Motion Planning

Thanks to
 Piotr Indyk

Lecture 11: Motion Planning

Piano Mover's Problem

- Given:
- A set of obstacles
- The initial position of a robot
- The final position of a robot
- Goal: find a path that
- Moves the robot from the initial to final position
- Avoids the obstacles (at all times)

Basic notions

- Work space - the space with obstacles
- Configuration space:
- Describes the robot's position
- Forbidden space = positions in which robot collides with an obstacle
- Free space: the rest
- Collision-free path = path in the free part of configuration space

Point case

- Assume robot is a point
- Then work space=configuration space
- Free space = Work Space minus the obstacles

Point case - General Algorithm

- Construct a data structure ROADMAP to represent the free space
- Given any start and goal positions use ROADMAP to decide whether collision free path is possible

Finding a path

- ROADMAP:
- Compute the trapezoidal map to represent the free space
- Place a node
- At center of each trapezoid
- Of each edge of the trapezoid
- Put edges between the vertices in the same trapezoids.
- Path finding=BFS in the roadmap

Note - the size of the roadmap is linear, but the path is probably not the shortest.

Roadmap

Lecture 11: Motion Planning

Path in the roadmap via BFS

Lecture 11: Motion Planning

Complexity

- Build Road Map: O(n logn) time
- Trapezoidal Map of n segments: $O(n \log n)$ time
- O(n) trapezoids, O(n) vertices
- Add edges to roadmap takes $O(n)$ time
- Collision Free path: O(n) time
- Find start and goal trapezoids O(log n)
- BFS takes O(n) time

Non-point robots

- Assume a convex robot
- Assume each obstacle is convex (by triangulating the obstacles)
- We specify a point on the robot, called its reference.
- We specify the position of

Specifying location of robot

work space

reference point

Lecture 11: Motion Planning

Collision Free Path

Non-point robots - cont

- C-obstacle = the set of robot positions which overlap an obstacle
- Free space: workspace minus C-obstacles
- Given a robot and obstacles, how to calculate
 C-obstacles ?

Minkowski Sum

- Minkowski Sum of two sets P and Q is defined as $P \oplus Q=\{p+q: p \in P, q \in Q\}$

R vs (-R)

Lecture 11: Motion Planning

C-obstacles

- Thm: The C-obstacle of P and robot R equals $\mathrm{P} \oplus(-\mathrm{R})$
- Proof:
- Assume R collides with P at position m. We want to show that $m \in P \oplus(-R)$
- Consider $t \in(\mathrm{R}+\mathrm{m}) \cap \mathrm{P}$
- Then $t-m \in R \rightarrow-t+m \in-R$
- Since $t \in \mathrm{P}$, we have $\mathrm{m} \in \mathrm{P} \oplus(-\mathrm{R})$
- Reverse direction is similar

Minkowski Sum

- $A \oplus B=\{a+b: a \in A, b \in B\}$

Lecture 11: Motion Planning

$A \oplus-B$

Lecture 11: Motion Planning

C-obstacle of A and robot B equals $A \oplus(-B)$

Algorithm outline

- Find C-Obstacles
- Create trapezoid map for union of all C-obstacles
- Efficiency depends:
- Computation time of C-Obstacles
- Computation of trapezoidal map: $O(n \log n)$ where is n is complexity of union of all C-obstacles (number of edges)

I. Properties of $\mathrm{P} \oplus \mathrm{R}$

- Thm: If P, R convex, then $P \oplus R$ is convex:
- Proof:
- Consider $t_{1}, t_{2} \in P \oplus R$. We know $t_{i}=p_{i}+r_{i}$ for $p_{i} \in P, r_{i} \in R$
$-P, Q$ convex: $\lambda p_{1}+(1-\lambda) p_{2} \in P, \lambda r_{1}+(1-\lambda) r_{2} \in R$
- Therefore:
$\lambda t_{1}+(1-\lambda) t_{2}=\lambda\left(p_{1}+r_{1}\right)+(1-\lambda)\left(p_{2}+r_{2}\right) \in P \oplus R$

II. Properties of $\mathrm{P} \oplus \mathrm{R}$

A point $p \in \mathrm{Q}$ is extreme (I.e. corner of Q) if there is some vector (direction) d such that $p^{*} d=\max \left\{q^{*} d \mid q \in Q\right\}$

- Observation: an extreme point of
 $P \oplus R$ in direction d is a sum of extreme points of P and R in direction d

- Simple algorithm - convex hull

III. Properties of $\mathrm{P} \oplus \mathrm{R}$

- Theorem: If P, R convex and has m and n edges then $\mathrm{P} \oplus \mathrm{R}$ has at most $n+m$ edges.
- Intuition: Each edge of $P \oplus R$ is parallel to either an edge of P or an edge of R. No edge of P, R contributes more than once.
- Implications:
- Compute a C-obstacle in $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time
- Each C-obstacle has complexity $\mathrm{O}(\mathrm{n}+\mathrm{m})$
- Is this enough?

