin{array}{l}
a_{x}^{2}+a_{y}^{2} \\
b_{x}^{2}+b_{y}^{2} \\
c_{x}^{2}+c_{y}^{2} \\
d_{x}^{2}+d_{y}^{2}
\end{array}\right)-2 q_{x}\left(\begin{array}{l}
a_{x} \\
b_{x} \\
c_{x} \\
d_{x}
\end{array}\right)-2 q_{y}\left(\begin{array}{l}
a_{y} \\
b_{y} \\
c_{y} \\
d_{y}
\end{array}\right)+\left(q_{x}^{2}+q_{y}^{2}-r^{2}\right)\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)=0
$$

So these four vectors are linearly dependent, hence their det vanishes.
Corollary: $d \in \operatorname{circle}(a, b, c)$ iff $b \in \operatorname{circle}(c, d, a)$ iff $c \nexists \operatorname{circle}(d, a, b)$ iff $a \notin \operatorname{circle}(b, c, d)$

Naïve Delaunay Algorithm

Start with an arbitrary triangulation. Flip any illegal edge until no more exist.
Requires proof that there are no local minima.
Could take a long time to terminate.

Delaunay Triangulation by Duality

General position assumption: There
are no four co-circular points
Draw the dual to the Voronoi
diagram by connecting each two neighboring sites in the Voronoi diagram.

Corollary: The DT may be constructed in O(nlogn) time.

demo

Delaunay Triangulation by Duality -
 Correctness

It is easy to see that any resulting
triangle is Delaunay, but can these triangles intersect?
Let S be a set of sites, and let DT(S) be the dual of the Voronoi diagram. Assume by contradiction that $p_{i} p_{j}$ intersects another edge in DT(S).
p_{i} and p_{j} are neighbors, hence there exists an empty circle through them
 centered on their bisector.

Delaunay Triangulation by Duality -
Case A:
Correctness

- Impossible, because the circle is empty, hence also the triangle $p_{i} p_{j} o$.

Case B:

- Each yellow edge must intersect a white one \Rightarrow two white edges also intersect, but these edges are in disjoint Voronoi cells. Contradiction.

Case B

Case C is possible.

Case C

Delaunay Triangulation: Main Property

Theorem:

Let S be a set of points in the plane. Then,
(i) $p_{i} p_{j} p_{k} \in S$ are vertices of a triangle (face) of $\mathrm{DT}(S)$
$\leftrightarrow \quad$ The circle passing through p_{i}, p_{i}, p_{k} is empty;
(ii) $\overline{p_{i} p_{j}}$ (for $p_{i j} p_{j} \in S$) is an edge of $\mathrm{DT}(S)$
$\leftrightarrow \quad$ There exists an empty circle passing through $p_{i} p_{j}$.
Proof: Dualize the Voronoi-diagram theorem.

Corollary:
A triangulation $\mathrm{T}(S)$ is $\mathrm{DT}(S)$

$\leftrightarrow \quad$ Every circumscribing circle of

mid a triangle $\Delta \in T(S)$ is empty.

Flipping Edges

A new vertex p_{r} is added, causing the creation of the edges $p_{i} p_{r}$ and $p_{i} p_{r}$.
The legality of the edge $p_{i} p_{j}$ (with opposite vertex) p_{k} is checked.
If $p_{i} p_{j}$ is illegal, perform a flip, and recursively check edges $p_{i} p_{k}$ and $p_{j} p_{k}$, the new edges opposite p_{r}
Notice that the recursive call for $p_{i} p_{k}$
cannot eliminate the edge $p_{r} p_{k}$
Note: All edge flips replace edges
opposite the new vertex by edges incident to it!

Number of Flips

Theorem: The expected number of edges flips made in the course of the algorithm (some of which also disappear later) is at most $6 n$.

Proof:

During insertion of vertex p_{i}, k_{i} new edges are created:
3 new initial edges, and $k_{i}-3$ due to flips.
Backward analysis: $\mathrm{E}\left[k_{i}\right]=$ the expected degree of p_{i} after the insertion is complete $=6$ (Euler).

Algorithm Complexity

Point location for every point: $\mathrm{O}(\log n)$ time.
Flips: $\Theta(\mathrm{n})$ expected time in total (for all steps).
Total expected time: $O(n \log n)$.
Space: $\Theta(n)$.

The Voronoi Diagram and Convex Hulls

Given a set S of points in the
plane, associate with each point $p=(a, b) \in S$ the plane tangent to the paraboloid at p :

$$
z=2 a x+2 b y-\left(a^{2}+b^{2}\right)
$$

$\mathrm{VD}(S)$ is the projection to the (x, y) plane of the 1 -skeleton of the convex polyhedron formed from the intersection of the halfspaces above these planes

