Motion Planning

Thanks to Piotr Indyk

Piano Mover's Problem

- Given:
 - A set of obstacles
 - The initial position of a robot
 - The final position of a robot
- Goal: find a path that
 - Moves the robot from the initial to final position
 - Avoids the obstacles (at all times)

Basic notions

- Work space the space with obstacles
- Configuration space:

– Describes the robot's position

- Forbidden space = positions in which robot collides with an obstacle
- Free space: the rest
- Collision-free path = path in the free part of configuration space

Point case

- Assume robot is a point
- Then work space=configuration space
- Free space = Work Space minus the obstacles

Point case – General Algorithm

- Construct a data structure ROADMAP to represent the free space
- Given any start and goal positions use ROADMAP to decide whether collision free path is possible

Finding a path

- ROADMAP:
- Compute the trapezoidal map to represent the free space
- Place a node
 - At center of each trapezoid
 - Of each edge of the trapezoid
- Put edges between the vertices in the same trapezoids.
- Path finding=BFS in the roadmap

Note – the size of the roadmap is linear, but the path is probably not the shortest.

Roadmap

Path in the roadmap via BFS

Complexity

- Build Road Map: O(n logn) time
 - Trapezoidal Map of n segments: O(n log n) time
 - O(n) trapezoids, O(n) vertices
 - Add edges to roadmap takes O(n) time
- Collision Free path: O(n) time
 - Find start and goal trapezoids O(log n)
 - BFS takes O(n) time

Non-point robots

- Assume a convex robot
- Assume each obstacle is convex (by triangulating the obstacles)
- We specify a point on the robot, called its **reference.**
- We specify the position of the robot by specifying the location of the reference

Specifying location of robot

Collision Free Path

work space

configuration space

Non-point robots - cont

- C-obstacle = the set of robot positions which overlap an obstacle
- Free space: workspace minus C-obstacles
- Given a robot and obstacles, how to calculate C-obstacles ?

Minkowski Sum

Minkowski Sum of two sets
 P and Q is defined as
 P⊕Q={p+q: p∈P, q∈Q}

R vs (-R)

- Thm: The C-obstacle of P and robot R equals P⊕(-R)
- Proof:
 - Assume R collides with P at position m. We want to show that $m \in P \oplus (-R)$
 - Consider $t \in (R+m) \cap P$
 - Then $t-m \in R \rightarrow -t+m \in -R$
 - Since $t \in P$, we have $m \in P \oplus (-R)$
- Reverse direction is similar

Minkowski Sum

• $A \oplus B = \{a+b: a \in A, b \in B\}$

C-obstacle of A and robot B equals $A \oplus (-B)$

Lecture 11: Motic

Algorithm outline

- Find C-Obstacles
- Create trapezoid map for union of all C-obstacles

- Efficiency depends:
 - Computation time of C-Obstacles
 - Computation of trapezoidal map:
 O(n log n) where is n is complexity of union of all C-obstacles (number of edges)

I. Properties of P⊕R

- Thm: If P,R convex, then P⊕R is convex:
- Proof:
 - Consider $t_1, t_2 \in P \oplus R.$ We know $t_i = p_i + r_i$ for $p_i \in P, \ r_i \in R$
 - P,Q convex: $\lambda p_1 + (1 \lambda)p_2 \in P$, $\lambda r_1 + (1 \lambda)r_2 \in R$
 - Therefore:

 $\lambda t_1 + (1 \text{-} \lambda) t_2 = \lambda (p_1 \text{+} r_1) + (1 \text{-} \lambda) \ (p_2 \text{+} r_2) \in P \oplus R$

II. Properties of P⊕R

A point $p \in Q$ is **extreme** (I.e. corner of Q) if there is some vector (direction) d such that $p^*d = max \{ q^*d \mid q \in Q \}$

 Observation: an extreme point of P⊕R in direction d is a sum of extreme points of P and R in direction d

• Simple algorithm – convex hull

III. Properties of P⊕R

- Theorem: If P, R convex and has m and n edges then P⊕R has at most n+m edges.
- Intuition: Each edge of P⊕R is parallel to either an edge of P or an edge of R. No edge of P,R contributes more than once.
- Implications:
- Compute a C-obstacle in O(n+m) time
- Each C-obstacle has complexity O(n+m)
 - Is this enough?

