
CS 445  

Dynamic Programming 
 

Some of the slides are courtesy of Charles 
Leiserson with small changes by Carola Wenk  

Example: Floyd Warshll Algorithm: 
Computing all pairs shortest paths 

•  Given G(V,E), with weight w(vi ,vj ) given on each 
of its edges (positive or negative), the output is a 
matrix D[1..n, 1..n]  such that (for every i,j) 

   D[i,j]  is the length of the shortest path from vi  to vj 

•   How to find the shortest paths (and not only their 
costs) will be discussed in in the homeworks. 
(analogous to Dijkstra)  

•  Assume no negative cycles exist in G(V,E).  
•  In the homework: Finding such cycles.  

Assume V=(v1, v2 … vn )  
 
Def  Pk (i,j) is the shortest path vi to vj  avoiding any vertex from      
{vk+1…vn } as intermediate vertex.  
Example: Pk (i,j) could not go through any vertex of V.  
   
Def Dk[i,j]  is its length of Pk (i,j)  

So if the edge (vi , vj  ) is in G then  
   P0(i,j)={(vi , vj  )} 
    D0(i,j)=w(vi , vj  )  

 
If the edge (vi , vj  ) is not in E, then D0( i,j)=+∞  (since any path 
connecting them must use a vertex from V={v1…vn }  
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Def  Pk (i,j) is the shortest path from vi to vj  avoiding any vertex from      
{vk+1…vn } as an intermediate vertex. (the sets {vk+1…vn } is forbidden) 
Def Dk[i,j]  is its length of Pk (i,j)  
w Assume Dk-1[i,j] has been computed (1 < i, j <n).  

w  We now want to compute the matrix Dk[i,j].  
w  Now we could (but don’t have to) go through vk along the shortest 
    path vi→ vj  .  
w  Two option: 

1.  Going through vk  is longer, and we better stick to Pk-1( i,j ) . (previous found shortest path vi→ vj ). Or  
2.  Use  Pk-1 (i,k)  , the shortest path vi→ vk  to reach vk , and 

continue Pk-1 (k,j)  along to vj.  

w Conclusion: Dk[i,j] = min( Dk-1[i,j],   Dk-1[i,k] + Dk-1[k,j] ) 
 

vk 
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Pk-1 (i,k)  

Forbidden: 
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Pk-1 (k,j)  
Forbidden 
{vk…vn } 

Forbidden: 
{vk. vn } 

Pk-1 (i,j)  

 Floyd Warshll-Pairs Shortest Paths 
Computing  Dk[i,j]   for every i,j,k. 

Algorithm AllPair(G) for all vertex pairs (i,j)  
Use n tabels  D0….Dn.  Each is an  n×n  
if  i = j   then D0[i,i] ← 0 
else if (vi ,vj) is an edge in G 
  D0[i,j] ← w(vi ,vj ) 

else 
  D0[i,j] ← +∞ 

for k ← 1 to n do     
 for i ← 1 to n do     
    for j ← 1 to n do 
    Dk[i,j] = min{  Dk-1[i,j],  Dk-1[i,k] + Dk-1[k,j] } 

 return Dn 

Floyd’s algorithm: example 
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 Floyd Warshll-Pairs Shortest Paths 
Computing  Dk[i,j]   for every i,j,k. 

Algorithm AllPair(G) for all vertex pairs (i,j)  
Use n tabels  D0….Dn.  Each is an  n×n  
if  i = j   then D0[i,i] ← 0 
else if (vi ,vj) is an edge in G 
  D0[i,j] ← w(vi ,vj ) 

else 
  D0[i,j] ← +∞ 

for k ← 1 to n do     
 for i ← 1 to n do     
    for j ← 1 to n do 
    Dk[i,j] = min{  Dk-1[i,j],  Dk-1[i,k] + Dk-1[k,j] } 

 return Dn 

Running time O(n3) 
 
Space ???  

 
We look at sequences of characters (strings)  
 
e.g.     x=“ABCA” 
 
Def: A subsequence of x is an sequence obtained from x by 
possibly deleting some of its characters (but without changing 
their order 
 
Examples:  
“ABC”,   “ACA”,    “AA”,  “ABCA” 
 
Def A prefix of x, denoted x[1..m], is the sequence of the first m 
characters of x  
 
Examples: 
x[1..4]=“ABCA”   x[1..3]=“ABC”   x[1..2]=“AB” 
x[1..1]=“A”   x[1..0]=“” 

Dynamic Programming:  
Example 2: Longest Common Subsequance  

 

Example 1: Longest Common Subsequence (LCS) 
•  Given two sequences x[1 . . m] and y[1 . . n], find a longest 

subsequence common to them both. 

x: A B C B D A B 

y: B D C A B A 

“a” not  “the” 

BCBA = 
LCS(x, y) 

Different phrasing: Find a set of a maximum number of segments,  
such that  
• Each segment connects a character of x to an identical character of y,    
• Each character is used at most once 
• Segments do not intersect.  



