CS 445

Dynamic Programming

Some of the slides are courtesy of Charles Leiserson with small changes by Carola Wenk

Example: Floyd Warshll Algorithm: Computing all pairs shortest paths

- Given $G(V, E)$, with weight $w\left(v_{i}, v_{j}\right)$ given on each of its edges (positive or negative), the output is a matrix $D[1 . . n, 1 . . n]$ such that (for every i, j) $D[i, j]$ is the length of the shortest path from v_{i} to v_{j}
- How to find the shortest paths (and not only their \qquad costs) will be discussed in in the homeworks. (analogous to Dijkstra)
- Assume no negative cycles exist in $G(V, E)$.
- In the homework: Finding such cycles.

Assume $V=\left(v_{1}, v_{2} \ldots v_{n}\right)$

\qquad
Def $\boldsymbol{P}_{\boldsymbol{k}}(i, j)$ is the shortest path v_{i} to v_{j} avoiding any vertex from $\left\{v_{k+1 \ldots} v_{n}\right\}$ as intermediate vertex.
Example: $\boldsymbol{P}_{\boldsymbol{k}}(i, j)$ could not go through any vertex of V.
Def $D_{k}[i, j]$ is its length of $P_{k}(i, j)$ \qquad
So if the edge $\left(\boldsymbol{v}_{\boldsymbol{i}}, \boldsymbol{v}_{\boldsymbol{j}}\right)$ is in G then
$P_{0}(i, j)=\left\{\left(\boldsymbol{v}_{\boldsymbol{i}}, \boldsymbol{v}_{\boldsymbol{j}}\right)\right\}$
$D_{0}(i, j)=w\left(\boldsymbol{v}_{\boldsymbol{i}}, \boldsymbol{v}_{\boldsymbol{j}}\right)$
If the edge $\left(\boldsymbol{v}_{\boldsymbol{i}}, \boldsymbol{v}_{\boldsymbol{j}}\right)$ is not in E, then $D_{0}(i, j)=+\infty$ (since any path connecting them must use a vertex from $V=\left\{v_{1} v_{n}\right\}$

Def $\boldsymbol{P}_{k}(i, j)$ is the shortest path from v_{i} to \boldsymbol{v}_{i} avoiding any vertex from $\left\{v_{k+1 \ldots} v_{n}\right\}$ as an intermediate vertex. (the sets $\left\{v_{k+1 \ldots} v_{n}\right\}$ is forbidden) Def $\boldsymbol{D}_{k}[i, j]$ is its length of $\boldsymbol{P}_{k}(i, j)$

- Assume $\boldsymbol{D}_{\boldsymbol{k - 1}}[\mathrm{i}, \mathrm{j}]$ has been computed $(\boldsymbol{1}<\boldsymbol{i}, \boldsymbol{j}<\boldsymbol{n})$.
- We now want to compute the matrix $\boldsymbol{D}_{k}[i, j]$.

Now we could (but don't have to) go through v_{k} along the shortest path $v_{i} \rightarrow v_{j}$

- Two option:

1. Going through v_{k} is longer, and we better stick to $P_{k-1}(i, j)$ (previous found shortest path $v_{i} \rightarrow v_{j}$). Or
2. Use $P_{k-1}(i, k)$ the shortest path $v_{i} \rightarrow v_{k}$ to reach v_{k}, and continue $P_{k-1}(k, j)$ along to v
-Conclusion: $D_{k}[i, j]=\min \left(D_{k-1}[i, j], \quad D_{k-l}[i, k]+D_{k-I}[k, j]\right)$

Floyd Warshll-Pairs Shortest Paths Computing $D_{k}[i, j]$ for every i, j, k.

Algorithm $\operatorname{AllPair}(G)$ for all vertex pairs (i, j)
Use n tabels $D_{0 \ldots} D_{n}$. Each is an $n \times n$
if $i=j$ then $D_{0}[i, i] \leftarrow 0$
else if $\left(v_{i}, v_{i}\right)$ is an edge in G
$D_{0}[i, j] \leftarrow w\left(v_{i}, v_{j}\right)$
else
$D_{0}[i, j] \leftarrow+\infty$
for $k \leftarrow 1$ to n do
for $i \leftarrow 1$ to n do
for $j \leftarrow 1$ to n do
$D_{k}[i, j]=\min \left\{D_{k-l}[i, j], D_{k-l}[i, k]+D_{k-l}[k, j]\right\}$
return D_{n}

Floyd's algorithm: example

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Floyd Warshll-Pairs Shortest Paths Computing $D_{k}[i, j]$ for every i, j, k.

