
1

Dynamic Order Statistics

Some of the slides are courtesy of
Charles Leiserson and Carola Wenk

More Data structure ????
Isn’t it an Algorithm course ???

If you want to feel poetic

“Data Structures are Algorithms frozen in Time”

 Anonymous

By now you are familiar with several data structures that
supports the following operations on a dynamic set S

Insert (x, S): inserts x into S
Delete (x, S): deletes x from S
Find (x, S): finds x in S
Succ(x, S): find smallest element larger

than x in S
 Popular implementation uses any balanced search
tree (not necessarily binary) or Skiplist. Each
operation takes O(log n) time.

2

Balanced search trees
Balanced search tree: A search-tree data
structure for which a height of O(log n) is
guaranteed when implementing a dynamic
set of n items.

Examples:

• AVL trees
•  2-3 trees
•  2-3-4 trees
• B-trees
• Red-black trees
•  SkipList (only expected

 time bounds)
•  Splay tress (Amortized time)

Dynamic order statistics
Need a DS that supports the following operations

in addition to Insert(x,S), Delete(x,S), Find(x), Succ(x,S)
OS-SELECT(i, S): returns the element with rank i

in the dynamic set S.
 Smallest key has rank 0.
Largest has rank n-1.

OS-RANK(x, S): returns the rank of x ∈ S in the
sorted order of S’s elements.

 First Try: Each key stores its rank. So we only
need to find the key (takes O(log n) in most data
structures) and retrieve the rank.
So OS-Rank(x, S) takes O(log n)

(many other problems could be solved in a similar techniques)

Dynamic order statistics-cont

•  Second Try: (just for the protocol)
•  Store all keys in a sorted array.

•  The index is the rank.
•  So great for a static structure, less so for

dynamic structure.

3

Dynamic order statistics-cont

Third Idea: (actually working) Use a balanced
binary search tree for storing the set S, but each
node v has an extra field size[v] storing the
number of keys in the subtree rooted at v

key
size Notation for nodes:

Example of an OS-tree
Key`M’
Size=9

C
5

Key=‘A’
Size=1

F
3

N
1

Q
1

P
3

H
1

D
1

Agreement: size[leaf]=1. Size[empty]=0
Note that it is always true that
size[x] = size[left[x]] + size[right[x]] + 1
We will use it in the algorithm (wait for it)

Set of key = {A,B, ..Q}

Empty, leaf
Size=0

Quick Reminder

Left subree
All keys <y

y

Right subree
All kesy ≥ y

4

 How to answer OS-Rank(x,S)
Returns the number of keys in the tree which are strictly
smaller than x.

 y

A1

z

x

w

• Assume we already performed find(x,S).
•  Consider the search path from root to x.

It branches left and right.
• All elements in yellow subtrees are ≤ x.
• All elements in blue trees are > x.

 e.g. in A1, all keys < y <x.

 in B1 , all keys > u> x.

B1

u

•  Need to sum numbers of all
keys in yellow trees + # yellow
nodes.

•  They are the left subtrees of
every node where the search
path branches right

 plus # these nodes.

Branches Right

Right

Left

Right

 How to answer OS-Rank(x,S) (cont)
Returns the number of keys in the tree which are strictly
smaller than x.

 y

A1

z

x

w
B1

u

OS_Rank(x,v,S) .
If v==NULL return 0 ⊳ empty subtree
k ← size[left[v]]
if key[v]==x then return k. else
if key[v] >x 0 ⊳ Path branches LEFT
then return OS_Rank(x, left[v], S)

else ⊳Path branches RIGHT
 return
 k+1+OS_Rank(x, right[x], S)

A2

A3

A4

 How to answer OS-Select(i,S)
Returns the i’th smallest key
(e.g. OS-Select(0,S) returns the first. OS-Select(n-1,S) return last)

 v

A1

z

x

w
B1

u

OS-SELECT(v, i)
⊳ return i th smallest element in the ⊳
subtree rooted at v
k ← size[left[v]] + 1
if i == k then return v. else
if i < k
 then return OS-SELECT(left[v], i)
else
 return
 OS-SELECT(right[v], i – (k+1))

5

Example

M
9

C
5

A
1

F
3

N
1

Q
1

P
3

H
1

D
1

OS-SELECT(root, 4)

i = 4
k = 5

M
9

C
5

i = 4
k = 1

i = 4-2=2
k = 1

F
3

i = 0
k = 0

H
1
H
1

Running time = O(h) = O(lg n) for BSTs.

Data structure maintenance
Q. Why not keep the ranks themselves

in the nodes instead of subtree sizes?

A. They are hard to maintain when the
BST is modified.

Modifying operations: INSERT and DELETE.
Strategy: Update subtree sizes when
inserting or deleting.

Example of insertion

M
9

C
5

A
1

F
3

N
1

Q
1

P
3

H
1

D
1

INSERT(“K”)
M
10

C
6

F
4

H
2

K
1

6

Introducti
on to
Algorith
ms

Handling rebalancing
Don’t forget that BST-INSERT and BST-DELETE
may also need to modify the binary search tree in
order to maintain balance.
• Rotations: fix up subtree sizes in O(1) time.

Example:

C
11

E
16

7 3

4

C
16

E
8 7

3 4

∴BST-INSERT and BST-DELETE still run in O(lg n) time.

Data-structure augmentation
Methodology: (e.g., order-statistics trees)
1.  Choose an underlying data structure (binary

search trees, e.g. AVL or red-black trees).
2.  Determine additional information to be stored

in the data structure (subtree sizes).
3.  Verify that this information can be maintained

for modifying operations (BST-INSERT, BST-
DELETE — don’t forget rotations).

4.  Develop new dynamic-set operations that use
the information (OS-SELECT and OS-RANK).

These steps are guidelines, not rigid rules.

