CS 445

Flow Networks

Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk

Flow networks

Definition. A *positive flow* on *G* is a function $p: V \times V \rightarrow \mathbb{R}$ satisfying the following: • *Capacity constraint:* For all $u, v \in V$, $0 \le p(u, v) \le c(u, v)$. • *Flow conservation:* For all $u \in V - \{s, t\}$, $\sum_{v \in V} p(u, v) - \sum_{v \in V} p(v, u) = 0$.

The *value* of a flow is the net flow out of the source:

$$\sum_{v \in V} p(s, v) - \sum_{v \in V} p(v, s).$$

Correctness of FF algorithm

We will next show that when FF-algorithm terminates, it is because it has found a maximum flow.

The proof also provides additional information about the network (wait for it)

Another characterization of flow value

Recall: $|f| = f(s, V) = \sum_{v \in V} f(s, v)$

Lemma. For any flow f and any cut (S, T), we have |f| = f(S, T).

Proof. Omitted Meaning that you don't need to know the proof, but you do need to know this lemma

Conclusion: The flow into the sink equals the flow from the source f(s, V)=f(V,t)

Upper bound on the maximum flow value

Theorem. The value of any flow no larger than the capacity of any cut: $|f| \le c(S,T)$.

Proof: Recall that for the flow f to be "legit", we must have $f(u,v) \le c(u,v)$ for every pair of vertice (u, v). Hence |f| = f(S,T)

 $= \sum_{u \in S} \sum_{v \in T} f(u, v)$ $\leq \sum_{v \in S} \sum_{v \in T} c(u, v)$ = c(S,T)

Max-flow, min-cut theorem

Theorem. The following are equivalent: 1. |f| = c(S, T) for some cut (S, T). 2. *f* is a maximum flow.

3. f admits no augmenting paths.

Proof. (1) \Rightarrow (2): Since $|f| \le c(S, T)$ for any cut (S, T) (by the theorem from a few slides back), the assumption that |f| = c(S, T) implies that f is a maximum flow.

 $(2) \Rightarrow (3)$: If there were an augmenting path, the flow value could be increased, contradicting the maximality of f.

Note that this proof is constructive

- It find A cut which forms a bottleneck
- (note that there might be others bottlenecks cuts)
- If we decrease the capacity of ANY edge along this cut, it would decrease the max flow.
- The Theorem also implies that FF algorithm is results in a max flow.

Ford-Fulkerson max-flow algorithm

Algorithm:

$\tilde{f}[u, v] \leftarrow 0$ for all $u, v \in V$

```
while an augmenting path p in G wrt f exists
   do augment f by c_f(p)
```

Runtime:

- Let $|f^*|$ be the value of a maximum flow, and assume it is an integral value.
- The initialization takes O(|E|)
- There are at most | f*| iterations of the loop
 Find an augmenting path with DFS in O(|V|+|E|) time
- Each augmentation takes O(|V|) time
- $\Rightarrow O(|E| \cdot |f^*|)$ in total

We saw that in each iteration of F&F algorithm, |*f*| increases by at least 1.
Let |*f**| be the maximum value.
How large can | *f**| be ?

•<u>Claim</u>: $|f^*| \le min\{|A|, |B|\}$ (why ?) •Runtime is $O(|E| \cdot min\{|A|, |B|\}) = O(|E||V|)$ •Can be done in $O(|E|^{1/2} \cdot |V|)$ (Dinic Algorithm)

Edmonds-Karp algorithm

Edmonds and Karp noticed that many people's implementations of Ford-Fulkerson augment along a *breadth-first augmenting path*: a path with smallest number of edges in G_f from s to t.

These implementations would always run relatively fast.

Since a breadth-first augmenting path can be found in O(|E|) time, their analysis, focuses on bounding the number of flow augmentations.

(In independent work, Dinic also gave polynomial-time bounds.)

Running time of Edmonds-Karp

- One can show that the number of flow augmentations (i.e., the number of iterations of the while loop) is O(|V| |E|).
- Breadth-first search runs in O(|E|) time
- All other bookkeeping is O(|V|) per augmentation.
- ⇒ The Edmonds-Karp maximum-flow algorithm runs in $O(|V|| E|^2)$ time.

Best to date

- The asymptotically fastest algorithm to date for maximum flow, due to King, Rao, and Tarjan, runs in $O(VE \log_{E/(V \lg V)} V)$ time.
- If we allow running times as a function of edge weights, the fastest algorithm for maximum flow, due to Goldberg and Rao, runs in time

O(min { $V^{2/3}$, $E^{1/2}$ } · E lg ($V^{2/E} + 2$) · lg C), where C is the maximum capacity of any edge in the graph.