CSc445 Algorithms

Quick Sort and median selection

Alon Efrat

Based on slides curacy of
Piotr Indyk and Carola Wenk

QuickSort —
example of the
divide-and-concourse paradigm

* Proposed by C.A.R. Hoare in 1962.

* Sorts “in place” (no need for extra space).
Like insertion sort, but not like merge sort.

* Very practical (with tuning).

Divide and conquer

Quicksort an n-element array:

1.Divide: Partition the array into two subarrays
around a pivot x such that elements in lower
subarray = x < elements in upper subarray.

=X |‘C‘ =X

2.Congquer: Recursively sort the two subarrays.

3.Combine: Trivial.

Key: Linear-time partitioning subroutine.

Partitioning subroutine

PARTITION(A, p, q) = A[p..q] Running time = O(n)
x < A[p] > pivot = A[p] for 1 elements.
1 (*/)
forj<—p+ltog
doif A[/] =x > Should send A[/] to the left.
then{
i<—i+1 > Now A[i]>x

exchange A[i] <> A[j] > Fix A[i]>x

reta - 'S
k[=x Bl>x [e] 2 |
Invariant: p i i q

J
‘\‘ <X ®| > X ®| ? |

Example of partitioning

[ef1o]3] 583]2}
i

Example of partitioning

[ef1o]13] 583]2}

P

Example of partitioning

[ef1o]3] 58321}

i o—»l

Example of partitioning

[e]1o]3] 583]2}

l6[s5]13]0]8]3]2]11]

Example of partitioning

[6f1o]3] 58321}

[6]5]i3]o] 8321}

i —J

Example of partitioning

[ef1o]3] 58321}

[6]5]i3]o] 8321}

i o—>]

Example of partitioning

[e]1o]3] 583]2}

l6[s5]13J0]8]3]2]11]

653 o] 8]3]2]1]

— j

L4.11

Example of partitioning

[6f1o]3] 58321}

[6]5]i3]o] 83211}

[6]5]3]o]8]3]2]i]

i o—vj

Example of partitioning

[ef1o]3] 58321}

[6]5]i3]o] 8321}

l6[s5]3]w]8]13]2]11]

[6]5]3]2]8]3]10]11]

Example of partitioning

[e]1o]3] 583]2}

l6[s5]13J0]8]3]2]11]

653 o] 8]3]2]1]

[6]5]3]2]8]13]10]11]

i —j

Example of partitioning

[6f1o]3] 58321}

[6]5]i3]o] 83211}

[6]5]3]o]8]3]2]i]

[6]5]3]2]8]3]10]11]

i —

Example of partitioning

[ef1o]3] 58321}

[6]5]i3]o] 8321}

l6[s5]3]w]8]13]2]11]

[6]5]3]2]8]3]10]11]

[2]5]3]6]8]13]10]11]

1

Pseudocode for quicksort

QUICKSORT(4, p, 7)
ifp<r
then ¢ <= PARTITION(4, p, r)
QUICKSORT(4, p, g—1)
QUICKSORT(4, g+1, r)

Initial call: QUICKSORT(4, 1, n)

Analysis of quicksort

* Assume all input elements are distinct.

« In practice, there are better partitioning
algorithms for when duplicate input
elements may exist.

* Let 7(n) = worst-case running time on
an array of » elements.

Worst-case of quicksort

* Input sorted or reverse sorted.
« Partition around min or max element.
* One side of partition always has no elements.

