CS 445

Dynamic Programming

Some of the slides are courtesy of Charles
Leiserson with small changes by Carola Wenk

Example: Floyd Warshll Algorithm: é//
Computing all pairs shortest paths o=
&

Given G(VE), with weight w(v;,v;) given on each
of its edges (positive or negative), the output is a
matrix D[/..n, 1..n] such that (for every i,j)

Dli,j] is the length of the shortest path from v; to v;

How to find the shortest paths (and not only their
costs) will be discussed in in the homeworks.
(analogous to Dijkstra)

Assume no negative cycles exist in G(VE).

In the homework: Finding such cycles.

Assume V=(v; v;...v,)

Def P, (i,j) is the shortest path v; to v; avoiding any vertex from
{Vii1 v,/ asintermediate vertex.
Example: P, (i,j) could not go through any vertex of }.

Def D,[i,j] is its length of P, (i,j)

So if the edge (v;, v;) is in G then

Po(laf):7'(V;) v)}
Dy(ij)=w(v;, Vj)

If the edge (v;, v;) is not in £, then D(i,j)=+o (since any path
connecting them must use a vertex from V={v, v, }

OO

Forbidden:

Forbidd Forbidden:
o5 iy
Def Py (i,j) is the shortest path from v;to v; avoiding any vertex from
{Vis1. v,/ as an intermediate vertex. (the'sets {v,,; v,/ is forbidden)
Def D,[ij] is its length of P, (i,j)
*Assume D, _[i,j] has been computed (I <i, j <n).
* We now want to compute the matrix D,[7,/].
* Now we could (but don’t have to) go tﬁrough v, along the shortest
pathv,—v,.
+ Two option:

1. Going through v, is longer, and we better stick to P,_,(i,j) .
(prev%ous f01gmd Ashomestg path v,—v;). Or it

2. Use P, (i,k) ,the shortest path v,— v, to reach v, , and
continue P;_, (7(,]) along to v;

* Conclusion: D, |ij] = min(Dy [isjl, Dy [ik] + Dy jlkijl)

Floyd Warshll-Pairs Shortest Paths
Computing D, [i,j] for every i j,k.

Algorithm A/lPair(G) for all vertex pairs (i,j)
Use n tabels D, D, Eachisan nxn
if i=j then D[ii]< 0
else if (v;,v)) is an edge in G

Dylij] < w(v;,v;)
else

Dylij] < +e
for k < I to ndo

fori< 1 tondo
forj < I tondo
Dylij]=min{ Dy [ijl. Dy [i.k]+ Dy [kj]}

return D,

Floyd’ s algorithm: example

Floyd Warshll-Pairs Shortest Paths é//
Computing D, [i,j] for every i jk. “ ;

Algorithm A/lPair(G) for all vertex pairs (i,j)
Use n tabels D, D, Eachisan nxn
if i=j thenD[i,i] < 0
else if (v;,v)) is an edge in G

Dylij] <= w(v;,v)
else

Dylij] <+
for koe 1tondo Space ???

fori< I1tondo
forj < I/ tondo
Dylijl1=min{ Dy [ij], Dy li.k]+ Dy [k/]}

return D,

Running time O(n%)

Dynamic Programming:
Example 2: Longest Common Subsequance
We look at sequences of characters (strings)
e.g. x="ABCA”
Def: A subsequence of x is an sequence obtained from x by
possibly deleting some of its characters (but without changing

their order

Examples:
“ABC”, “ACA”, “AA”, “ABCA”

Def A prefix of x, denoted x/1..m], is the sequence of the first m
characters of x

Examples:
x[1..4]="ABCA” x[1..3]="ABC” x[1..2]="4AB”
x[1..1]="4" x[1..0]=""

Example 1: Longest C Subsequence (LCS)

 Given two sequences x[1 .. m] and y[1 . . n], find a longest
subsequence common to them both.