Pseudodisc Pairs

- O_{1} and O_{2} are Pseudodiscs if both $\mathrm{O}_{1}-\mathrm{O}_{2}$ and $\mathrm{O}_{2}-\mathrm{O}_{1}$ are connected
- I,e, at most two proper intersections of boundaries
- Note: Pseudodiscs describes how TWO objects interact. Not used to describe one
 object.

Minkowski sums are pseudodiscs

- Thm: If P_{1}, P_{2}, R, are convex and P_{1} and P_{2} are disjoint. Then $C P_{1}=P_{1} \oplus R$ and $C P_{2}=P_{2} \oplus R$ are pseudo-discs.
- Proof by contradiction:
- Suppose $\mathrm{CP}_{1}-\mathrm{CP}_{2}$ is has 2 connected components
- CP_{1} is more extreme than CP_{2} in two directions d_{1} and d_{2}

$-\mathrm{CP}_{2}$ is more extreme than CP_{1} in a direction between d_{1} and d_{2} and in a direction between d_{2} and d_{1}
- By properties of \oplus :
- P_{1} is more extreme than P_{2} in directions d_{1} and d_{2}
- P_{2} is more extreme than P_{1} in a direction between d_{1}^{2} and d_{2} and in a direction between d_{2} and d_{1}
- Configuration impossible for disjoint, convex P_{1}, P_{2}

Union of pseudo-discs

- Thm: Let P_{1}, \ldots, P_{k} be polygons in pseudo-disk positions. Then their union has complexity $\left|P_{1}\right|+\ldots+\left|P_{k}\right|$
- Proof:
- Suffices to bound the number of vertices
- Each vertex either original or induced by intersection

- Charge each intersection vertex to the next original vertex in the interior of the union
- Each vertex charged at most twice

Ananlysis:
 Convex Robot, Convex Obstacles

- Given: Total \#edges in Obstacles=n, Robot=m
- Compute all C-obstacles in $O(m+n)$ time
- Computation time for Trapezoidal Map:
- If k obstacles total complexity of C-obstacles $O(n+m k)$
- Union of all C-Obstacles has complexity O(n+mk)
- Trapezoidal map computed $O(n+m k \log (\mathrm{n}+m k))$

Analysis:

Convex Robot and Non-convex Obstacles

- Given complexity of all obstacles=n, robot=m
- Triangulate obstacles into T_{1}, \ldots, T_{n}. Time $O(n \log n)$
- Compute $R \oplus T_{1}, \ldots, R \oplus T_{n}$ Time $O(n(m+3))=O(n m)$
- Complexity of union of all C-obstacles $\mathrm{O}(\mathrm{nm})$
- Trapezoidation computed in time $O(m n \log (m n))$
- Compute their union $O\left(m n \log ^{2}(m n)\right)$:
- divide-and-conquer + line sweep,
- similar to computing the union of squares from hw
- (can be done faster)

Compute the Union

- Divide and Conquer:

ComputeUnion $R \oplus T_{1}, \ldots, R \oplus T_{n}$

1. Let $C_{1}=$ ComputeUnion $\left(R \oplus T_{1}, \ldots, R \oplus T_{n / 2}\right)$
2. Let $\mathrm{C}_{2}=$ ComputeUnion $\left(\mathrm{R} \oplus \mathrm{T}_{\mathrm{n} / 2+1}, \ldots, \mathrm{R} \oplus \mathrm{T}_{\mathrm{n}}\right)$
3. Return $\mathrm{C}_{1} \cup \mathrm{C}_{2}$ can compute using line sweep

- Complexity of $\mathrm{C}_{1}, \mathrm{C}_{2}$ is $\mathrm{O}(\mathrm{mn}) \rightarrow$ line sweep takes $O(m n$ log(mn)) time
- Recurrence $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+O(m n \log (m n))$
- Solves to $O\left(m n \log ^{2}(m n)\right)$

Result Summary

- Given:
- Robot R of complexity m, translating among
- Disjoint polygonal obstacles with total complexity n
- We can:
- Preprocess workspace (i.e. build Roadmap) in O(nm $\left.\log ^{2}(n m)\right)$ time
- Answer if there is a collision free path from any start to any goal in $\mathrm{O}(\mathrm{mn})$ time

Higher dim - randomized planner

- Usually the complexity of the free space for a robot with d degrees of freedom in an environment of complexity n is $\Theta\left(n^{d}\right)$
- It is not practical to construct the free space.
- Instead, we (very roughly) do
- create a sample S of positions of R
- For each position, check if is free. If yes, it is a node of the graph.
- For every pair of free positions, chech if the segment connecting them is free. If yes connect them by an edge.
- Find a path from s to t in this graph.
- Works well in practice
- Problem: narrow passage.
- Application (one of many): protein docking.

