
CSc 437
Answers to homework #2

Instructions. All assignments are to be completed on separate paper. Use
only one side of the paper. Assignments will be due at the beginning of
class, or via email. To receive full credit, you must show all of your work.
You can email the homework to the grader.

All questions are taken from the textbook

1. 3.1

2. 3.3

3. 3.6

4. 3.10 (start by computing the convex hull, and split the resulting polygon
into sub-polygons)

Answer: There are many ways to solve this question. We need to
compute in time O(n log n) a triangulation of a set S of n points. Here
is one: We first (in time O(n log n)) compute CH(S). Let C denote the
set the vertices of CH(S). We sort the points of S \ C by their y-value.
Let p1 . . . pk be the resulting set, in a increasing order of their y-value, (so
p1 is the lowest one). We connect pi to pi+1, forming a y-monotone path.
We connect the lowest point of C to p1, and pk to the heights point of C.
This split CH(S) into two y-monotone polygons. We use the algorithm
studied in class to triangulate each other them.

5. Assume h1 . . . hn are halfplanes in 2D, given in increasing slopes of their
bounding lines. Compute h1 ∩ h2 ∩ . . . hn in O(n) time.

Answer:

We split the set into two subsets, ones that containing the point (0,∞),
and ones that contains (0,−∞). So from now on we assume that all
constrains contain the point (0,−∞). Let

P (i) =

i⋂
j=1

hi

. We maintain P (j) by maintaining its boundary, which is a polygonal
chain, which is a part of a convex polygon. Let L(i) denote this chain.
Note that the first and last edges of L(i) are unbounded. Note (check)
that once hi+1 in added to form P (i + 1), it crosses L(i) in exactly one
point. To find this point, we scan each edge from the rightmost one of
L(i), until finding the intersection point. Note that each edge that is
scanned is contributed by a constrains that would not appear in future
P (i′) (for i′ > i). Hence the number of edges that is scanned over the



whole course of the algorithm cannot exceed the number of constrains,
which is n. Checking with a edge of L(i) is crossed by the line bounding
hi takes O(1). Thus the running time is O(n).

6. It is known that the union of n axis-parallel squares in the plane has com-
plexity O(n). Show how to compute their complexity in time O(n log2 n)
(use divide and conquer).

Answer: We combine the paradigm of line-sweep with the paradigm
of divided and concur. Let S be the set of n unit axis-parallel squares.
We split S into S1 and S2, two subsets that contains n/2 squares. We
compute recursively U1 and U2, which is the union of S1 and of S2. Recall
that the complexity of S1 (and of S2) is ≤ Kn/2, for a constant K. Next
we use a line sweep to compute their union. Note that every event that
the sweeping line encounter is either a vertex of U1, or a vertex of U2, or
an intersection between an edge of U1 and an edge of U2, but in the later
case, this vertex (prove) must be a vertex of U1 ∪U2. Also recall that the
number of vertices of U1 ∪ U2 is ≤ Kn. Hence the total number of events
is at most Kn/2+Kn/2+Kn. The running time of the merging process
is therefore O(n log n), and the running time of the algorithm is

T (n) = 2T (n/2) + 3Kn log n

whose solution is O(n log2 n).


