
CS 445

Dynamic Programming

Some of the slides are courtesy of Charles
Leiserson with small changes by Carola Wenk

Example: Floyd Warshll Algorithm:
Computing all pairs shortest paths

•  Given G(V,E), with weight w(vi ,vj) given on each
of its edges (positive or negative), the output is a
matrix D[1..n, 1..n] such that (for every i,j)

 D[i,j] is the length of the shortest path from vi to vj

•  How to find the shortest paths (and not only their
costs) will be discussed in in the homeworks.
(analogous to Dijkstra)

•  Assume no negative cycles exist in G(V,E).
•  In the homework: Finding such cycles.

Assume V=(v1, v2 … vn)

Def Pk (i,j) is the shortest path vi to vj avoiding any vertex from
{vk+1…vn } as intermediate vertex.
Example: Pk (i,j) could not go through any vertex of V.

Def Dk[i,j] is its length of Pk (i,j)

So if the edge (vi , vj) is in G then
 P0(i,j)={(vi , vj)}
 D0(i,j)=w(vi , vj)

If the edge (vi , vj) is not in E, then D0(i,j)=+∞ (since any path
connecting them must use a vertex from V={v1…vn }

v1 v2 v3
2 5

Def Pk (i,j) is the shortest path from vi to vj avoiding any vertex from
{vk+1…vn } as an intermediate vertex. (the sets {vk+1…vn } is forbidden)
Def Dk[i,j] is its length of Pk (i,j)
w Assume Dk-1[i,j] has been computed (1 < i, j <n).

w  We now want to compute the matrix Dk[i,j].
w  Now we could (but don’t have to) go through vk along the shortest
 path vi→ vj .
w  Two option:

1.  Going through vk is longer, and we better stick to Pk-1(i,j) . (previous found shortest path vi→ vj). Or
2.  Use Pk-1 (i,k) , the shortest path vi→ vk to reach vk , and

continue Pk-1 (k,j) along to vj.

w Conclusion: Dk[i,j] = min(Dk-1[i,j], Dk-1[i,k] + Dk-1[k,j])

vk

vj vi

Pk-1 (i,k)

Forbidden:
{vk…vn }.

Pk-1 (k,j)
Forbidden
{vk…vn }

Forbidden:
{vk. vn }

Pk-1 (i,j)

 Floyd Warshll-Pairs Shortest Paths
Computing Dk[i,j] for every i,j,k.

Algorithm AllPair(G) for all vertex pairs (i,j)
Use n tabels D0….Dn. Each is an n×n
if i = j then D0[i,i] ← 0
else if (vi ,vj) is an edge in G
 D0[i,j] ← w(vi ,vj)

else
 D0[i,j] ← +∞

for k ← 1 to n do
 for i ← 1 to n do
 for j ← 1 to n do
 Dk[i,j] = min{ Dk-1[i,j], Dk-1[i,k] + Dk-1[k,j] }

 return Dn

Floyd’s algorithm: example

2 1 3

2

8

3

5

2

D0 1 2 3
1 0 8 5
2 3 0 ∞
3 ∞ 2 0

D1 1 2 3

1 0
0+0

8
0+8

5
0+5

2 3
3+0

0
3+8

8
3+5

3 ∞
∞+0

2
∞+8

0
∞+5

D2 1 2 3

1 0
8+3

8
8+0

5
8+8

2 3
0+3

0
0+0

8
0+8

3 5
2+3

2
2+0

0
2+8

D3 1 2 3

1 0
5+5

7
5+2

5
5+0

2 3
8+5

0
8+2

8
8+0

3 5
0+5

2
0+2

0
0+0

 Floyd Warshll-Pairs Shortest Paths
Computing Dk[i,j] for every i,j,k.

Algorithm AllPair(G) for all vertex pairs (i,j)
Use n tabels D0….Dn. Each is an n×n
if i = j then D0[i,i] ← 0
else if (vi ,vj) is an edge in G
 D0[i,j] ← w(vi ,vj)

else
 D0[i,j] ← +∞

for k ← 1 to n do
 for i ← 1 to n do
 for j ← 1 to n do
 Dk[i,j] = min{ Dk-1[i,j], Dk-1[i,k] + Dk-1[k,j] }

 return Dn

Running time O(n3)

Space ???

