
CS 445

Flow Networks
Alon Efrat

Slides courtesy of Charles Leiserson with
small changes by Carola Wenk

Flow networks
Definition. A flow network is a directed graph
G = (V, E) with two distinguished vertices: a
source s and a sink t. Each edge (u, v) ∈ E has
a nonnegative capacity c(u, v). If (u, v) ∉ E,
then c(u, v) = 0.

Example:

s t

3
2

3

3 2

2
3

3 1

2

1

Flow networks
Definition. A positive flow on G is a function
p : V × V → R satisfying the following:
•  Capacity constraint: For all u, v ∈ V,

 0 ≤ p(u, v) ≤ c(u, v).
•  Flow conservation: For all u ∈ V – {s, t},

0),(),(=− ∑∑
∈∈ VvVv

uvpvup .

The value of a flow is the net flow out of the
source:

∑∑
∈∈

−
VvVv

svpvsp),(),(.

A flow on a network

s t

1:3
2:2

2:3

1:1

2:3 1:2

1:2
2:3

1:3 0:1

2:2

positive
flow

capacity

The value of this flow is 1 – 0 + 2 = 3.

Flow conservation
•  Flow into u is 2 + 1 = 3.
•  Flow out of u is 0 + 1 + 2 = 3.

u

The maximum-flow problem

s t

2:3
2:2

2:3

1:1

2:3 1:2

2:2
3:3

0:3 0:1

2:2

The value of the maximum flow is 4.

Maximum-flow problem: Given a flow network
G, find a flow of maximum value on G.

Application: Bipartite Matching.

A B
A graph G(V,E) is called bipartite if V can be
partitioned into two sets V=A∪B, and each edge
of E connects a vertex of A to a vertex of B.

A matching is a set of edges M of E, where each
vertex of A is adjacent to at most one vertex of
B, and vice versa.

Matching and flow problem

A B
Add a vertex s, and connect it to each vertex of A.
Add a vertex t, and connect each vertex of B to t.
The capacity of all edges is 1.

Find max flow. Assume it is an integer flow, so the flow of each edge
is either 0 or 1.

Each edge of G that carries flow is in the matching.
Each edge of G that does not carry flow is not in the matching.

Claim: The edge between A and B that carry flow form a matching.

s t

1:1
0:1

1:1 1:1

Greedy is suboptimal.

A

Assume we have already some edges in a (partial) matching M.

In order to increase the cardinality of the matching we might need to
first remove from M some edges (somehow counterintuitive ?)

B
s

1:1

0:1 t

1:1

0:1

1:1

0:1 0:1

Thinking again about the matching as flow problem, it means
that we might need to remove flow from edges that currently
curry flow.

Flow cancellation
Without loss of generality, positive flow goes
either from u to v, or from v to u, but not both.

v

u

2:3 1:2

v

u

1:3 0:2
Net flow from
u to v in both
cases is 1.

The capacity constraint and flow conservation
are preserved by this transformation.

A notational simplification
IDEA: Work with the net flow between two
vertices, rather than with the positive flow.
Definition. A (net) flow on G is a function
f : V × V → R satisfying the following:
•  Capacity constraint: For all u, v ∈ V,

 f (u, v) ≤ c(u, v).
•  Flow conservation: For all u ∈ V – {s, t},

0),(=∑
∈Vv

vuf .

•  Skew symmetry: For all u, v ∈ V,
 f (u, v) = –f (v, u).

Equivalence of definitions
Net flow vs. positive flow.

Theorem. The two definitions are equivalent.
Proof. (⇒) Let f (u, v) = p(u, v) – p(v, u).
•  Capacity constraint: Since p(u, v) ≤ c(u, v) and p(v, u) ≥ 0,

we have f (u, v) ≤ c(u, v).
•  Flow conservation:

()

∑ ∑

∑ ∑

∈ ∈

∈ ∈
- =

- =

V v V v

V v V v
u v p v u p

u v p v u p v u f

) , () , (

) , () , () , (

•  Skew symmetry:
 f (u, v) = p(u, v) – p(v, u)
 = – (p(v, u) – p(u, v))
 = – f (v, u).

