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Flow networks 
Definition.  A flow network is a directed graph 
G = (V, E) with two distinguished vertices: a 
source s and a sink t.  Each edge (u, v) ∈ E has 
a nonnegative capacity c(u, v).  If (u, v) ∉ E, 
then c(u, v) = 0. 
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Flow networks 
Definition.  A positive flow on G is a function 
p : V × V → R satisfying the following:  
•  Capacity constraint: For all u, v ∈ V, 

 0 ≤ p(u, v) ≤ c(u, v). 
•  Flow conservation: For all u ∈ V – {s, t},  
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The value of a flow is the net flow out of the 
source: 
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A flow on a network 
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The value of this flow is 1 – 0 + 2 = 3. 

Flow conservation 
•  Flow into u is 2 + 1 = 3. 
•  Flow out of u is 0 + 1 + 2 = 3. 
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The maximum-flow problem 
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The value of the maximum flow is 4. 

Maximum-flow problem: Given a flow network 
G, find a flow of maximum value on G. 

Application: Bipartite Matching.  

A B 
A graph G(V,E) is called bipartite if V can be 
partitioned into two sets V=A∪B, and each edge 
of E connects a vertex of A to a vertex of B. 
 
A matching is a set of edges M of E, where each 
vertex of A is adjacent to at most one vertex of 
B, and vice versa. 



Matching and flow problem  

A B 
Add a vertex s, and connect it to each vertex of A.   
Add a vertex t, and connect each vertex of B to t. 
The capacity of all edges is 1. 
 
Find max flow. Assume it is an integer flow, so the flow of each edge 
is either 0 or 1.  
 
Each edge of G that carries flow is in the matching.  
Each edge of G that does not carry flow is not in the matching. 
 
Claim: The edge between A and B that carry flow form a matching.   
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Greedy is suboptimal.  

A 

Assume we have already some edges in a (partial ) matching M. 
 
In order to increase the cardinality of the matching we might need to 
first  remove from M  some edges  (somehow counterintuitive ?) 
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Thinking again about the matching as flow problem, it means 
that we might need to remove flow from edges that currently 
curry flow.  

Flow cancellation 
Without loss of generality, positive flow goes 
either from u to v, or from v to u, but not both. 
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1:3 0:2 
Net flow from 
u to v in both 
cases is 1. 

The capacity constraint and flow conservation 
are preserved by this transformation. 



A notational simplification 
IDEA: Work with the net flow between two 
vertices, rather than with the positive flow. 
Definition.  A (net) flow on G is a function 
f  : V × V → R satisfying the following:  
•  Capacity constraint: For all u, v ∈ V, 

 f (u, v) ≤ c(u, v). 
•  Flow conservation: For all u ∈ V – {s, t},  
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•  Skew symmetry: For all u, v ∈ V, 
 f (u, v) = –f (v, u). 

Equivalence of definitions 
Net flow vs. positive flow.  

Theorem.  The two definitions are equivalent. 
Proof. (⇒) Let f (u, v) = p(u, v) – p(v, u). 
•  Capacity constraint: Since p(u, v) ≤ c(u, v) and p(v, u) ≥ 0, 

we have f (u, v) ≤ c(u, v). 
•  Flow conservation: 
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•  Skew symmetry: 
 f (u, v)  = p(u, v) – p(v, u)  
  = – (p(v, u) – p(u, v)) 
  = – f (v, u). 

• In particular, if  u ∈ V – {s, t},  then    
∑ 
∈ V v 

v)=0 u f , ( 

Proof (continued) 
Obtaining the positive flow from the net flow  

 (⇐) Define 

p(u, v) = f (u, v)  if f(u, v) > 0, 
0  if f(u, v) ≤ 0. 

•  Capacity constraint: By definition, p(u, v) ≥ 0.    
 Since f (u, v) ≤ c(u, v), it follows that  p(u, v) ≤ c(u, v). 

