
1

CSc445 Algorithms

Alon Efrat
Based on slides curacy of

Piotr Indyk and Carola Wenk

Quick Sort and median selection

QuickSort –
example of the

divide-and-concourse paradigm

• Proposed by C.A.R. Hoare in 1962.
• Sorts “in place” (no need for extra space).

Like insertion sort, but not like merge sort.
• Very practical (with tuning).

Divide and conquer
Quicksort an n-element array:
1. Divide: Partition the array into two subarrays

around a pivot x such that elements in lower
subarray ≤ x ≤ elements in upper subarray.

2. Conquer: Recursively sort the two subarrays.
3. Combine: Trivial.

≤ x x ≥ x

Key: Linear-time partitioning subroutine.

2

x

Running time = O(n)
for n elements.

Partitioning subroutine
PARTITION(A, p, q) ⊳ A[p . . q]

x ← A[p] ⊳ pivot = A[p]
i ← p
for j ← p + 1 to q

do if A[j] ≤ x ⊳ Should send A[j] to the left.
then{

 i ← i + 1 ⊳ Now A[i]>x
 exchange A[i] ↔ A[j] ⊳ Fix A[i]>x

}
exchange A[p] ↔ A[i]
return i

≤ x > x ?
p i q j Invariant:

x ≤ x > x ?

L4.5

Example of partitioning

i j
6 10 13 5 8 3 2 11

L4.6

Example of partitioning

i j
6 10 13 5 8 3 2 11

3

Example of partitioning

i j
6 10 13 5 8 3 2 11

Example of partitioning

6 10 13 5 8 3 2 11

i j
6 5 13 10 8 3 2 11

Example of partitioning

6 10 13 5 8 3 2 11

i j
6 5 13 10 8 3 2 11

4

Example of partitioning

6 10 13 5 8 3 2 11

i j
6 5 13 10 8 3 2 11

L4.11

Example of partitioning

6 10 13 5 8 3 2 11

i j
6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

Example of partitioning

6 10 13 5 8 3 2 11

i j
6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

5

Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

i j
6 5 3 2 8 13 10 11

Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

i j
6 5 3 2 8 13 10 11

Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

i j
6 5 3 2 8 13 10 11

6

Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

6 5 3 2 8 13 10 11

i
2 5 3 6 8 13 10 11

Pseudocode for quicksort
QUICKSORT(A, p, r)

if p < r
then q ← PARTITION(A, p, r)

QUICKSORT(A, p, q–1)
QUICKSORT(A, q+1, r)

Initial call: QUICKSORT(A, 1, n)

Analysis of quicksort

• Assume all input elements are distinct.
• In practice, there are better partitioning

algorithms for when duplicate input
elements may exist.

• Let T(n) = worst-case running time on
an array of n elements.

7

Worst-case of quicksort

• Input sorted or reverse sorted.
• Partition around min or max element.
• One side of partition always has no elements.

)(
)()1(

)()1()1(
)()1()0()(

2n
nnT

nnT
nnTTnT

Θ=

Θ+−=

Θ+−+Θ=

Θ+−+=

(arithmetic series)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(n)

8

cn
T(0) T(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

cn
T(0) c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(0) T(n–2)

cn
T(0) c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(0) c(n–2)

T(0)

Θ(1)

!

9

L4.25

cn
T(0) c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(0) c(n–2)

T(0)

Θ(1)

!

()2
1

nk
n

k
Θ=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Θ ∑

=

cn
Θ(1) c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

Θ(1) c(n–2)

Θ(1)

Θ(1)

!

()2
1

nk
n

k
Θ=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Θ ∑

=

T(n) = Θ(n) + Θ(n2)
 = Θ(n2)

h = n

L4.27

Best-case and almost best-case
analysis

If we are lucky, PARTITION splits the array evenly:
T(n) = 2T(n/2) + Θ(n)

 = Θ(n lg n) (same as merge sort)

What if the split is always 10
9

10
1 : ?

() ())()(10
9

10
1 nnTnTnT Θ++=

What is the solution to this recurrence?

