Example: Floyd Warshall Algorithm:
Computing all pairs shortest paths

- Given $G(V,E)$, with weight $w(v_i,v_j)$ given on each of its edges (positive or negative), the output is a matrix $D[i..n, j..n]$ such that (for every i,j)
 $$D[i,j]$$
 is the length of the shortest path from v_i to v_j
- How to find the shortest paths (and not only their costs) will be discussed in the homeworks.
 (analogous to Dijkstra)
- Assume no negative cycles exist in $G(V,E)$.
- In the homework: Finding such cycles.

Assume $V = \{v_1, v_2, \ldots, v_n\}$

Def $P_k(i,j)$ is the shortest path v_i to v_j avoiding any vertex from $\{v_{k+1} \ldots v_n\}$ as intermediate vertex.
Example: $P_k(i,j)$ could not go through any vertex of V.

Def $D_k[i,j]$ is its length of $P_k(i,j)$

So if the edge (v_i, v_j) is in G then

$$P_k(i,j) = (v_i, v_j)$$
$$D_k(i,j) = w(v_i, v_j)$$

If the edge (v_i, v_j) is not in E, then $D_k(i,j) = +\infty$ (since any path connecting them must use a vertex from $V = \{v_1, v_n\}$)
Def $P_{i,j}(k)$ is the shortest path from v_i to v_j avoiding any vertex from $\{v_{k+1} \ldots v_n\}$ as an intermediate vertex. (the sets $\{v_k \ldots v_n\}$ is forbidden)
Def $D_{i,j}(k)$ is its length of $P_{i,j}(k)$

Assume $D_{i,j}(k-1)$ has been computed ($1 < i,j < n$).

We now want to compute the matrix $D_{i,j}(k)$.

Now we could (but don’t have to) go through v_k along the shortest path $v_i \rightarrow v_j$.

Two option:
1. Going through v_k is longer, and we better stick to $P_{i,j}(k-1)$, the previous found shortest path $v_i \rightarrow v_j$.
2. Use $P_{i,k}(k)$, the shortest path $v_i \rightarrow v_k$ to reach v_k, and continue $P_{k,j}(k)$ along to v_j.

Conclusion:
$D_{i,j}(k) = \min(D_{i,j}(k-1), D_{i,k}(k-1) + D_{k,j}(k-1))$

Floyd Warshall-Pairs Shortest Paths
Computing $D_{i,j}(k)$ for every i,j,k.

Algorithm AllPair(G) for all vertex pairs (i,j)
Use n tables $D_0 \ldots D_n$. Each is an $n \times n$
if $i = j$ then $D_0[i,j] := 0$
else if (v_i, v_j) is an edge in G
$D_0[i,j] := w(v_i, v_j)$
else
$D_0[i,j] := +\infty$
for k from 1 to n
do
for i from 1 to n
do
for j from 1 to n
do
$D_k[i,j] = \min(D_k[i,j], D_k[i,k] + D_k[k,j])$
return D_n

Floyd’s algorithm: example
Floyd Warshall-Pairs Shortest Paths

Computing D_{ij} for every i,j,k.

Algorithm AllPair(G) for all vertex pairs (i,j)
Use n tables D_0, D_1, \ldots, each an $n \times n$ table.
- If $i = j$ then $D_0[i,j] \leftarrow 0$
- Else if (v_i, v_j) is an edge in G
 $D_0[i,j] \leftarrow w(v_i, v_j)$
- Else
 $D_0[i,j] \leftarrow +\infty$

for $k \leftarrow 1$ to n
do
 for $i \leftarrow 1$ to n
do
 for $j \leftarrow 1$ to n
do
 $D_k[i,j] = \min\{ D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j] \}$

return D_n

Running time $O(n^3)$

Space ???