•  Flow conservation:  If f (u, v) > 0, then f (v, u) < 0 so p(v,u)=0.   
  p(u, v) – p(v, u) = f (u, v).   
 If f (u, v) ≤ 0, then  
  p(u, v) – p(v, u) = – f (v, u) = f (u, v) by skew symmetry.  
Therefore, 
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Residual network 
Definition. Let  f  be a flow on G = (V, E).   
residual capacities   cf (u, v) = c(u, v) – f (u, v) 
The residual network – Gf (V, Ef), and, Ef  are all edges whose 
residual capacity >0 
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Examples: 

Lemma. | E | ≤ | Ef | ≤ 2| E |. 
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Recall f (u, v) = p(u, v) – p(v, u). 

Augmenting paths   
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s G: t 

• Definition. Any path from s to t in Gf is an augmenting path in G with 
respect to  f.   It has a bottleneck cf(p):=min{ cf (u,v) | (u,v) on p }  
• The flow value can be increased along an augmenting path p by adding   
cf(p) to the net flow of each edge along p.  
• This is called path augmentation. It increases |f| by cf(p).  
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After augmentation 
cf (p) = 1 
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when δ=0, 

Augmenting paths-more accurately  
• Definition. Any path  p from s to t in Gf is an augmenting path in G 
with respect to  f.   
• cf(p):=min{ cf(u,v) | (u,v) ∈ p } 
•  ∀ (u,v) ∈ p     set    f(u,v) += cf(p)   ;  f(v,u) -= cf(p)  
•  This is called path augmentation. 
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Note – flow 
conservation 
is preserved. 

After augmentation 
cf (p) = 2 



Augmenting paths – Another example   
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After augmentation 
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• Definition. Any path  p from s to t in Gf is an augmenting path in G 
with respect to  f.   
• cf(p):=min{ cf(u,v) | (u,v) ∈ p } 
•  ∀ (u,v) ∈ p     set    f(u,v) += cf(p)   ;  f(v,u) -= cf(p)  
•  This is called path augmentation. 
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(Not all edges of  network are shown) 

Ford-Fulkerson max-flow algorithm 
• Start: f [u, v] ← 0 for all u, v ∈ V 
• While (1) {  

• construct Gf  
•  if an augmenting path p in Gf  exists then 

augment  f  by cf (p)  //Any path would do 
•  else exit }   
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|f|=0 

Another example - Matching 
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Start from this bipartite graph 

Create this network flow problem 
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Find a path p 
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Correctness of FF algorithm  

We will next show that when FF-algorithm 
terminates, it is because it has found a 
maximum flow.  
 
The proof also provides additional 
information about the network (wait for it) 



Cuts  
Definitions. A cut (S, T) of a flow network G =(V, E) is a partition 
of V  into two sets S, T, such that s ∈ S and t ∈ T.  
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Cuts  
Definitions. A cut (S, T) of a flow network G =(V, E) is a partition 
of V  into two sets S, T, such that s ∈ S and t ∈ T.  
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More exampls of cuts.  
 (s, V,-s ) 
 
 (V-t, t ) 
 

Flow across a cut 
Definitions.  
 If  f  is a flow on G, then the flow across the cut, denoted  
f (S, T) =∑u∈S ∑v∈T  f(u,v)  
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Another characterization of 
flow value 

Lemma.  For any flow f and any cut (S, T), we 
have | f | =  f (S, T). 
Proof. Omitted  
Meaning that you don’t need to know the proof, but 
you do need to know this lemma 
 
Conclusion: The flow into the sink equals the flow 
from the source f(s,V)=f(V.t) 

Recall: |f|=f(s,V)= ∑v∈V f(s,v) 

Flow into the sink 
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| f | =  f (s, V) = 4 f (V, t) = 4 

Capacity of a cut 
Definition. The capacity of a cut (S, T) is  

           c(S, T)=∑u∈S ∑v∈T  c(u,v)  
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Upper bound on the maximum flow value 

Theorem.  The value of any flow no larger than 
the  capacity of any cut: |f| ≤ c(S,T) .   
 
Proof: Recall that for the flow f to be “legit”, we 
must have  f(u,v) ≤ c(u,v) for every pair of 
vertice (u,v) . Hence  
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Max-flow, min-cut theorem 
Theorem.  The following are equivalent: 
1.   | f | = c(S, T) for some cut (S, T). 
2.    f is a maximum flow. 
3.   f  admits no augmenting paths. 

Proof.  
(1) ⇒ (2): Since | f | ≤ c(S, T) for any cut (S, T) (by the theorem 

from a few slides back), the assumption that  | f | = c(S, T) 
implies that  f  is a maximum flow. 