10

L4.28

Analysis of “almost-best” case
)(nT

Analysis of “almost-best” case
cn

()nT 10
1 ()nT 10

9

Analysis of “almost-best” case
cn

cn10
1 cn10

9

()nT 100
1 ()nT 100

9 ()nT 100
9 ()nT 100

81

11

Analysis of “almost-best” case
cn

cn10
1 cn10

9

cn100
1 cn100

9 cn100
9 cn100

81

Θ(1)

Θ(1)

…

…

log10/9n

cn

cn

cn

…

O(n) leaves

log10n

Analysis of “almost-best” case
cn

cn10
1 cn10

9

cn100
1 cn100

9 cn100
9 cn100

81

Θ(1)

Θ(1)

…

…

log10/9n

cn

cn

cn

T(n) ≤ cn log10/9n + Ο(n)
≤ 8 c log2n

…

cn log10n ≤	

O(n) leaves

Randomized quicksort
How can find a pivot that guarantees partitions with good ratios for

A[1..n], ?
We say that q is a good pivot for if
•  at least 10% of the elements of A[1..n] are smaller than q, and
•  at least 10% of the elements of A[1..n] are larger than q.

 10% ≥ q 10% ≤ q

Best pivot: Pick the median of A[1..n], as pivot.
(median – an element that is larger than half of the elements)
Then the time would obey T(n) = cn+2T(n/2)
Problem – need to work too hard to find the median (best pivot), so
we will do with (only) a good pivot.

12

Finding a good pivot for A[1..n]

5-random-elements method. :
•  Pick the indices of 5 elements at random from A[1..n],
•  For k=1 to 5

X[k] = A[n rnd()]

•  Set q to be the median of X[1..5]

A[1..n]

L4.35

Finding a good pivot for A[1..n]
5-random-elements method. : Pick 5 elements at random from

A[1..n], and set q to be their median.
What it is the probability that q is not a good pivot ?
•  Let S be the elements of A[1..n] which are the 10% smallest.
•  The probability that an elements picked at random is in S is 0.1.

• q is in S only if at least 3 of the 5 elements that we pick are in S.
•  The probability that this happens is
 0.15 + 5•0.14 •0.9 + 10• 0.13 •0.92 =

 all in S 4 in S, one not in S 2 not in S
= 0.00001 + 0.00045 + 0.00810= 0.00856
•  This is also the probability that q is in the 10% largest elements.
•  In other words: with probability ≥98%, q is a good pivot.

 S:10% ≤ q

Randomized quicksort – cont
Finding good pivots

Putting it together, during QS, each time that we need to find a pivot,
we use the “5 random elements” method.

With probability 98%, we find a good pivot.
The overall time that we spend on good partitions is much smaller than

the time we spent on bad partitions.
(note – bad partitions are not harmful – they are just not helpful)
So the recursions formula T(n) = cn+ T(n /10) + T(n 9/10) still apply,

leading to running time O(n log n).
This is expected running time – there is a chance that the actual

running time is Θ(n2), but the probability that it happens is very slim.

 10% ≥ q 10% ≤ q

cn

cn10
1 cn10

9

cn100
1 cn100

9 cn100
9 cn100

81

Θ(1)

…

…

cn

cn

cn

…

O(n) leaves

13

Quicksort in practice

• Quicksort is a great general-purpose
sorting algorithm.

• Quicksort is typically over twice as fast
as merge sort.

• Quicksort behaves well even with
caching and virtual memory.

L4.38

Median Selection
•  (CLRS Section 9.2, page 185).
• For A[1..n] (all different elements) we say that the

rank of x is i if exactly i-1 elements in A are smaller
than x.

•  In particular, the median is the ⎣n/2⎦-smallest.
• To find the median, we could sort and pick A[⎣ n/2⎦]

 (taken O(n log n)).
• We can do better.

Median Selection-cont
RS(A, p, r, i){

//Randomize Selection: Returns i’st smallest element in A[p..r].
//Assumption: Input is valid and elements are different.

•  If p==r return A[p]
•  q=PARTITION(A,p,r) ;

• //Partition using the 5-random element method
•  k=q-p
•  If i==k+1 return A[q]
•  If i<k return RS(A, p, q-1, i) // Note the difference from QS
•  Else return RS(A, q+1, r, i-k-1)
} p q r

≤ x x ≥ x

k

14

Time analyis
•  Recall: With high probability, we pick a good pivot:

• Not in the 10% smallest or largest:
•  Hence, we get rid of at least 10% of the elements of A
•  So, T(n)=cn+T(0.9 n).

• T(n)=c(n+0.9n+ 0.92n+0.93n+…) =
cn(1+0.9+ 0.92+0.93+…) =
cn(1/(1-0.9)) = O(n).

•  So the expected time is linear. (yuppie)

As in the case of QS, partitions which are not good are not harmful,
just not helpful.