Algorithm $\operatorname{AllPair}(G)$ for all vertex pairs (i, j)

Use n tabels $D_{0 \ldots} D_{n}$. Each is an $n \times n$
if $i=j$ then $D_{0}[i, i] \leftarrow 0$
else if $\left(v_{i}, v_{i}\right)$ is an edge in G

$$
D_{0}[i, j] \leftarrow w\left(v_{i}, v_{j}\right)
$$

else
Running time $\boldsymbol{O}\left(\boldsymbol{n}^{3}\right)$
$D_{0}[i, j] \leftarrow+\infty$
for $k \leftarrow 1$ to n do
Space ???
for $i \leftarrow 1$ to n do
for $j \leftarrow 1$ to n do
$D_{k}[i, j]=\min \left\{D_{k-l}[i, j], D_{k-1}[i, k]+D_{k-1}[k, j]\right\}$
return D_{n}

Dynamic Programming:			
Example 2: Longest Common Subsequance			
We look at sequences of characters (strings)			
e.g. $x=$ " $A B C A$ "			
Def: A subsequence of x is an sequence obtained from x by possibly deleting some of its characters (but without changing their order			
$\begin{aligned} & \text { Examples: } \\ & \text { " } A B C \text { ", } \end{aligned}$	" $A C A$ ",	" A "",	" $A B C A$ "
Def A prefix of x, denoted $x[1 . . m]$, is the sequence of the first m characters of x			
Examples: $x[1 . .4]=$ " $A B C A$ " $x[1 . .3]=" A B C$ " $x[1 . .2]=" A B$ " $x[1 . .1]=" A " \quad x[1 . .0]=" "$			

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$x[1 . .4]=" A B C A " \quad x[1 . .3]=" A B C " \quad x[1 . .2]=" A B$ " $x[1 . .1]=" A$ " $\quad x[1 . .0]=$ \qquad

Example 1: Longest Common Subsequence (LCS)

- Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest
subsequence common to them both.
- "a" not "the"
D A B
B $\mathrm{BCBA}=$ $\operatorname{LCS}(x, y)$

Different phrasing: Find a set of a maximum number of segments, such that
-Each segment connects a character of x to an identical character of y,
-Each character is used at most once

- Segments do not intersect.

Brute-force LCS algorithm

Checking every subsequence of x whether it is also a subsequence of y.

Analysis

- Checking $=\Theta(m+n)$ time per subsequence.
- 2^{m} subsequences of x

Worst-case running time $=\Theta\left((m+n) 2^{m}\right)$
$=$ exponential time.

Towards a better algorithm \qquad
Simplification:

1. Look at the length of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by $|s|$.
Strategy: Consider prefixes of x and y.

- Define $c[i, j]=|\operatorname{LCS}(x[1 \ldots i], y[1 \ldots j])|$.
- Then, $c[m, n]=|\operatorname{LCS}(x, y)|$.

Recursive formulation

Theorem.

$$
c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j], \\ \max \{c[i-1, j], c[i, j-1]\} & \text { otherwise } .\end{cases}
$$

Proof: It is impossible that
$x[i]$ is matched to an element in $y[1 . . j-1]$ and in addition $y_{[j]}$ is matched to an element in $x[1 . . i-1]$

Recursive formulation-cont

Case (I): $x[i]=y[j] . \quad$ Claim: $c[i, j]=c[i-1, j-1]+1$.
Proof.

We claim that there is a max matching that matches $x[i]$ to $y[j]$.
Indeed, if $x[i]$ is matched to $y[k]$ (for $k<j$) then $y[j]$ is unmatched (otherwise we have two crossing segments). Hence we can obtain another matching of the same cardinality by match $x[i]$ to $y[j]$.

This implies that we can match $x[1 . . i-1]$ to $y[1 . . j-1]$, and add the match $(x[i], y[j])$. So $c[i, j]=c[i-1, j-1]+1$

Dynamic-programming hallmark \#1

If $z=\operatorname{LCS}(x, y)$, then any prefix of z is an LCS of a prefix of x and a prefix of y.

Recursive algorithm for LCS

$\operatorname{LCS}(x, y, i, j)$
if ($i==0$ or $j=0$) return 0
if $x[i]=y[j]$
then return $\operatorname{LCS}(x, y, i-1, j-1)+1$
else return max $\{\operatorname{LCS}(x, y, i-1, j)$, $\operatorname{LCS}(x, y, i, j-1)\}$

To call the function $\operatorname{LCS}(x, y, m, n)$
Worst-case: $x[i] \neq y[j]$, for all i, j in which case the algorithm evaluates two subproblems, each with only one parameter decremented.

Height $=m+n \Rightarrow$ work potentially 2^{m+n} exponential. but we re solving subproblems already solved!