Pseudodisc Pairs

- O₁ and O₂ are Pseudodiscs if both O₁-O₂ and O₂-O₁ are connected
- I,e, at most two proper intersections of boundaries
- Note: Pseudodiscs describes how TWO objects interact. Not used to describe one object.

Yes

Minkowski sums are pseudodiscs

- Thm: If P_1 , P_2 , R, are convex and P_1 and P_2 are disjoint. Then $CP_1 = P_1 \oplus R$ and $CP_2 = P_2 \oplus R$ are pseudo-discs.
- Proof by contradiction:
- Suppose CP₁-CP₂ is has 2 connected components
 - CP_1 is more extreme than CP_2 in two directions d_1 and d_2

- By properties of \oplus :
 - $-P_1$ is more extreme than P_2 in directions d_1 and d_2
 - P_2 is more extreme than P_1 in a direction between d_1 and d_2 and in a direction between d_2 and d_1
- Configuration impossible for disjoint, convex P₁, P₂

Union of pseudo-discs

- Thm: Let P₁,...,P_k be polygons in pseudo-disk positions. Then their union has complexity |P₁| +...+ |P_k|
- Proof:
 - Suffices to bound the number of vertices
 - Each vertex either original or induced by intersection
 - Charge each intersection vertex to the next original vertex in the interior of the union
 - Each vertex charged at most twice

Ananlysis: Convex Robot, Convex Obstacles

- Given: Total #edges in Obstacles=n, Robot=m
- Compute all C-obstacles in O(m + n) time
- Computation time for Trapezoidal Map:
 - If k obstacles total complexity of C-obstacles O(n+mk)
 - Union of all C-Obstacles has complexity O(n+mk)
 - Trapezoidal map computed O(n+mk log(n+mk))

Analysis:

Convex Robot and Non-convex Obstacles

- Given complexity of all obstacles=n, robot=m
- Triangulate obstacles into T₁,...,T_n. Time O(n log n)
- Compute $R \oplus T_1, ..., R \oplus T_n$ Time O(n(m+3))=O(nm)
- Complexity of union of all C-obstacles O(nm)
 - Trapezoidation computed in time $O(mn \log (mn))$

- Compute their union O(mn log² (mn)):
 - divide-and-conquer + line sweep,
 - similar to computing the union of squares from hw
 - (can be done faster)

Compute the Union

• Divide and Conquer:

ComputeUnion $R \oplus T_1, ..., R \oplus T_n$

- 1. Let $C_1 = \text{ComputeUnion}(R \oplus T_1, ..., R \oplus T_{n/2})$
- 2. Let C_2 = ComputeUnion($R \oplus T_{n/2+1}, ..., R \oplus T_n$)
- 3. Return $C_1 U C_2$ can compute using line sweep
- Complexity of C₁, C₂ is O(mn) → line sweep takes O(mn log(mn)) time
- Recurrence $T(n) = 2T(n/2) + O(mn \log(mn))$
- Solves to O(mn log² (mn))

Result Summary

- Given:
 - Robot R of complexity m, translating among
 - Disjoint polygonal obstacles with total complexity n
- We can:
 - Preprocess workspace (i.e. build Roadmap) in O(nm log²(nm)) time
 - Answer if there is a collision free path from any start to any goal in O(mn) time

Higher dim – randomized planner

- Usually the complexity of the free space for a robot with *d* degrees of freedom in an environment of complexity n is Θ(n^d)
- It is not practical to construct the free space.
- Instead, we (very roughly) do
 - create a sample S of positions of R
 - For each position, check if is free. If yes, it is a node of the graph.
 - For every pair of free positions, chech if the segment connecting them is free. If yes connect them by an edge.
 - Find a path from s to *t* in this graph.
- Works well in practice
- Problem: narrow passage.
- Application (one of many): protein docking.