We look at sequences of characters (strings)

e.g. x=“ABCA”

Def: A subsequence of x is an sequence obtained from x by
possibly deleting some of its characters (but without changing
their order

Examples:
“ABC”, “ACA”, “AA”, “ABCA”

Def A prefix of x, denoted x[1..m], is the sequence of the first m
characters of x

Examples:
x[1..4]=“ABCA” x[1..3]=“ABC” x[1..2]=“AB”
x[1..1]=“A” x[1..0]=“”

Dynamic Programming:
Example 2: Longest Common Subsequance

Example 1: Longest Common Subsequence (LCS)
•  Given two sequences x[1 . . m] and y[1 . . n], find a longest

subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”

BCBA =
LCS(x, y)

Different phrasing: Find a set of a maximum number of segments,
such that
• Each segment connects a character of x to an identical character of y,
• Each character is used at most once
• Segments do not intersect.

Brute-force LCS algorithm

Checking every subsequence of x whether it is
also a subsequence of y.

Analysis
• Checking = Θ(m+n) time per subsequence.
• 2m subsequences of x

Worst-case running time = Θ ((m+n)2m)
 = exponential time.

Towards a better algorithm
Simplification:
1.  Look at the length of a longest-common

subsequence.
2.  Extend the algorithm to find the LCS itself.

Strategy: Consider prefixes of x and y.
• Define c[i, j] = | LCS(x[1 . . i], y[1 . . j]) |.
• Then, c[m, n] = | LCS(x, y) |.

Notation: Denote the length of a sequence s
by | s |.

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Proof: It is impossible that
 x[i] is matched to an element in y[1..j-1] and in addition
 y[j] is matched to an element in x[1..i-1]

...
1 2 i m

...
1 2 j n

x:

y:
=

Recursive formulation-cont
Case (I): x[i] = y[j]. Claim: c[i, j]=c[i-1,j-1]+1.

We claim that there is a max matching that matches x[i] to y[j].

Indeed, if x[i] is matched to y[k] (for k<j) then y[j] is unmatched
(otherwise we have two crossing segments). Hence we can obtain
another matching of the same cardinality by match x[i] to y[j].

This implies that we can match x[1..i-1] to y[1..j-1], and add the
match (x[i],y[j]). So c[i, j]=c[i-1,j-1]+1

Proof.

...
1 2 i m

...
1 2 j n

x:

y:
=

Recursive formulation-cont
Case (II): x[i] ≠ y[j] Claim: c[i, j]=max{c[i–1, j], c[i, j–1]}

Recall - in LCS(x[1 . . i], y[1 . . j]) it cannot be that both x[i] and

y[j] are both matched.

...

1 2 i m

...

1 2 j n

x:

y:
=

If x[i] is unmatched then
 LCS(x[1 . . i], y[1 . . j])= LCS(x[1 . . i-1], y[1 . . j])

If y[j] is unmatched then
 LCS(x[1 . . i], y[1 . . j])= LCS(x[1 . . i], y[1 . . j-1])

So c[i, j]= max{c[i–1, j], c[i, j–1]}

Dynamic-programming
hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is
an LCS of a prefix of x and a prefix of y.

Recursive algorithm for LCS
LCS(x, y, i, j)
 if (i==0 or j=0) return 0

if x[i] = y[j]
then return LCS(x, y, i–1, j–1) + 1
else return max{ LCS(x, y, i–1, j),

 LCS(x, y, i, j–1)}

To call the function LCS(x, y, m,n)

Worst-case: x[i] ≠ y[j], for all i,j in which case
the algorithm evaluates two subproblems, each
with only one parameter decremented.

same
subproblem

but we’re solving subproblems already solved!

Recursion tree
m = 3, n = 4: 3,4

2,4

1,4

3,3

3,2 2,3

1,3 2,2

Height = m + n ⇒ work potentially 2m+n exponential.

2,3

1,3 2,2

m+n

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a
“small” number of distinct

subproblems repeated many times.

The number of distinct LCS subproblems for
two strings of lengths m and n is only m n.

Memoization algorithm
Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls check
the table to avoid redoing work.

Time = Θ(m n) = constant work per table entry.
Space = Θ(m n).

LCS(x, y)
for i=0 to m c[i, 0] = 0
for j=0 to n c[0, j] = 0

for i=1 to m
 for j=1 to n
 if (x[i] = y[j])

then c[i, j] ← c[i–1, j–1] + 1
else c[i, j] ← max{ c[i–1, j], c[i, j–1] }

D
C
A
B

A

LCS: Dynamic-programming algorithm

A B C B D B

B

A

0 0 0 0 0
0 0 1 1 1

0 0 0
1 1 1

0 0 1 1 1 2 2 2
0 0 1 2 2 2 2 2
0 1 1 2 2 2 3 3
0 1 2 2 3 3 3 4
0 1 2 2 3 3 4 4

1 2 3 4 5 6 7 Y=

1

2

3

4

5

6

X
=

LCS(X,Y)=“BCBA”

X=B D C A B A

Y=A B C B D A B

Reconstruction z=LCS(x,y)
IDEA: Compute the table bottom-up. Fill z backward.