Dynamic Programming:
Example 2: Longest Common Subsequence

We look at sequences of characters (strings)

e.g. $x = \text{"ABCA"}$

Def A subsequence of x is a sequence obtained from x by possibly deleting some of its characters (but without changing their order)

Examples: "ABC", "ACA", "AA", "ABC"

Def A prefix of x, denoted $x[1..m]$, is the sequence of the first m characters of x

Examples:

$x[1..4] = \text{"ABC"}$
$x[1..3] = \text{"ABC"}$
$x[1..2] = \text{"AB"}$
$x[1..1] = \text{"A"}$
$x[1..0] = \text{""}$

Example 1: Longest Common Subsequence (LCS)

- Given two sequences $x[1..m]$ and $y[1..n]$, find a longest subsequence common to them both.

 "a" not "the"

x: A B C B D A B
y: B D C A B A

BCBA = LCS(x, y)

Different phrasing: Find a set of a maximum number of segments, such that

- Each segment connects a character of x to an identical character of y,
- Each character is used at most once
- Segments do not intersect.
Brute-force LCS algorithm

Checking every subsequence of \(x \) whether it is also a subsequence of \(y \).

Analysis

• Checking = \(\Theta(m+n) \) time per subsequence.
• \(2^m \) subsequences of \(x \)

Worst-case running time = \(\Theta((m+n)2^m) \)
 = exponential time.

Towards a better algorithm

Simplification:
1. Look at the length of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence \(s \) by \(|s| \).

Strategy: Consider prefixes of \(x \) and \(y \).

• Define \(c[i, j] = |\text{lcs}(x[1..i], y[1..j])| \).
• Then, \(c[m, n] = |\text{lcs}(x, y)| \).

Recursive formulation

Theorem.

\[
c[i, j] = \begin{cases}
 c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\
 \max\{c[i-1, j], c[i, j-1]\} & \text{otherwise}.
\end{cases}
\]

Proof: It is impossible that \(x[i] \) is matched to an element in \(y[1..j-1] \) and in addition \(y[j] \) is matched to an element in \(x[1..i-1] \).
Recursive formulation-cont

Case (I): \(x[i] = y[j] \). Claim: \(c[i, j] = c[i-1, j-1] + 1 \).

Proof:

We claim that there is a max matching that matches \(x[i] \) to \(y[j] \).

Indeed, if \(x[i] \) is matched to \(y[k] \) (for \(k < j \)) then \(y[j] \) is unmatched (otherwise we have two crossing segments). Hence we can obtain another matching of the same cardinality by match \(x[i] \) to \(y[j] \).

This implies that we can match \(x[1..i-1] \) to \(y[1..j-1] \), and add the match \((x[i], y[j]) \). So \(c[i, j] = c[i-1, j-1] + 1 \).

Dynamic-programming hallmark #1

Optimal substructure

An optimal solution to a problem (instance) contains optimal solutions to subproblems.

If \(z = LCS(x, y) \), then any prefix of \(z \) is an LCS of a prefix of \(x \) and a prefix of \(y \).
Recursive algorithm for LCS

\[
LCS(x, y, i, j) = \\
\begin{cases}
0 & \text{if } (i == 0 \text{ or } j == 0) \\
LCS(x, y, i-1, j-1) + 1 & \text{if } x[i] = y[j] \\
\max \{ LCS(x, y, i-1, j), LCS(x, y, i, j-1) \} & \text{else}
\end{cases}
\]

To call the function \(LCS(x, y, m, n) \)

Worst-case: \(x[i] \neq y[j] \), for all \(i,j \) in which case the algorithm evaluates two subproblems, each with only one parameter decremented.

Recursion tree

\(m = 3, n = 4: \)

Height \(m + n \) ⇒ work potentially \(2^{m+n} \) exponential, but we’re solving subproblems already solved!