Brute-force LCS algorithm 

Checking every subsequence of x whether it is 
also a subsequence of  y.  

Analysis 
• Checking = Θ(m+n) time per subsequence. 
• 2m subsequences of x   

Worst-case running time = Θ ((m+n)2m) 
 = exponential time. 

Towards a better algorithm 
Simplification: 
1.  Look at the length of a longest-common 

subsequence.   
2.  Extend the algorithm to find the LCS itself. 

Strategy: Consider prefixes of x and y. 
• Define c[i, j] = | LCS(x[1 . . i], y[1 . . j]) |. 
• Then, c[m, n] = | LCS(x, y) |. 

Notation: Denote the length of a sequence s 
by | s |. 

Recursive formulation 
Theorem. 

c[i, j] = 
c[i–1, j–1] + 1  if x[i] = y[j], 
max{c[i–1, j], c[i, j–1]}  otherwise. 

Proof: It is impossible that  
 x[i] is matched to an element in y[1..j-1] and in addition  
 y[j] is matched to an element in x[1..i-1] 

... 
1 2 i m 

... 
1 2 j n 

x: 

y: 
= 



Recursive formulation-cont 
Case (I):  x[i] = y[j].    Claim: c[i, j]=c[i-1,j-1]+1. 

We claim that there is a max matching that matches x[i] to y[j].  
 
Indeed, if x[i] is matched to y[k] (for k<j) then y[j] is unmatched 
(otherwise we have two crossing segments). Hence we can obtain 
another matching of the same cardinality by match x[i] to y[j]. 
 
This implies that we can match x[1..i-1] to y[1..j-1], and add the 
match (x[i],y[j]).  So c[i, j]=c[i-1,j-1]+1   

Proof.   

... 
1 2 i m 

... 
1 2 j n 

x: 

y: 
= 

Recursive formulation-cont 
Case (II): x[i] ≠ y[ j]   Claim:  c[i, j]=max{c[i–1, j], c[i, j–1]} 
 
Recall -  in  LCS(x[1 . . i], y[1 . . j]) it cannot be that both x[i] and 

y[j] are both matched.  
 
 
 
 
 
 
 
 

... 

1 2 i m 

... 

1 2 j n 

x: 

y: 
= 

If x[i] is unmatched then   
  LCS(x[1 . . i], y[1 . . j])= LCS(x[1 . . i-1], y[1 . . j] ) 

If y[j] is unmatched then   
  LCS(x[1 . . i], y[1 . . j])= LCS(x[1 . . i], y[1 . . j-1] ) 

 
So c[i, j]= max{c[i–1, j], c[i, j–1]} 

Dynamic-programming 
hallmark #1 

Optimal substructure 
An optimal solution to a problem 

(instance) contains optimal 
solutions to subproblems. 

If z = LCS(x, y), then any prefix of z is 
an LCS of a prefix of x and a prefix of y. 



Recursive algorithm for LCS 
LCS(x, y, i, j) 
     if ( i==0 or j=0) return 0  

if x[i] = y[ j]  
then return  LCS(x, y, i–1, j–1) + 1 
else return max{  LCS(x, y, i–1, j), 

 LCS(x, y, i, j–1)} 
 
To call the function LCS(x, y, m,n ) 

  
Worst-case: x[i] ≠ y[ j],  for all i,j in which case 
the algorithm evaluates two subproblems, each 
with only one parameter decremented. 

same 
subproblem 

 
but we’re solving subproblems already solved! 

Recursion tree 
m = 3, n = 4: 3,4 

2,4 

1,4 

3,3 

3,2 2,3 

1,3 2,2 

Height = m + n ⇒ work potentially 2m+n exponential. 

2,3 

1,3 2,2 

m+n 

Dynamic-programming 
hallmark #2 

Overlapping subproblems 
A recursive solution contains a 
“small” number of distinct 

subproblems repeated many times. 

The number of distinct LCS subproblems for 
two strings of lengths m and n is only m n. 



Memoization algorithm 
Memoization:  After computing a solution to a 
subproblem, store it in a table.  Subsequent calls check 
the table to avoid redoing work. 

Time = Θ(m n) = constant work per table entry. 
Space = Θ(m n).  

LCS(x, y) 
for i=0 to m   c[i, 0] = 0 
for j=0 to n    c[0, j] = 0 
 
for i=1 to m   
   for j=1 to n   
       if (x[i] = y[j] ) 

then c[i, j] ← c[ i–1, j–1]  + 1 
else c[i, j] ← max{ c[ i–1, j],  c[i, j–1] }  
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LCS(X,Y)=“BCBA” 

X=B D C A B A 

Y=A B C B D A B 

Reconstruction z=LCS(x,y) 
IDEA:  Compute the table bottom-up. Fill z backward.  

