CSc445 Algorithms

Quick Sort and median selection

Alon Efrat

Based on slides curacy of Piotr Indyk and Carola Wenk

QuickSort – example of the divide-and-concourse paradigm

- Proposed by C.A.R. Hoare in 1962.
- Sorts "in place" (no need for extra space). Like insertion sort, but not like merge sort.
- Very practical (with tuning).

Divide and conquer

Quicksort an *n*-element array:

1. Divide: Partition the array into two subarrays around a *pivot* x such that elements in lower subarray $\leq x \leq$ elements in upper subarray.

 $\leq x \qquad x \geq x$

2. Conquer: Recursively sort the two subarrays.3. Combine: Trivial.

Key: Linear-time partitioning subroutine.

Example of partitioning							
6	10	13	5	8	3	2	11
6	5	13	10	8	3	2	11
6	5	3	10	8	13	2	11
6	5	3	2	8	13	10	11
2	5	3	6	8	13	10	11
			i				

Pseudocode for quicksort

 $\begin{aligned} & \text{QUICKSORT}(A, p, r) \\ & \text{if } p < r \\ & \text{then } q \leftarrow \text{PARTITION}(A, p, r) \\ & \text{QUICKSORT}(A, p, q-1) \\ & \text{QUICKSORT}(A, q+1, r) \end{aligned}$

Initial call: QUICKSORT(A, 1, n)

Analysis of quicksort

- Assume all input elements are distinct.
- In practice, there are better partitioning algorithms for when duplicate input elements may exist.
- Let T(n) = worst-case running time on an array of *n* elements.

Worst-case of quicksort

- Input sorted or reverse sorted.
- Partition around min or max element.
- One side of partition always has no elements.

$$\begin{split} T(n) &= T(0) + T(n-1) + \Theta(n) \\ &= \Theta(1) + T(n-1) + \Theta(n) \\ &= T(n-1) + \Theta(n) \\ &= \Theta(n^2) \quad \textit{(arithmetic series)} \end{split}$$

Worst-case recursion tree T(n) = T(0) + T(n-1) + cn

Worst-case recursion tree

T(n) = T(0) + T(n-1) + cn

T(n)

Worst-case recursion tree T(n) = T(0) + T(n-1) + cnT(0) T(n-1)

Best-case and almost best-case analysis

If we are lucky, PARTITION splits the array evenly: $T(n) = 2T(n/2) + \Theta(n)$ $= \Theta(n \lg n) \quad \text{(same as merge sort)}$ What if the split is always $\frac{1}{10} : \frac{9}{10}$? $T(n) = T(\frac{1}{10}n) + T(\frac{9}{10}n) + \Theta(n)$ What is the solution to this recurrence?

L4.27

Randomized quicksort – cont Finding good pivots

- Putting it together, during QS, each time that we need to find a pivot, we use the "5 random elements" method.
- With probability 98%, we find a good pivot.
- The overall time that we spend on good partitions is much smaller than the time we spent on bad partitions.
- (note bad partitions are not harmful they are just not helpful)
- So the recursions formula T(n) = cn + T(n/10) + T(n/9/10) still apply, leading to running time O($n \log n$).
- This is expected running time there is a chance that the actual running time is $\Theta(n^2)$, but the probability that it happens is very slim.

- Quicksort is a great general-purpose sorting algorithm.
- Quicksort is typically over twice as fast as merge sort.
- Quicksort behaves well even with caching and virtual memory.

Median Selection

L4.38

- (CLRS Section 9.2, page 185).
- For *A*[*1*.*n*] (all different elements) we say that the rank of *x* is *i* if exactly *i*-*1* elements in *A* are smaller than *x*.
- In particular, the median is the $\lfloor n/2 \rfloor$ -smallest.
- To find the median, we could sort and pick A[[n/2]] (taken $O(n \log n)$).
- We can do better.

- Recall: With high probability, we pick a good pivot: •Not in the 10% smallest or largest:
- Hence, we get rid of at least 10% of the elements of A• So, T(n) = cn + T(0.9 n).
- • $T(n) = c(n + 0.9n + 0.9^2n + 0.9^3n + ...) = cn(1 + 0.9 + 0.9^2 + 0.9^3 + ...) =$ cn(1/(1-0.9)) = O(n).
- So the expected time is linear. (yuppie)

As in the case of QS, partitions which are not good are not harmful, just not helpful.