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Dynamic Order Statistics 
 
 

Some of the slides are courtesy of  
Charles Leiserson and  Carola Wenk 

More Data structure ????  
Isn’t it an Algorithm course ??? 

 
If you want to feel poetic  

“Data Structures are Algorithms frozen in Time”  
 

     Anonymous  

By now you are familiar with several data structures that 
supports the following operations on a dynamic set S 

Insert (x, S):  inserts x into S 
Delete (x, S):  deletes x from S  
Find (x, S):  finds x in S 
Succ(x, S):  find smallest element larger 

than x  in S 
 Popular implementation uses any balanced search 
tree (not necessarily binary) or Skiplist. Each 
operation takes O(log n) time. 
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Balanced search trees 
Balanced search tree: A search-tree data 
structure for which a height of O(log n) is 
guaranteed when implementing a dynamic 
set of n items. 

Examples: 

• AVL trees 
•  2-3 trees 
•  2-3-4 trees 
• B-trees 
• Red-black trees 
•  SkipList (only expected  

 time bounds) 
•  Splay tress  (Amortized time) 

Dynamic order statistics  
Need a DS that supports the following operations 

in addition to Insert(x,S), Delete(x,S), Find(x), Succ(x,S) 
OS-SELECT(i, S):  returns the element with rank i 

in the dynamic set S. 
 Smallest key has rank 0. 
Largest has rank n-1. 

OS-RANK(x, S):  returns the rank of x ∈ S in the 
sorted order of S’s elements. 

 First Try: Each key stores its rank. So we only 
need to find the key (takes O(log n) in most data 
structures) and retrieve the rank.  
So OS-Rank(x, S) takes O(log n)  
 
 

(many other problems could be solved in a similar techniques)  
 

Dynamic order statistics-cont 

•  Second Try:  (just for the protocol)  
•   Store all keys in a sorted array. 

•  The index is the rank.   
•  So great for a static structure, less so for 

dynamic structure. 
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Dynamic order statistics-cont 

Third Idea: (actually working) Use a balanced 
binary search tree for storing the set S, but each 
node v has an extra field size[v]  storing the 
number of keys in the subtree rooted at v  

key 
size Notation for nodes: 

Example of an OS-tree 
Key`M’ 
Size=9 

C 
5 

Key=‘A’ 
Size=1 

F 
3 

N 
1 

Q 
1 

P 
3 

H 
1 

D 
1 

Agreement: size[leaf]=1. Size[empty]=0  
Note that it is always true that 
size[x] = size[left[x]] + size[right[x]] + 1 
We will use it in the algorithm (wait for it)  

Set of key = {A,B, ..Q} 

Empty, leaf 
Size=0 

Quick Reminder  

Left subree 
All keys <y 
  

y 

Right subree 
All kesy ≥ y 
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 How to answer OS-Rank(x,S) 
Returns the number of keys in the tree which are strictly  
smaller than x.  

  
  y 

A1 

z 

x 

w 

• Assume we already performed find(x,S).   
•  Consider the search path from root to x. 

It branches left and right. 
• All elements in yellow subtrees are ≤ x. 
• All elements in blue trees are > x.  

  
 e.g. in A1, all keys < y <x.   

                  in B1 , all keys > u> x.   
                    

B1 

u 

•  Need to sum numbers of all 
keys in yellow trees + # yellow 
nodes. 

•  They are the left subtrees of 
every node where the search 
path branches right  

     plus  # these nodes.  

Branches Right  

Right  

Left  

Right  

 How to answer OS-Rank(x,S)   (cont)  
Returns the number of keys in the tree which are strictly 
smaller than x.  

  
  y 

A1 

z 

x 

w 
B1 

u 

OS_Rank(x,v,S)  . 
If  v==NULL  return 0 ⊳ empty subtree 
k ← size[left[v]]  
if  key[v]==x   then return k. else 
if  key[v] >x  0 ⊳ Path branches LEFT   
then return OS_Rank(x, left[v], S ) 

else ⊳Path branches RIGHT 
        return  
             k+1+OS_Rank(x,  right[x], S ) 

A2 

A3 

A4 

 How to answer OS-Select(i,S) 
Returns the i’th  smallest key  
(e.g. OS-Select(0,S) returns the first.  OS-Select(n-1,S) return last) 

 v 

A1 

z

x

w
B1 

u 

OS-SELECT(v, i)   
⊳ return i th smallest element in the ⊳ 
subtree rooted at v  
k ← size[left[v]] + 1  
if  i == k  then return v. else 
if  i < k   
   then return OS-SELECT( left[v], i ) 
else  
     return  
       OS-SELECT(right[v], i – (k+1) ) 
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Example 

M 
9 

C 
5 

A 
1 

F 
3 

N 
1 

Q 
1 

P 
3 

H 
1 

D 
1 

OS-SELECT(root, 4) 

i = 4 
k = 5 

M 
9 

C 
5 

i = 4 
k = 1 

i = 4-2=2 
k = 1 

F 
3 

i = 0 
k = 0 

H 
1 
H 
1 

Running time = O(h) = O(lg n) for BSTs. 

Data structure maintenance 
Q.  Why not keep the ranks themselves 

in the nodes instead of subtree sizes? 

A.  They are hard to maintain when the 
BST is modified. 

Modifying operations: INSERT and DELETE. 
Strategy: Update subtree sizes when 
inserting or deleting. 

Example of insertion 

M 
9 

C 
5 

A 
1 

F 
3 

N 
1 

Q 
1 

P 
3 

H 
1 

D 
1 

INSERT(“K”) 
M 
10 

C 
6 

F 
4 

H 
2 

K 
1 
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Introducti
on to 
Algorith
ms 

Handling rebalancing 
Don’t forget that BST-INSERT and BST-DELETE 
may also need to modify the binary search tree in 
order to maintain balance. 
• Rotations: fix up subtree sizes in O(1) time. 

Example: 

C 
11 

E 
16 

7 3 

4 

C 
16 

E 
8 7 

3 4 

∴BST-INSERT and BST-DELETE still run in O(lg n) time. 

Data-structure augmentation 
Methodology: (e.g., order-statistics trees) 
1.  Choose an underlying data structure (binary 

search trees, e.g. AVL or red-black trees). 
2.  Determine additional information to be stored 

in the data structure (subtree sizes). 
3.  Verify that this information can be maintained 

for modifying operations (BST-INSERT, BST-
DELETE — don’t forget rotations). 

4.  Develop new dynamic-set operations that use 
the information (OS-SELECT and OS-RANK). 

These steps are guidelines, not rigid rules. 