\ “ " “

a not "the

x: A/B (l: B\D /lx __ Ny
LCS(x, »)

wB D C A B A

”

Different phrasing: Find a set of a maximum number of segments,
such that

*Each segment connects a character of x to an identical character of y,
*Each character is used at most once

*Segments do not intersect.

Brute-force LCS algorithm

Checking every subsequence of x whether it is
also a subsequence of .

Analysis
* Checking = @(m+n) time per subsequence.
* 2 subsequences of x

Worst-case running time = O ((m+n)2")
= exponential time.

Towards a better algorithm

Simplification:
1. Look at the length of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s
by |s].

Strategy: Consider prefixes of x and y.
* Define c[7, j]= |LCS(x[1 .. i], y[1 .. /D]
* Then, c[m, n] = | LCS(x, »)|.

Recursive formulation
Theorem.
o {c[ifl,jfl]Jrl if x[i] = y[/],
cli, j1=

max {c[i-1,], c[i,j~1]} otherwise.

Proof: 1tis impossible that
x/i] is matched to an element in y//..j-1] and in addition
y[j] is matched to an element in x//..i-1]

12 i m

1 n

VT2 SR T - 11

Recursive formulation-cont
Case (I): x[i{]=y[j]. Claim: ¢/i, j]=c[i-1,j-1]+]1.

Proof.

12 i m
X: \ ;
n

CLOT OSSN - 1)

We claim that there is a max matching that matches x/i/ to y/j/.

Indeed, if x/i/ is matched to y/k/ (for k<j) then y/j] is unmatched
(otherwise we have two crossing segments). Hence we can obtain
another matching of the same cardinality by match x/i/ to v/j/.

This implies that we can match x//..i-1] to y[/..j-1], and add the
match (x/i/,y/j]). Soc/i, j]=c[i-1,j-1]+1

Recursive formulation-cont
Case (II): x[7] = y[j] Claim: c[i, j/]=max{c[i-1,j], c[i, j~1]}

Recall - in LCS(x[1 ..], y[1../]) it cannot be that both x[/] and
y[/] are both matched.
1 2 i m

g Y R

1 2
If x/i/ is unmatched then
LCS(x[1 .. 4], y[1..j)=LCSx[1 .. i-1],y[1 ..j])
If y/j] is unmatched then
LCS(x[1..i],y[1..j)=LCS(x[1..d],y[1..j-I])

n

So c[i, j]= max{c[i=1,], c[i, j-11}

Dynamic-programming
hallmark #1

Optimal substructure
An optimal solution to a problem
(instance) contains optimal
solutions to subproblems.

If z= LCS(x, y), then any prefix of z is
an LCS of a prefix of x and a prefix of y.

Recursive algorithm for LCS
LCS(x, y, i,))
if (i==0 or j=0) return 0
if x[i] = y[/]
then return LCS(x, y, i—1,/-1)+ 1
else return max{ LCS(x, y, i~1,)),
LCS(x, y, i, j-1)§

To call the function LCS(x, y, m,n)

Worst-case: x[i] = y[/]|, for all i,j in which case
the algorithm evaluates two subproblems, each
with only one parameter decremented.

Recursion tree

same
subproblem

Height = m + n = work potentially 2™ exponential.
but we’ re solving subproblems already solved!

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a
“small” number of distinct
subproblems repeated many times.

The number of distinct LCS subproblems for
two strings of lengths 7 and # is only mn.

Memoization algorithm

Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls check

the table to avoid redoing work.

LCS(x, y)
fori=0tom c[i,0]=0
forj=0ton c[0,j]=0
for i=1 to m
for j=1ton
if ([i] = y01)
then c[i, j] < c[i-1,/-1] +

1

else c[i, j] <= max{ c[i~1,/], c[i,j~1]}

Time = O(mn) = constant work per table entry.

Space = O(mn).

LCS: Dynamic-programming algorithm

LCS(X,Y)="BCBA”

Y=1234567
. ABCBDAB
TlolojJolojololodo
2E b Blololt|1[1f1]1]1
Ver ohg D0Jo[1J1]1]2]2]2
scloJol12]2]2]2]2
aalol1f1]221203]3
sBloJ12]2[3]3]3 4
salol1]2]2]3]3]4]4

Reconstruction ;=LCS(x,y)

IDEA: Compute the table bottom-up. Fill z backward.

