CSc445 Algorithms

Quick Sort and median selection

Alon Efrat
Based on slides curacy of Piotr Indyk and Carola Wenk

QuickSort -
 example of the divide-and-concourse paradigm

- Proposed by C.A.R. Hoare in 1962.
- Sorts "in place" (no need for extra space).

Like insertion sort, but not like merge sort.

- Very practical (with tuning).

Divide and conquer

Quicksort an n-element array:
1.Divide: Partition the array into two subarrays around a pivot x such that elements in lower subarray $\leq x \leq$ elements in upper subarray.

2.Conquer: Recursively sort the two subarrays. \qquad
3.Combine: Trivial.

Key: Linear-time partitioning subroutine.

Example of partitioning

| 6 | 10 | 13 | 5 | 8 | 3 | 2 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ${ }_{i}{ }^{j}$

Example of partitioning

6	10	13	5	8	3	2	11

\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example of partitioning

6	10	13	5	8	3	2	11

6	5	13	10	8	3	2	11

6	5	3	10	8	13	2	11

\qquad

Example of partitioning

6	10	13	5	8	3	2	11

6	5	13	10	8	3	2	11

6	5	3	10	8	13	2	11

Example of partitioning

6	10	13	5	8	3	2	11

6	5	13	10	8	3	2	11

6	5	3	10	8	13	2	11

6	5	3	2	8	13	10	11

2	5	3	6	8	13	10	11

\qquad
${ }^{i}$

Pseudocode for quicksort

Quicksort (A, p, r)
if $p<r$
then $q \leftarrow \operatorname{PaRtITION}(A, p, r)$
$\operatorname{Quicksort}(A, p, q-1)$
Quicksort $(A, q+1, r)$

Initial call: $\operatorname{Quicksort}(A, 1, n)$

Analysis of quicksort

- Assume all input elements are distinct.
- In practice, there are better partitioning algorithms for when duplicate input elements may exist.
- Let $T(n)=$ worst-case running time on an array of n elements.

Worst-case of quicksort

- Input sorted or reverse sorted.
- Partition around min or max element.
- One side of partition always has no elements.
$T(n)=T(0)+T(n-1)+\Theta(n)$
$=\Theta(1)+T(n-1)+\Theta(n)$
$=T(n-1)+\Theta(n)$
$=\Theta\left(n^{2}\right) \quad$ (arithmetic series)

Worst-case recursion tree

$T(n)=T(0)+T(n-1)+c n$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Worst-case recursion tree

$T(n)=T(0)+T(n-1)+c n$
$\xrightarrow[T(0)]{\stackrel{c n}{c(n-1)}} \underset{T(0)}{T(n-2)}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Worst-case recursion tree

$T(n)=T(0)+T(n-1)+c n$

Best-case and almost best-case analysis

\qquad
\qquad
If we are lucky, Partition splits the array evenly:

$$
\begin{aligned}
T(n) & =2 T(n / 2)+\Theta(n) \\
& =\Theta(n \lg n) \quad \text { (same as merge sort) }
\end{aligned}
$$

What if the split is always $\frac{1}{10}: \frac{9}{10}$? \qquad

$$
T(n)=T\left(\frac{1}{10} n\right)+T\left(\frac{9}{10} n\right)+\Theta(n)
$$

What is the solution to this recurrence?
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Analysis of "almost-best" case

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Analysis of "almost-best" case

$$
c n \log _{10} n \leq T(n) \leq c n \log _{10,9} n+O(n)
$$

$\leq 8 \mathrm{c} \log _{2} \mathrm{n}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Randomized quicksort

How can find a pivot that guarantees partitions with good ratios for A[1..n], ?
We say that q is a good pivot for if

- at least 10% of the elements of $A[1 . . n]$ are smaller than q, and \qquad
- at least 10% of the elements of $A[1 . . n]$ are larger than q

Best pivot: Pick the median of $A[1 . . n]$, as pivot.
(median - an element that is larger than half of the elements)
Then the time would obey $T(n)=c n+2 T(n / 2)$
Problem - need to work too hard to find the median (best pivot), so we will do with (only) a good pivot.

Finding a good pivot for $A[1 . . n]$

5-random-elements method.

- Pick the indices of 5 elements at random from $A[1 . . n]$, \qquad
- For $k=1$ to 5
$X[k]=A[n \operatorname{rnd}()]$

- Set q to be the median of $X[1 . .5]$

Finding a good pivot for $A[1 . . n]$

5-random-elements method. : Pick 5 elements at random from $A[1 . . n]$, and set q to be their median.
What it is the probability that q is not a good pivot?

- Let S be the elements of $A[1 . . n]$ which are the 10% smallest.
- The probability that an elements picked at random is in S is 0.1 .
- q is in S only if at least 3 of the 5 elements that we pick are in S.
- The probability that this happens is

| $0.1^{5}+$ |
| :---: | :---: | :---: |
| all in S |\quad| $5 \cdot 0.1^{4} \bullet 0.9+$ |
| :---: |
| 4 in S, one not in S |
| 0.00001 |$+\quad$| $10 \cdot 0.1^{3} \cdot 0.9^{2}=$ |
| :---: |
| $2 \operatorname{not}$ in S |

- This is also the probability that q is in the 10% largest elements.
- In other words: with probability $\geq 98 \%, q$ is a good pivot.

```
S: 10% \leqq
```


Quicksort in practice

- Quicksort is a great general-purpose sorting algorithm.
- Quicksort is typically over twice as fast as merge sort.
- Quicksort behaves well even with caching and virtual memory.

Median Selection

- (CLRS Section 9.2, page 185)
- For $A[1 . . n]$ (all different elements) we say that the rank of x is \boldsymbol{i} if exactly $\boldsymbol{i}-1$ elements in A are smaller than x.
- In particular, the median is the $\lfloor n / 2\rfloor$-smallest.
- To find the median, we could sort and pick $A[\lfloor n / 2\rfloor]$ (taken $\mathrm{O}(n \log n)$).
- We can do better.

Median Selection-cont

$\operatorname{RS}(A, p, r, i)\{$

$/ /$ Randomize Selection: Returns i 'st smallest element in $A[p . r]$. //Assumption: Input is valid and elements are different.

- If $p==r$ return $\mathrm{A}[p]$
- $q=$ PARTITION (A, p, r);
$\bullet / / P a r t i t i o n ~ u s i n g ~ t h e ~ 5-r a n d o m ~ e l e m e n t ~ m e t h o d ~$
\qquad
- $k=q-p$
- If $i==k+1$ return $A[q]$
- If $i<k$ return $\operatorname{RS}(A, p, \quad q-1, i) / /$ Note the difference from QS
- Else return $\operatorname{RS}(A, q+1, r, i-k-1)$
\}

Time analyis

- Recall: With high probability, we pick a good pivot: - Not in the 10% smallest or largest:
- Hence, we get rid of at least 10% of the elements of A
- So, $T(n)=c n+T(0.9 n)$.
- $T(n)=c\left(n+0.9 n+0.9^{2} n+0.9^{3} n+\ldots\right)=$ $c n\left(1+0.9+0.9^{2}+0.9^{3}+\ldots\right)=$ $\operatorname{cn}(1 /(1-0.9))=O(n)$.
- So the expected time is linear. (yuppie)

As in the case of QS, partitions which are not good are not harmful, just not helpful.