• In particular, if u ∈ V – {s, t}, then
∑
∈ V v

v)=0 u f , (

Proof (continued)
Obtaining the positive flow from the net flow

 (⇐) Define

p(u, v) = f (u, v) if f(u, v) > 0,
0 if f(u, v) ≤ 0.

•  Capacity constraint: By definition, p(u, v) ≥ 0.
 Since f (u, v) ≤ c(u, v), it follows that p(u, v) ≤ c(u, v).

•  Flow conservation: If f (u, v) > 0, then f (v, u) < 0 so p(v,u)=0.
 p(u, v) – p(v, u) = f (u, v).
 If f (u, v) ≤ 0, then
 p(u, v) – p(v, u) = – f (v, u) = f (u, v) by skew symmetry.
Therefore,

∑∑∑
∈∈∈

=−
VvVvVv

vufuvpvup),(),(),(

Residual network
Definition. Let f be a flow on G = (V, E).
residual capacities cf (u, v) = c(u, v) – f (u, v)
The residual network – Gf (V, Ef), and, Ef are all edges whose
residual capacity >0

u v G:

u v

4

Gf :

Examples:

Lemma. | E | ≤ | Ef | ≤ 2| E |.

0:4

u v

u v
4

4:4

u v

u v

3

1

1:4
Recall f (u, v) = p(u, v) – p(v, u).

Augmenting paths

0:5 0:6 0:2 0:1

s G: t

• Definition. Any path from s to t in Gf is an augmenting path in G with
respect to f. It has a bottleneck cf(p):=min{ cf (u,v) | (u,v) on p }
• The flow value can be increased along an augmenting path p by adding
cf(p) to the net flow of each edge along p.
• This is called path augmentation. It increases |f| by cf(p).

0:10

a b c d
δ:5 δ:6 δ:2 δ:1

s G: t
δ:10

a b c d
Start with δ=0,
slowly increase

5 6 2 1 10

After augmentation
cf (p) = 1

1:5 1:6 1:2 1:1

s G: t
1:10

a b c d

s Gf: t a b c d
when δ=0,

Augmenting paths-more accurately
• Definition. Any path p from s to t in Gf is an augmenting path in G
with respect to f.
• cf(p):=min{ cf(u,v) | (u,v) ∈ p }
•  ∀ (u,v) ∈ p set f(u,v) += cf(p) ; f(v,u) -= cf(p)
•  This is called path augmentation.

3:5 2:6 7:12
s a G: b t

s a
2

3
Gf : b

4

2

5

Examples:

s a
5:5

G: b
4:6

t
9:12

t
7

Note – flow
conservation
is preserved.

After augmentation
cf (p) = 2

Augmenting paths – Another example

3:5 2:6 -5:2 2:5

s G: 5:5 2:3 t

s

2

3

Gf :
4

2

7 2

1

t

3

2
cf (p) = 2

After augmentation

s
5:5

G:
4:6 -3:2

3:5 0:3 t
4:5

• Definition. Any path p from s to t in Gf is an augmenting path in G
with respect to f.
• cf(p):=min{ cf(u,v) | (u,v) ∈ p }
•  ∀ (u,v) ∈ p set f(u,v) += cf(p) ; f(v,u) -= cf(p)
•  This is called path augmentation.

a

a

a b

b

b

c

c

c

d

d

d

(Not all edges of network are shown)

Ford-Fulkerson max-flow algorithm
• Start: f [u, v] ← 0 for all u, v ∈ V
• While (1) {

• construct Gf
•  if an augmenting path p in Gf exists then

augment f by cf (p) //Any path would do
•  else exit }

s t
0:10 0:10

0:10

0:1

0:10

G: s t
10 10

10

1 Gf:
10

s t
1:10 0:10

1:10

1:1

0:10

G: s t
9 10

9 1 Gf:
10

1

1 |f|=1

|f|=0 cf (p)=1

s t
1:10 1:10

1:10

0:1

1:10

G: s t
9 10

9 1 Gf:
10

1

1

|f|=2 cf (p)=1

s t
9 9

9 1 Gf:
9

1

1

1

1

s t
2:10 1:10

2:10

1:1

1:10

G:

|f|=3

s t
8 9

8 1 Gf:
9

2

2
s t

2:10 2:10

2:10

0:1

2:10

|f|=4

1

1

|f|=0

Another example - Matching

A B

s
0:1

0:1 0:1 0:1 0:1

0:1
0:1

G : t

.

