Computaiional Geometry

Chapter 10

Line Arrangements
\square Line Arrangements
\square Applications

Line Arrangement

\square Given a set L of n lines in the plane, their arrangement $A(L)$ is the plane subdivision induced by L.

Theorem: The complexity of the arrangement of n lines is $\Theta\left(n^{2}\right)$ in the worst case.
\square Proof:
Number of vertices $\leq\binom{ n}{2}=\frac{n^{2}}{2}-\frac{n}{2}$ (each pair of different lines may intersect at most once).

- Number of edges $\leq n^{2}$ (each line is cut into at most n pieces by at most n - 1 other lines)
- Number of faces $\leq \frac{n^{2}}{2}+\frac{n}{2}+1$ (by Euler's formula and connecting all rays to a point at infinity).
Equalities hold for lines in general position. (Show!)

Line Arrangement

\square Goal: compute this planar map (as a DCEL).
\square A plane-sweep algorithm would require $\Theta\left(n^{2} \log n\right)$ time: $\Theta\left(n^{2}\right)$ events, $\Theta(\log n)$ time each.

An Incremental Algorithm

\square Input: A set L of n lines in the plane.
\square Output: The DCEL structure for the arrangement $A(L)$;
l.e., the subdivision induced by L in a bounding box $B(L)$.
\square The algorithm:
\square Compute a bounding box $B(L)$, and initialize the DCEL.

- Insert one line
after another.
For each line locate
the entry face, and
update the
arrangement, face
by face, along the
path of faces ("zone")
traversed by the line. Move between faces by traversing edges.

Line Arrangement Algorithm
 (cont.)

\square After inserting the th line, the complexity of the map is $\mathrm{O}\left(i^{2}\right)$. ($\Theta\left(i^{2}\right)$ in the worst case-general position.)
\square The time complexity of each insertion of a line depends on the complexity of its zone.

Zone of a Line

\square The zone of a line ℓ in the arrangement $A(L)$ is the set of faces of $A(L)$ bordering on ℓ.
\square The complexity of a zone is the total complexity of all its faces: the total sum of edges (or vertices) of these faces.

The Zone Theorem

\square Theorem: In an arrangement of n lines, the complexity of the zone of a line is $\mathrm{O}(n)$.

IIdea of Proof:

- Consider a line ℓ. Assume without loss of generality that ℓ is horizontal.
- Count the number of left bounding edges in the zone, and prove that this is at most $4 n$. (Same idea for right bounding edges.)

810.

Constructing the Arrangement

\square The time required to insert a line ℓ_{i} is linear in the complexity of its zone, which is linear in the number of the existing lines. So the total time is

$$
O\left(n^{2}\right)
$$

$$
+
$$

$$
\sum_{i=1}^{n} O(i)=O\left(n^{2}\right)
$$

finding a
bounding box (can be done faster!)

Note: This time does not depend on the order of insertion!

Minimum-Area Triangle

\square Given a set of n points, determine the three points that form the triangle of minimum area.
\square Easy to solve in $\Theta\left(n^{3}\right)$ time.
\square May be solved in $\Theta\left(n^{2}\right)$ time using the line arrangement in the dual
 plane.

Area of triangle $=h d / 2$.
Base- d

Idea - check all bases of triangles. For each find the third vertex.

An $\Theta\left(n^{2}\right)$-Time Algorithm

Construct the arrangement of dual lines in $\Theta\left(n^{2}\right)$ time.
\square For each pair of points p_{i} and p_{j} (assume $p_{j} p_{j}$ is the triangle base):
Identify the vertex v of the arrangement corresponding to
the line through these points

- Find the line of the arrangement that is closest vertically to
- Remember the best line so far.

Output point corresponding to the best dual line.

- Questions:

Why is it easier to find $p_{k}{ }^{*}$ than p_{k} ?
Why do we look vertically?
Why is the total runtime only $\Theta\left(n^{2}\right)$?

Discrepancy

\square Given a set S of n points in the unit square $U=[0,1]^{2}$
\square For a given line ℓ, how many points lie below ℓ ? - Let h be halfplane below ℓ.

- If the points are well distributed, this number should be close
to $\mu(h) \cdot n$, where $\mu(h)=$ Area(Unh). Define $\mu_{s}(h)=|S \cap h| / \mid S$
- The discrepancy of S with respect to h is:
and the halfplane discrepancy of S is $\Delta(S)=\sup _{h} \Delta_{S}(h)$

Observation: To compute the discrepancy of
S , it suffices to consider those halfplanes that pass through pairs of points.

Naive algorithm: $\Theta\left(n^{3}\right)$ time.

Computing Discrepancy

For every vertex in $A(S$ compute the number of lines above it, passing through it (two if in general position), or lying below it.
These three numbers sum to n, so it suffices to
compute only two of them.
\square From the DCEL structure we know how many lines pass through each vertex.

Levels of an Arrangement

\square A point is at level k in an arrangement of n lines if there are at most k - 1 lines above this point and at most $n-k$ lines below this point.
\square There are n levels in an arrangement of n lines.
\square A vertex can be on multiple levels depending on the number of lines passing through it.

An $\Theta\left(n^{2}\right)$-Time Algorithm

Construct the dual arrangement.
\square For each line, compute
the levels of all its vertices:

- Compute the levels of the left infinite rays by sorting slopes. $\mathrm{O}(n \log n)$ time.
Traverse all the lines from left to right, incrementing or decrementing the level depending on the direction (slope) of the crossing line. $\theta(n)$ time for each line.
Total: $\Theta\left(n^{2}\right)$ time.

