CSc 437
Homework 1 (100 pts.)
Due: 9/20/07

Instructions. All assignments are to be completed on separate paper. Use
only one side of the paper. Assignments will be due at the beginning of
class, or via email. To receive full credit, you must show all of your work.

All questions are taken from the textbook
1. 1.1
2. 1.6b

Answer: We say that a vertex is reflex the if the inner angle it defines
(inside the polygon) is larger than w. The idea is to delete vertices from
P, which are clearly not vertices of C H(P), namely reflex vertices. When
we delete a vertex v from P, we replace the two edges connecting v to its
neighbors by a single edge connecting the neighbors. This might caused
one or both of the neighbors to became reflex. During the algorithm we
maintain a list L of the reflex vertices of P. At each iteration, we pick a
reflex vertex v from L, delete it, and insert the neighbor(s) of v if it became
reflex. Initially L contains all the reflex vertices of P. The algorithm
terminates when L is empty, and which point P is empty. Clearly the
running time is O(n).

The decision which vertex of L to delete is arbitrary, but the proof of
correctness of the algorithm is simpler if we pick the leftmost one. In
this case, the polygon maintain simple (i.e. does not cross itself). This
property does not hold if we pick arbitrary vertex (give an example).

3. 1.8

4. You are given pointers to two arrays in the memory of your computer. One
points to an array array A[l..n] containing the vertices of a convex polygon
P, and the array B[l..n] containing the vertices of a convex polygon Q.
Suggest an algorithm that finds in time O(log2 n) if P and @ has a point
in common, (actually doable in O(logn) time).

Answer:

We first find the highest and lowest point on each polygon — can easily
be done in O(logn) using a binary search (note that some caution need
to be taken because the vertices are in a cyclic order). This divides each
polygon into two y-monotone chains. The main loop searches for vertices
of P that lie inside Q). This process is repeated for each of the 4 chains (if
needed), refining the search obtain for the previous search.



(a) Pick one of these chains. Call it L, and assume WLOG that it belongs
to P. Let v be a vertex of L, and let ¢ be the horizontal line passing
through v. The main loop of our algorithms performs binary search
on the vertices of L, until we find the two closest one such that PNQ,
if not empty, is above one vertex and below the other, or determine
that PN Q = (. We would then turn our attention to one of the
other chains etc.

i. We next check if ¢ is fully above or below (. If Q is fully above
£, we replace v with a vertex of L above v, and continue. This
is justified, since if P and (@) intersect, the intersection region
must lie above £. The case that ¢ is fully below ¢ is treated
symmetrically.

Note that for an edge e of one of the other chains, we can define in
constant time whether e is fully above, fully below, or intersects
¢. Hence after O(logn) time we can find the intersection points
of ¢ with all chains. Let e, e, be the edge of intersection of ¢
with P, (where e; is to the left of e,.), and fi, f. be the edge of
intersection of £ and Q. We sort their intersection points along
L.

Of course, if e; if to the right of f, but e, it to the right of fi,
then from convexity there is an intersection point of £, and we
are done. The symmetric case is handles similarly. So assume
that PN/ is to the right of @ N {. In this case, consider the lines
passing through e, (call it £p) and f; (call it £g). Note that P is
fully to the left of {p and that @ is to the right of {g). If these
lines do not intersect, then P and ) cannot intersect. Otherwise
the only side that P and () might intersect is the side of ¢ that
¢p and {q intersect, and the next vertex of v that we check is on
this side.

5. Show that for the line sweep algorithm to be correct, it is enough to
maintain for every segment what is the next event that happens along this
segment. Note that if this all you remember, the proof of the correctness
of the algorithm need to be revised. How would you use this fact to
guarantee that the space requirement of the algorithm to be O(n).

6. You are given a polygon P with n vertices {v;...v,} in the order along
the polygon. Also given a set S of n points. Find for each point of S if it
lies inside P. The total time of your algorithm should be O(nlogn).

Answer: We perform a line-sweep algorithm on the segments forming
the boundary of P, as described in class. The events are all endpoints of
segments, and all points of S. While doing so, each segment s “maintains”
whether P is locally above or below s. When a point of S is meet, we
check from the status what is the segment s just below it, and whether
this point lies on the same side of s as P.



10.

11.

2.5
2.8
2.10
2.11

Answer: We replace each circle with 2 semi-circles, the lower semi-circle
and the upper one. Their endpoints replace the endpoints of the segment
in the “standard” line sweep. We also change the code the code so it finds
if two semi-circles intersect, and where. This is the only modification
needs to be dons.

2.14