s

1

1 1 1 1

1
1

G f: t

B A

Start from this bipartite graph

Create this network flow problem

a1

a2 b2

b1

a1

a2 b2

b1

Residual network

Find a path p

a1

a2 b2

b1

|f|=1
Matching Cont

. A B

s
1:1

0:1 0:1 0:1 0:1

1:1
1:1

G : t

a1

a2 b2

b1

. A B

s

1

1 1 1 1

1
1

G f: t

a1

a2 b2

b1

A

s
1:1

1:1 1:1 1:1 1:1
1:1

G : t

|f|=2 0:1 a1

a2 b2

b1

Correctness of FF algorithm

We will next show that when FF-algorithm
terminates, it is because it has found a
maximum flow.

The proof also provides additional
information about the network (wait for it)

Cuts
Definitions. A cut (S, T) of a flow network G =(V, E) is a partition
of V into two sets S, T, such that s ∈ S and t ∈ T.

s t

2:3
2:2

2:3

1:1

1:3 0:2

2:2
3:3

0:3 0:1

2:2

∈ S
∈ T

s t

a

Cuts
Definitions. A cut (S, T) of a flow network G =(V, E) is a partition
of V into two sets S, T, such that s ∈ S and t ∈ T.

s t

s t
2:3

2:2
2:3

1:1

1:3 0:2

2:2
3:3

0:3 0:1

2:2

∈ S
∈ T

a

More exampls of cuts.
 (s, V,-s)

 (V-t, t)

Flow across a cut
Definitions.
 If f is a flow on G, then the flow across the cut, denoted
f (S, T) =∑u∈S ∑v∈T f(u,v)

s t

2:3
2:2

2:3

1:1

1:3 0:2

2:2
3:3

0:3 0:1

2:2

∈ S
∈ T

S={s,a}
f (S, T) = (2 + 2) + (– 2 + 1 – 1 + 2) = 4

s t

a

Another characterization of
flow value

Lemma. For any flow f and any cut (S, T), we
have | f | = f (S, T).
Proof. Omitted
Meaning that you don’t need to know the proof, but
you do need to know this lemma

Conclusion: The flow into the sink equals the flow
from the source f(s,V)=f(V.t)

Recall: |f|=f(s,V)= ∑v∈V f(s,v)

Flow into the sink

s t

2:3
2:2

2:3

1:1

1:3 -1:2

2:2
3:3

0:3 0:1

2:2

| f | = f (s, V) = 4 f (V, t) = 4

Capacity of a cut
Definition. The capacity of a cut (S, T) is

 c(S, T)=∑u∈S ∑v∈T c(u,v)

s t

2:3
2:2

2:3

1:1

1:3 0:2

2:2
3:3

0:3 0:1

2:2

∈ S
∈ T

c(S, T) = (3 + 2) + (1 + 2 + 3)
 = 11

s t

Upper bound on the maximum flow value

Theorem. The value of any flow no larger than
the capacity of any cut: |f| ≤ c(S,T) .

Proof: Recall that for the flow f to be “legit”, we
must have f(u,v) ≤ c(u,v) for every pair of
vertice (u,v) . Hence

.

),(

),(

),(
),(

TSc

vuc

vuf
TSff

Su Tv

Su Tv

=

≤

=
=

∑∑
∑∑

∈ ∈

∈ ∈

Max-flow, min-cut theorem
Theorem. The following are equivalent:
1.  | f | = c(S, T) for some cut (S, T).
2.  f is a maximum flow.
3.  f admits no augmenting paths.

Proof.
(1) ⇒ (2): Since | f | ≤ c(S, T) for any cut (S, T) (by the theorem

from a few slides back), the assumption that | f | = c(S, T)
implies that f is a maximum flow.

(2) ⇒ (3): If there were an augmenting path, the flow value could
be increased, contradicting the maximality of f.

(3) ⇒ (1): Define S = {v ∈ V | there exists a path in Gf from s to v},

Let T = V – S. Since f admits no augmenting paths, there is no path
from s to t in Gf .
Hence, s ∈ S and t ∉ S, So t∈Τ.

