CS 445

Dynamic Programming

Some of the slides are courtesy of Charles Leiserson with small changes by Carola Wenk

Example: Floyd Warshll Algorithm: Computing all pairs shortest paths

- Given G(V,E), with weight w(v_i, v_j) given on each of its edges (positive or negative), the output is a matrix D[1..n, 1..n] such that (for every i,j) D[i,j] is the length of the shortest path from v_i to v_j
- How to find the shortest paths (and not only their costs) will be discussed in in the homeworks. (analogous to Dijkstra)
- Assume no negative cycles exist in G(V,E).
- In the homework: Finding such cycles.

Assume $V = (v_1, v_2 \dots v_n)$

Def $P_k(i,j)$ is the shortest path v_i to v_j avoiding any vertex from $\{v_{k+1,...}v_n\}$ as intermediate vertex. Example: $P_k(i,j)$ could not go through any vertex of V.

Def D_k [i,j] is its length of P_k (*i*,*j*)

So if the edge (v_i, v_j) is in *G* then $\begin{array}{c}P_0(i,j) = \{(v_i, v_j)\}\\D_0(i,j) = w(v_i, v_j)\end{array}$

If the edge (v_i, v_j) is not in *E*, then $D_0(i_j) = +\infty$ (since any path connecting them must use a vertex from $V = \{v_{1,...}v_n\}$

Floyd Warshll-Pairs Sl Computing D _k [i,j] fo	hortest Paths r every <i>i,j,k.</i>			
Algorithm AllPair(G) for all vertex pairs (i,j) Use <i>n</i> tabels D_0D_n . Each is an $n \times n$ if $i = j$ then $D_0[i,i] \leftarrow 0$ else if (v_i, v_j) is an edge in G				
$D_0[i,j] \leftarrow w(v_i,v_j)$ else	Running time <i>O(n³)</i>			
for $k \leftarrow l$ to n do	Space ???			
for $i \leftarrow l$ to <i>n</i> do for $j \leftarrow l$ to <i>n</i> do $D_k[i,j] = \min\{ D_{k\cdot l}[i,j], L$ return D_n	$D_{k-I}[i,k] + D_{k-I}[k,j] \}$			

Dynamic Programming: Example 2: Longest Common Subsequance				
We look at sequences of characters (strings)				
e.g. $x = "ABCA"$				
Def: A subsequence of x is an sequence obtained from x by possibly deleting some of its characters (but without changing their order				
Examples: "ABC",	"ACA",	"AA",	"ABCA"	
Def A prefix of <i>x</i> , denoted $x[1m]$, is the sequence of the first <i>m</i> characters of <i>x</i>				
	1" $x[13] = "ABC"$ x[10] = ""	<i>x[12]="A</i>	1 <i>B</i> "	

Brute-force LCS algorithm

Checking every subsequence of x whether it is also a subsequence of y.

Analysis

• Checking = $\Theta(m+n)$ time per subsequence.

• 2^m subsequences of x

Worst-case running time = $\Theta((m+n)2^m)$ = exponential time.

Towards a better algorithm

Simplification:

- 1. Look at the *length* of a longest-common subsequence.
- 2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by |s|.

Strategy: Consider *prefixes* of *x* and *y*.

- Define c[i, j] = |LCS(x[1 ... i], y[1 ... j])|.
- Then, c[m, n] = |LCS(x, y)|.

Example 3: Edit distance

Given strings x, y, the **edit distance** ed(x, y) between x and y is defined as the minimum number of operations that we need to perform on x, in order to obtain y.

Definition: An Operations (in this context) Insertion/Deletion/ Replacement of a single character.

Examples:

Examples: ed(``aaba'', ``aaba'') = 0 ed(``aaa'', ``aaba'') = 1 ed(``aaaa'', ``abaa'') = 1 ed(``baaa'', ``abaa'') = 4 ed(``baaa'', ``aaab'') = 2

Example 3': "Priced' ' Edit distance *ed(x,y)*

Assume also given

InsCost, - the cost of a single **insertion** into x. *DelCost* - the cost of a single **deletion** from x, and RepCost - the cost of **replacing** one character of x by a different character.

Definition: Given strings x, y, the **edit distance** ed(x, y) between x and y is the cheapest sequence of operations, starting on x and ending at y.

Problem: Compute ed(x, y), and compute the sequence of operations.