Dynamic-programming hallmark #2

Overlapping subproblems

A recursive solution contains a "small" number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths \(m \) and \(n \) is only \(mn \).
Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

\[
\text{LCS}(x, y) = \begin{cases}
0 & \text{if } x = \emptyset \text{ or } y = \emptyset \\
\text{LCS}(x[1:], y[1:]) + 1 & \text{if } x[i] = y[j] \\
\max\{ \text{LCS}(x[1:], y[j]), \text{LCS}(x[i], y[1:]) \} & \text{otherwise}
\end{cases}
\]

Time = \(\Theta(mn)\) = constant work per table entry.
Space = \(\Theta(mn)\).

LCS: Dynamic-programming algorithm

LCS(X,Y)=”BCBA”

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Y</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1B</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2D</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3C</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4A</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5B</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6A</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Reconstruction z=LCS(x,y)

IDEA: Compute the table bottom-up. Fill z backward.

Observation: \(c[i][j] \geq c[i-1][j]\) and \(c[i][j] \geq c[i][j-1]\)

Proof Sketch: We use a longer prefix, so there are more chars to be matched.
Reconstructing $z = LCS(X,Y)$

Another idea – While filling $c[i,j]$, add arrows to each cell $c[i,j]$ specifying which neighboring cell $c[i,j]$ it got its value.

- $c[i,j].flag = \) if $c[i,j] = c[i-1,j-1]+1$
- $c[i,j].flag = \uparrow$ if $c[i,j] = c[i-1,j]$
- $c[i,j].flag = \leftarrow$ if $c[i,j] = c[i-1,j]$

Example 3: Edit distance

Given strings x,y, the edit distance $ed(x,y)$ between x and y is defined as the minimum number of operations that we need to perform on x, in order to obtain y.

Definition: An operation (in this context) is Insertion/Deletion/Replacement of a single character.

Examples:
- $ed("aaba", "aaba") = 0$
- $ed("aaa", "aaba") = 1$
- $ed("aaa", "abaa") = 1$
- $ed("baba", "") = 4$
- $ed("baba", "aaab") = 2$

Example 3': "Priced" Edit distance ed(x,y)

Assume also given

- InsCost - the cost of a single insertion into x.
- DelCost - the cost of a single deletion from x, and
- RepCost - the cost of replacing one character of x by a different character.

Definition: Given strings x,y, the edit distance $ed(x,y)$ between x and y is the cheapest sequence of operations, starting on x and ending at y.

Problem: Compute $ed(x,y)$, and compute the sequence of operations.
Thm:

Let $c[i,j] = ed(x[1..i], y[1..j])$. Assume $c[i-1,j-1], c[i-1,j], c[i,j]$ are already computed.

If $x[i] = y[j]$ then $c[i,j] = c[i-1,j-1]$
Else if $x[i] \neq y[j]$ $c[i,j] = \min$
 $c[i-1,j-1] + \text{RepCost}$, // convert $x[1..i-1] \Rightarrow y[1..j-1]$, and replace $y[j]$ by $x[i]
 c[i-1,j] + \text{DelCost}$, // delete $x[i]$ and convert $x[1..i-1] \Rightarrow y[1..j]
 c[i,j-1] + \text{InsCost}$ // convert $x[1..i] \Rightarrow y[1..j-1]$, and insert $y[j]$

Algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

```plaintext
ed(x, y)
for i=0 to m    c[i, 0] = i * DelCost
for j=0 to n    c[0, j] = j * InsCost

for i=1 to m
  for j=1 to n
    if (x[i] == y[j])
      then $c[i,j] \leftarrow c[i-1,j-1]
     else $c[i,j] \leftarrow \min$
         $c[i-1,j] + \text{DelCost}$,
         $c[i,j-1] + \text{RepCost}$,
         $c[i-1,j-1] + \text{InsCost}$

Time = $O(mn)$ = constant work per table entry. Space = $O(mn)$.
```