Les(x,y)=“BCBA”

Observation: c¢/i;j/=c[i-1;j] and c/i;j] =c[i;j-1]

Proof Sketch: We use a longer prefix, so there x=BD GA A/

are more chars to be match.

y»=ABCBDAB

LCS Reconstruction:
Set i=m, j=n; k=c[i;j] ! é 13\: é 5 g Z
While(k>0){ A
if (c/i;j]>c[i-1,j] and c[i;j]>c[i;j-1]) { OO T T[]
?[k],”[g; s0lofLt]1[2(2]2

omy jom ;R
Yelse // cfizj]=c[i-1;j] or cfizj]=c[i-1;j] 3Cg ? i i i i i i
if (cfizj]==c[i;j-1]) j--; 4 ;
else i spl01[2[2[3[3]3[4
) 6al011[2(213[3[4]4

Reconstructing z=LCS(X,Y)

Another idea — While filling ¢//, add arrows to each
cell ¢/i,j] specifying which neighboring cell ¢/i,j] it
got its value.

o cfij]flag="“\"if c[i, j]=c[i-1;j-1]+1

< cfij] flag="1 “if c[i,j]=c[i-1,j]

«clij]flag = “<" if c[i, j]=c[i-1;j]

B C B A
0/-Q0[0J0][0][0J0
BLOO[1 |-1J1J1]1]1
0[10[114<1|-1]2]|2]2
CLOJt0[+1{2|-2l-2/2(2
0 1Jr1[120-2[2 (343
BLOJt1[2]-2]3|-3[3[4
AOI11121-2113.3]4 -4

Example 3: Edit distance

Given strings x,y, the edit distance ed(x,y) between x and y is
defined as the minimum number of operations that we need to
perform on x, in order to obtain y.

Defintion: An Operations (in this context) Insertion/Deletion/
Replacement of a single character.

Examples:

ed(“aaba”, “aaba”) =0
ed(“aaa”, “aaba”) =1
ed(“aaaa”, “abaa”) =1
ed(“paaa”, “") =4

'

ed(“baaa”, “aaab”) =2

Example 3" :
“Priced’’ Edit distance ed(x,y)

Assume also given
InsCost, - the cost of a single insertion into x.
DelCost - the cost of a single deletion from x, and
RepCost - the cost of replacing one character of x
by a different character.

Definition: Given strings x,y, the edit distance ed(x,y) between
xand y is the cheapest sequence of operations, starting on x and
ending at y.

Problem: Compute ed(x,y), and compute the sequence of
operations.

Thm:

Let cfi,j] = ed(x/1..i], y[1.j]).

Assume c/i-1,j-1], c¢[i-1,j-1], c[i-1,j] are already computed.

Ifx/i]=y[j] then c[ij] = c[i-1j-1]
Else // x/[i]=v/[j]
cfi,j] = min{

cfi-1,j-1]+RepCost, //convert x[1..i-1] Py/[1..j-1], and replace

yLj] by x[i]

cfi-1, j | +DelCost, //delete x/i] and convert x/1..i-1] = y[1..j]
¢f ij-1]+InsCost //convert x/1..i,] & y[1..j-1], and insert y/i]
)

s

Algorithm

Memoization: After computing a solution to a subproblem, store
it in a table. Subsequent calls check the table to avoid redoing

work.

ed(x,)
for i=0tom c[i, 0] =i DelCost
for j=0ton c[0,)]=jInsCost

for i=1 tom
for j=I1ton
if ([i] == y[/1)

then c[i,j] < ¢[i~1, j-1]

else c[i, /| <—min{ c[i-1,j] +
cfi-1,j-1]+
cfi,j-1] +
}

DelCost,
RepCost,
InsCost

Time = O(m n) = constant work per table entry. Space = O(m n).