(2) ⇒ (3): If there were an augmenting path, the flow value could 
be increased, contradicting the maximality of  f. 

(3) ⇒ (1): Define S = {v ∈ V | there exists a path in Gf  from s to v},  
 
Let T = V – S.  Since  f  admits no augmenting paths, there is no path 
from s to t in Gf .    
Hence, s ∈ S and t ∉ S, So  t∈Τ.  
 
Thus (S, T) is a cut. Consider any vertices u ∈ S and v ∈ T.   

Consider u ∈ S, v ∈ T.  We must have cf (u, v) = 0, since if cf (u, v) > 0, 
then v ∈ S, not v ∈ T as assumed.  
 
Thus, f (u, v) = c(u, v), since cf (u, v) = c(u, v) – f (u, v).   
 
Summing over all u ∈ S and v ∈ T yields f (S, T) = c(S, T), and since | f | 
= f (S, T), the theorem follows. 

s u v 
S T path in Gf  



Note that this proof is constructive  

•  It find A cut which forms a bottleneck 

•  (note that there might be others bottlenecks 
cuts)  

•  If we decrease the capacity of ANY edge 
along this cut, it would decrease the max 
flow. 

•  The Theorem also implies that FF algorithm 
is results in a max flow. 

Ford-Fulkerson  
max-flow algorithm 

Algorithm:  
f [u, v] ← 0 for all u, v ∈ V 
while an augmenting path p in Gf  wrt  f  exists 

do augment  f  by cf (p) 
Can be slow: 
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Runtime: 
•  Let | f*| be the value of a maximum flow, and 
  assume it is an integral value. 
•  The initialization takes O(|E|) 
•  There are at most | f*| iterations of the loop 
•  Find an augmenting path with DFS in O(|V|+|E|) time 
•  Each augmentation takes O(|V|) time 
⇒ O(|E| ·|f*|) in total 

Algorithm:  
f [u, v] ← 0 for all u, v ∈ V 
while an augmenting path p in G wrt  f  exists 

do augment  f  by cf (p) 



Ford-Fulkerson and matching 
Recall – we expressed the maximum matching problem 
as a network flow, but we can express the max flow as a 
matching, only if the flow is an integer flow.  
 
However, this is always the case once using F&F 
algorithm: The flow along each edge is either 0 or 1.  
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Runtime  analysis of F&F-algorithm 
applied to bipartite matching  

• We saw that in each iteration of F&F algorithm, 
 | f|  increases by at least 1. 

• Let | f*|  be the maximum value.  
• How large can | f*| be ?  

• Claim: | f*| ≤ min{|A|, |B|} (why ?) 
• Runtime is  O(|E|·min{|A|, |B|} )=O(|E||V|) 
• Can be done in O(|E|1/2 · |V|) (Dinic Algorithm) 

Edmonds-Karp algorithm 
Edmonds and Karp noticed that many people’s implementations of 
Ford-Fulkerson augment along a breadth-first augmenting path: a path 
with smallest number of edges in Gf  from s to t.  
 
These implementations would always run relatively fast. 
 
Since a breadth-first augmenting path can be found in O(|E|) time, their 
analysis, focuses on bounding the number of flow augmentations. 
 
(In independent work, Dinic also gave polynomial-time bounds.) 



Running time of Edmonds-Karp 
•  One can show that the number of flow augmentations (i.e., the 
number of iterations of the while loop) is  
O(|V| |E|). 

•  Breadth-first search runs in O(|E|) time 

•  All other bookkeeping is O(|V|) per augmentation. 

⇒ The Edmonds-Karp maximum-flow algorithm runs in   

O(|V|| E| 2) time. 

Best to date 
• The asymptotically fastest algorithm to date for 

maximum flow, due to King, Rao, and Tarjan, runs in 
O(V E logE/(V lg V)V) time. 

•  If we allow running times as a function of edge 
weights, the fastest algorithm for maximum flow, due 
to Goldberg and Rao, runs in time 

 O(min{V 2/3, E 1/2} ⋅ E lg (V 2/E + 2) ⋅ lg C), 
 where C is the maximum capacity of any edge in the 
graph.	