0 0 0 0 0 0 0 0 
0 0 1 1 1 1 1 1 
0 0 1 1 1 2 2 D 2 
0 0 1 2 2 2 2 C 2 
0 1 1 2 2 2 3 A 3 
0 1 2 2 3 3 3 B 4 
0 1 2 2 3 3 
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LCS(x,y)=“BCBA” 
Observation:  c[i;j]≥c[i-1;j] and c[i;j] ≥c[i;j-1]  
Proof Sketch: We use a longer prefix, so there 
are more chars to be match.   

x=B D C A B A 

y=A B C B D A B 
LCS Reconstruction:  
Set i=m;  j=n;  k=c[i;j]  
While(k>0){ 
   if (c[i;j]>c[i-1;j] and c[i;j]>c[i;j-1] ) { 
     z[k] = x[i] ; 

 i--; j-- ; k--  ;  
   }else // c[i;j]=c[i-1;j] or c[i;j]=c[i-1;j]  
   if  (c[i;j]==c[i;j-1])  j-- ;  
   else i--  ;  
} 
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Reconstructing z=LCS(X,Y) 
Another idea – While filling c[], add arrows to each 
cell c[i,j]  specifying which neighboring cell c[i,j] it 
got its value.  
•  c[i,j].flag = “\ “ if c[i,,j]=c[ i-1;j-1]+1  
•  c[i,j].flag = “↑ “ if c[i,,j]=c[i-1;j ] 
• c[i,j].flag = “←“ if c[i,,j]=c[i-1;j ] 

0 0 0 0 0 0 0 0 
0 ↑0 1 ←1 1 1 1 1 
0 ↑0 1 ←1 ←1 2 2 D 2 
0 ↑0 ↑1 2 ←2 ←2 2 C 2 
0 1 ↑1 2 ←2 2 3 A 3 
0 ↑1 2 ←2 3 3 3 B 4 
0 1 ↑2 ←2 ↑3 ←3 

A A B C B D B 

B 

A 4 4 

0 
A 

←4 

←0 
B 

B 
↑1 

C 

C 

↑2 
B 

B 

←3 

A 

A 

D 
1 

A 
2 

D 

3 

B 

4 

Example 3: Edit distance 
Given strings x,y,  the edit distance  ed(x,y) between x and y  is 
defined as the minimum number of operations that we need to 
perform on x, in order to obtain y.    
 
Defintion: An Operations (in this context)  Insertion/Deletion/
Replacement of a single character. 
 
Examples:  
ed(“aaba”, “aaba”)  = 0 
 ed(“aaa”, “aaba”)  = 1 
 ed(“aaaa”, “abaa”)  = 1 
 ed(“baaa”, “”)  =4 
 ed(“baaa”, “aaab”)  =2  
  
 
 
 

Example 3’: 
``Priced’’ Edit distance ed(x,y) 

Assume also given 
 InsCost, - the cost of a single insertion into x.   
 DelCost - the cost of a single deletion from x, and  
 RepCost - the cost of  replacing one character of x   
        by a different character.  

 
Definition: Given strings x,y,  the edit distance  ed(x,y) between 
x and y  is the cheapest sequence of operations, starting on x and 
ending at y.    
 
Problem: Compute ed(x,y), and compute the sequence of 
operations.  
 



Thm: 
Let c[i,j] = ed( x[1..i], y[1..j] ).  
Assume c[i-1,j-1], c[i-1,j-1] , c[i-1,j]    are already computed.   
  
If x[i]=y[j]  then  c[i,j] = c[i-1,j-1] 
Else //  x[i]≠y[j]   
   c[i,j] = min{   

 c[i-1,j-1]+RepCost, //convert x[1..i-1]èy[1..j-1], and replace 
y[j] by x[i] 

  c[i-1, j ] +DelCost,  //delete x[i] and convert x[1..i-1]è y[1..j] 
 c[ i,j-1]+InsCost     //convert x[1..i,]è y[1..j-1], and insert y[i] 
 } 

} 
 
 
 
 

Algorithm 
Memoization:  After computing a solution to a subproblem, store 
it in a table.  Subsequent calls check the table to avoid redoing 
work. 

Time = Θ(m n) = constant work per table entry. Space = Θ(m n).  

ed(x, y) 
for i=0 to m   c[i, 0] = i DelCost  
for j=0 to n    c[0, j] = j InsCost 
 
for i=1 to m   
   for j=1 to n   
       if (x[i] == y[j] ) 

then c[i, j] ← c[ i–1, j–1] 
else c[i, j] ←min{  c[ i-1 , j ]    +  DelCost,  

 c[ i-1, j-1 ] +  RepCost,  
 c[ i , j-1]    +  InsCost  
 } 

 