Dynamic-programming hallmark \#2

The number of distinct LCS subproblems for two strings of lengths m and n is only $m n$.

Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

```
LCS(x,y)
    for i=0 to m c[i,0]=0
    for j=0 to }\boldsymbol{n}\quadc[0,j]=
    for i=1 to m
    for j=1 to n
        if (x[i]=y[j])
        then c[i,j]\leftarrowc[i-1,j-1]+1
        else}c[i,j]\leftarrow\operatorname{max}{c[i-1,j],c[i,j-1]
```

Time $=\Theta(m n)=$ constant work per table entry.
Space $=\Theta(m n)$.

LCS: Dynamic-programming algorithm

\qquad

Reconstruction $z=L C S(x, y)$

IDEA: Compute the table bottom-up. Fill z backward.
\qquad
 Proof Sketch: We use a longer prefix, so there are more chars to be match
\qquad

LCS Reconstruction:
\qquad
Set $i=m ; j=n ; k=c[i ; j]$
While $(k>0)$ \{ \qquad
$c[i, j]>c[i-1 ; j]$ and $c[i, j]>c[i, j-1])$ \{ $z[k]=x[i]$;
$i--; j--; k--$
\}else // $c[i, j]=c[i-1 ; j]$ or $c[i ; j]=c[i-1 ; j]$ if $(c[i, j]=c[i, j-1]) j--$
else $i--$;

\qquad
\qquad
\qquad

Reconstructing $z=L C S(X, Y)$

Another idea - While filling $c[]$, add arrows to each cell $c[i, j]$ specifying which neighboring cell $c[i, j]$ it got its value.
$\cdot c[i, j] . f l a g=$ " \backslash if $c[i, j]=c[i-1 ; j-1]+1$

- $c[i, j]$]flag $=$ " \uparrow " if $c[i,, j]=c[i-1 ; j]$
$\bullet \bullet[i, j]$.flag $=$ " \leftarrow " if $c[i,, j]=c[i-1 ; j]$

\qquad
\qquad
\qquad
\qquad

Example 3: Edit distance

\qquad

Given strings x, y, the edit distance $\boldsymbol{e d}(x, y)$ between x and y is \qquad defined as the minimum number of operations that we need to
\qquad
Defintion: An Operations (in this context) Insertion/Deletion/ Replacement of a single character. \qquad
Examples:
ed("aaba"," "aaba") =0 \qquad
ed("aaa", "aaba") =
ed ("aaaa", "abaa") =
ed ("baaa","") =4
ed("baaa", "aaab") =2
\qquad
— \qquad

Example 3' :

''Priced' ' Edit distance ed (x, y)
Assume also given
InsCost, - the cost of a single insertion into x.
DelCost - the cost of a single deletion from x, and
RepCost - the cost of replacing one character of x by a different character.

Definition: Given strings x, y, the edit distance $\boldsymbol{e d}(x, y)$ between x and y is the cheapest sequence of operations, starting on x and ending at y. \qquad
Problem: Compute $\boldsymbol{e d}(x, y)$, and compute the sequence of operations.

Thm:

Let $c[i, j]=\operatorname{ed}(x[1 . . i], y[1 . . j])$.
Assume $c[i-1, j-1], c[i-1, j-1], c[i-1, j] \quad$ are already computed. \qquad
If $x[i]=y[j] \quad$ then $c[i, j]=c[i-1, j-1]$
Else // $x[i] \neq y[j]$
$c[i, j]=\min \{$
$c[i-1, j-1]+$ RepCost, //convert $x[1 . . i-1] \rightarrow y[1 . . j-1]$, and replace $y[j]$ by $x[i]$
$c[i-1, \boldsymbol{j}]+$ DelCost, //delete $x[i]$ and convert $x[1 . . i-1] \rightarrow y[1 . . j]$ $c[i, j-1]+$ InsCost $\quad / /$ convert $x[1 . . i,] \rightarrow y[1 . . j-1]$, and insert $y[i]$ \}
\} \qquad
\qquad

Algorithm

Memoization: After computing a solution to a subproblem, store
it in a table. Subsequent calls check the table to avoid redoing
work. \qquad
$\operatorname{ed}(x, y)$
for $i=0$ to $m \quad c[i, 0]=i$ DelCost
for $j=0$ to $n \quad c[0, j]=j$ InsCost
for $i=1$ to m
for $j=1$ to n
if $(x[i]=y[j])$
then $c[i, j] \leftarrow c[i-1, j-1]$ \qquad
else $c[i, j] \leftarrow \min \{\quad c[i-1, j]+\quad$ DelCost,
RepCost, InsCost

Time $=\Theta(m n)=$ constant work per table entry. Space $=\Theta(m n)$.