Thus (S, T) is a cut. Consider any vertices u ∈ S and v ∈ T.

Consider u ∈ S, v ∈ T. We must have cf (u, v) = 0, since if cf (u, v) > 0,
then v ∈ S, not v ∈ T as assumed.

Thus, f (u, v) = c(u, v), since cf (u, v) = c(u, v) – f (u, v).

Summing over all u ∈ S and v ∈ T yields f (S, T) = c(S, T), and since | f |
= f (S, T), the theorem follows.

s u v
S T path in Gf

Note that this proof is constructive

•  It find A cut which forms a bottleneck

•  (note that there might be others bottlenecks
cuts)

•  If we decrease the capacity of ANY edge
along this cut, it would decrease the max
flow.

•  The Theorem also implies that FF algorithm
is results in a max flow.

Ford-Fulkerson
max-flow algorithm

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in Gf wrt f exists

do augment f by cf (p)
Can be slow:

s t

109 109

109

1

109

G:

Ford-Fulkerson max-flow
algorithm

Can be slow:

s t

0:109 0:109

0:109

0:1

0:109

G:

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

Ford-Fulkerson max-flow
algorithm

Can be slow:

s t

0:109 0:109

0:109

0:1

0:109

G:

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

Ford-Fulkerson max-flow
algorithm

Can be slow:

s t

1:109 0:109

1:109

1:1

0:109

G:

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

Ford-Fulkerson max-flow
algorithm

Can be slow:

s t

1:109 0:109

1:109

1:1

0:109

G:

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

Ford-Fulkerson max-flow
algorithm

Can be slow:

s t

1:109 1:109

1:109

0:1

1:109

G:

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

Ford-Fulkerson max-flow
algorithm

Can be slow:

s t

1:109 1:109

1:109

0:1

1:109

G:

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

Ford-Fulkerson max-flow
algorithm

Runtime:
•  Let | f*| be the value of a maximum flow, and
 assume it is an integral value.
•  The initialization takes O(|E|)
•  There are at most | f*| iterations of the loop
•  Find an augmenting path with DFS in O(|V|+|E|) time
•  Each augmentation takes O(|V|) time
⇒ O(|E| ·|f*|) in total

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

Ford-Fulkerson and matching
Recall – we expressed the maximum matching problem
as a network flow, but we can express the max flow as a
matching, only if the flow is an integer flow.

However, this is always the case once using F&F
algorithm: The flow along each edge is either 0 or 1.

. A B

s
1:1

0:1 0:1 0:1 0:1
1:1

G : t

Runtime analysis of F&F-algorithm
applied to bipartite matching

• We saw that in each iteration of F&F algorithm,
 | f| increases by at least 1.

• Let | f*| be the maximum value.
• How large can | f*| be ?

• Claim: | f*| ≤ min{|A|, |B|} (why ?)
• Runtime is O(|E|·min{|A|, |B|})=O(|E||V|)
• Can be done in O(|E|1/2 · |V|) (Dinic Algorithm)

Edmonds-Karp algorithm
Edmonds and Karp noticed that many people’s implementations of
Ford-Fulkerson augment along a breadth-first augmenting path: a path
with smallest number of edges in Gf from s to t.

These implementations would always run relatively fast.

Since a breadth-first augmenting path can be found in O(|E|) time, their
analysis, focuses on bounding the number of flow augmentations.

(In independent work, Dinic also gave polynomial-time bounds.)

Running time of Edmonds-Karp
•  One can show that the number of flow augmentations (i.e., the
number of iterations of the while loop) is
O(|V| |E|).

•  Breadth-first search runs in O(|E|) time

•  All other bookkeeping is O(|V|) per augmentation.

⇒ The Edmonds-Karp maximum-flow algorithm runs in

O(|V|| E| 2) time.

Best to date
• The asymptotically fastest algorithm to date for

maximum flow, due to King, Rao, and Tarjan, runs in
O(V E logE/(V lg V)V) time.

•  If we allow running times as a function of edge
weights, the fastest algorithm for maximum flow, due
to Goldberg and Rao, runs in time

 O(min{V 2/3, E 1/2} ⋅ E lg (V 2/E + 2) ⋅ lg C),
 where C is the maximum capacity of any edge in the
graph.	