Dynamic Time Wrapping

- On whiteboard
Dynamic programming for TSP

- **Input:** A graph (V,E), where $d[i,j]$ is the cost of edge (i,j).
- **Problem:** find a shortest path starting at node 1 and visits each node exactly once. Naive solution takes $O(|V|!)$.
- Given $S \subseteq V$ let $C(S,k)$ be the cost of shortest path starting at node 1, visits all nodes in S and ending at k.
- Properties
 - if $S=\{1,k\}$, then $C(S,k)=d(1,k)$ (for $k=2,3,\ldots,n$)
 - if $|S|>2$, then $\exists m \in S-\{k\}$ such that $C(S,k)=d[m,k] + \text{cost of optimal tour that starts from node 1, ends at } m$, and visits all nodes of $S-\{k\}$. That is, $C(S,k)=C(S-\{k\},m)+d[m,k]$

Algorithm

- for $k=2$ to n do $C(\{1,k\},k)=d[1,k]$
- for $t=3$ to n do
 - for all $S \subseteq \{1,2,\ldots,n\}, |S|=t$ do
 - for all $k \in S$ do
 - $C(S,k)=\min\{C(S-\{k\},m)+d[m,k] \mid m \neq k, m \in S \}$

Every subset S of V is evaluated once, and we spend $O(n)$ time for this subset, total $O(n^2)$. Space: $O(2^n)$

Does it worth the effort?

$O(n^2)$ vs $O(n!)$

<table>
<thead>
<tr>
<th>n</th>
<th>2^n</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1024</td>
<td>> 3.6M</td>
</tr>
<tr>
<td>20</td>
<td>1M</td>
<td>> 10^{18}</td>
</tr>
<tr>
<td>30</td>
<td>10^9</td>
<td>> 10^{35}</td>
</tr>
</tbody>
</table>
Another application: Clustering

- Given points \(P = \{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\} \)
- Find a line minimizing \(Err(\ell, P) \)
- \(Err(\ell, P) = \sum_{i=1}^{n} (y_i - ax_i - b)^2 \)
- That is, the sum of squares of vertical distances from each \((x_i, y_i)\) to \(\ell \).
- Solution:
 \[
 a = \frac{n \sum x y - (\sum x)(\sum y)}{n \sum x^2 - (\sum x)^2} \\
 b = \frac{\sum y - a \sum x}{n}
 \]

Clustering Problem

- Given points \(P = (p_1, p_2, \ldots, p_n) \) sorted from left to right, and a penalty \(R \), find optimal \(k \), and partition of \(P \) into \(k \) runs
- \((p_1, p_2, \ldots, p_i), (p_{i+1}, \ldots, p_{i+2}), \ldots, (p_{n-1}, \ldots, p_n)\)
- and lines \(\ell_1, \ldots, \ell_k \) (one per each run) such that the sum
 \[
 R + \sum_{i=1}^{k} Err(\ell_i, \{ p_i, p_{i+1}, \ldots, p_1 \})
 \]
 is as small as possible.
- Note if \(R = 0 \), we probably used \(n \) runs. If \(R \) is huge, we probably finds a single run. In the example probably \(k = 3 \), \(i_1 = 5 \), \(i_2 = 9 \) for most values of \(R \).

Algorithm:

- Preprocessing: For each \(j < i \), compute the line \(\ell \) minimizing the error for the set \(\{ p_j, p_{j+1}, \ldots, p_i \} \).
 Let \(c(j, i) = Err(\ell, \{ p_j, p_{j+1}, \ldots, p_i \}) \).
- Idea: Let \(c[i] \) = cost of the opt clustering problem for the set \(\{ p_1, \ldots, p_i \} \).
- Init: \(c[0] = 0 \).
- For \(i = 2 \) to \(n \) do:
 \[
 c[i] = \min \{ R + c[j] + c[j+1, i] \mid 0 \leq j < i \}
 \]
- Return \(c[n] \).
Summarizing

• The algorithm takes $O(n^4)$ and $O(n^3)$ space
• (for preprocessing $d[i,j]$)
• Note – we did not discuss how to reconstruct the solution itself. We only calculated its cost