0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1
0 0 1 1 1 2 2 D 2
0 0 1 2 2 2 2 C 2
0 1 1 2 2 2 3 A 3
0 1 2 2 3 3 3 B 4
0 1 2 2 3 3

A A B C B D B

B

A 4 4 4

0 0
B

B

A

1

C

C

2

B

B

3

A

A

D

1

A

2

D

3

B

4

LCS(x,y)=“BCBA”
Observation: c[i;j]≥c[i-1;j] and c[i;j] ≥c[i;j-1]
Proof Sketch: We use a longer prefix, so there
are more chars to be match.

x=B D C A B A

y=A B C B D A B
LCS Reconstruction:
Set i=m; j=n; k=c[i;j]
While(k>0){
 if (c[i;j]>c[i-1;j] and c[i;j]>c[i;j-1]) {
 z[k] = x[i] ;

 i--; j-- ; k-- ;
 }else // c[i;j]=c[i-1;j] or c[i;j]=c[i-1;j]
 if (c[i;j]==c[i;j-1]) j-- ;
 else i-- ;
}

1
2

3

4
5
6

1 2 3 4 5 6 7

Reconstructing z=LCS(X,Y)
Another idea – While filling c[], add arrows to each
cell c[i,j] specifying which neighboring cell c[i,j] it
got its value.
•  c[i,j].flag = “\ “ if c[i,,j]=c[i-1;j-1]+1
•  c[i,j].flag = “↑ “ if c[i,,j]=c[i-1;j]
• c[i,j].flag = “←“ if c[i,,j]=c[i-1;j]

0 0 0 0 0 0 0 0
0 ↑0 1 ←1 1 1 1 1
0 ↑0 1 ←1 ←1 2 2 D 2
0 ↑0 ↑1 2 ←2 ←2 2 C 2
0 1 ↑1 2 ←2 2 3 A 3
0 ↑1 2 ←2 3 3 3 B 4
0 1 ↑2 ←2 ↑3 ←3

A A B C B D B

B

A 4 4

0
A

←4

←0
B

B
↑1

C

C

↑2
B

B

←3

A

A

D
1

A
2

D

3

B

4

Example 3: Edit distance
Given strings x,y, the edit distance ed(x,y) between x and y is
defined as the minimum number of operations that we need to
perform on x, in order to obtain y.

Defintion: An Operations (in this context) Insertion/Deletion/
Replacement of a single character.

Examples:
ed(“aaba”, “aaba”) = 0
 ed(“aaa”, “aaba”) = 1
 ed(“aaaa”, “abaa”) = 1
 ed(“baaa”, “”) =4
 ed(“baaa”, “aaab”) =2

Example 3’:
``Priced’’ Edit distance ed(x,y)

Assume also given
 InsCost, - the cost of a single insertion into x.
 DelCost - the cost of a single deletion from x, and
 RepCost - the cost of replacing one character of x
 by a different character.

Definition: Given strings x,y, the edit distance ed(x,y) between
x and y is the cheapest sequence of operations, starting on x and
ending at y.

Problem: Compute ed(x,y), and compute the sequence of
operations.

Thm:
Let c[i,j] = ed(x[1..i], y[1..j]).
Assume c[i-1,j-1], c[i-1,j-1] , c[i-1,j] are already computed.

If x[i]=y[j] then c[i,j] = c[i-1,j-1]
Else // x[i]≠y[j]
 c[i,j] = min{

 c[i-1,j-1]+RepCost, //convert x[1..i-1]èy[1..j-1], and replace
y[j] by x[i]

 c[i-1, j] +DelCost, //delete x[i] and convert x[1..i-1]è y[1..j]
 c[i,j-1]+InsCost //convert x[1..i,]è y[1..j-1], and insert y[i]
 }

}

Algorithm
Memoization: After computing a solution to a subproblem, store
it in a table. Subsequent calls check the table to avoid redoing
work.

Time = Θ(m n) = constant work per table entry. Space = Θ(m n).

ed(x, y)
for i=0 to m c[i, 0] = i DelCost
for j=0 to n c[0, j] = j InsCost

for i=1 to m
 for j=1 to n
 if (x[i] == y[j])

then c[i, j] ← c[i–1, j–1]
else c[i, j] ←min{ c[i-1 , j] + DelCost,

 c[i-1, j-1] + RepCost,
 c[i , j-1] + InsCost
 }