T(n)=T(0)+T(n-1)+06(n)
=0(1) +T(n-1)+O(n)
=T(n-1)+0(n)

=0(n?) (arithmetic series)

Worst-case recursion tree
T(n)=T(0) + T(n—1) + cn

Worst-case recursion tree
T(n)=T(0) + T(n—1) + cn
I(n)

Worst-case recursion tree
T(n)=T(0) + T(n—1) + cn
cn
P
70) T(n-1)

Worst-case recursion tree
T(n)=T(0) + T(n—1) + cn
cn
PN
7(0) c(n-1)
pARS
7(0) T(n-2)

Worst-case recursion tree
T(n)=T(0) + T(n—1) + cn
cn
~
7(0) c(n-1)
S~
7(0) c(n-2)
P
7(0)

o(1)

Worst-case recursion tree
T(n)=T(0) + T(n—1) + cn
cn n

&) @’(E"] - ©(n?)
7 k=l

7(0) c(n-2)
P

7(0)

o)

L4.25

Worst-case recursion tree
T(n)=T(0) + T(n—1) + cn

cn

o, @(glk] _o(n2)

s
O(1) c(n-2)
h=n PN T(n) = ©(n) + O(n?)
el - = 0(n?)
~
o)

Best-case and almost best-case
analysis

If we are lucky, PARTITION splits the array evenly:
T(n) =2T(n/2) + ©(n)
=0(nlgn) (same as merge sort)
1.9
10°10°
T(n)= T(%n)+ T(%n)+ B(n)

‘What is the solution to this recurrence?

What if the split is always

1427

Analysis of “almost-best” case

T(n)

L4.28

Analysis of “almost-best” case
cn

A T

10

Analysis of “almost-best” case

10

Analysis of “almost-best” case

/cn--- ---------------- cn
1 9
}) Cn\ 1/70 cn_l(;él_o_Q;l ------ “
ﬁ/cn m/cn\ %}cn\ BCN =\ === === cn
(1)

Analysis of “almost-best” case

léo./cn %O/Cn\ %}C”’\ %”{ X cn
o(l) O(n) leaves E \
ed)
cnlog,yn <T(n) < cnlog,,n + O(n)
<8clogn

Randomized quicksort

How can find a pivot that guarantees partitions with good ratios for
A[l..n],?

We say that ¢ is a good pivot for if
« at least 10% of the elements of A//..n] are smaller than ¢, and
« at least 10% of the elements of 4//..n/ are larger than g.

[10%= ¢ 1022 ¢ |

Best pivot: Pick the median of A//..n], as pivot.
(median — an element that is larger than half of the elements)
Then the time would obey 7(n) = cn+2T(n/2)

Problem — need to work too hard to find the median (best pivot), so
we will do with (only) a good pivot.

11

Finding a good pivot for A/I..n]

S-random-elements method. :
* Pick the indices of 5 elements at random from 4//..n/,
e Fork=Ito5

X[k] = A[nrnd()]

A[l.n]
I [T

* Set g to be the median of X//..5/

Finding a good pivot for A/I..n]

5-random-elements method. : Pick 5 elements at random from

A[1..n], and set g to be their median.
What it is the probability that g is not a good pivot ?
* Let S be the elements of A//..n] which are the 10% smallest.
* The probability that an elements picked at random is in S'is 0.1.
* g isin S only if at least 3 of the 5 elements that we pick are in S.
* The probability that this happens is

0.15+ 5¢0.1440.9 + 10°0.13+0.9% =
allin § 4in S, one not in § 2notin S
= 0.00001 + 0.00045 + 0.00810= 0.00856

* This is also the probability that ¢ is in the 10% largest elements.
* In other words: with probability =98%, ¢ is a good pivot.

[s:10% 24

Randomized quicksort — cont
Finding good pivots
Putting it together, during QS, each time that we need to find a pivot,
we use the “5 random elements” method.
With probability 98%, we find a good pivot.

The overall time that we spend on good partitions is much smaller than

the time we spent on bad partitions.
(note — bad partitions are not harmful — they are just not helpful)

So the recursions formula 7(n) = cn+ T(n /10) + T(n 9/10) still apply,
leading to running time O(n log n).
This is expected running time — there is a chance that the actual

running time is ©(n°), but the probability that it happens is very slim.

T =7

12

Quicksort in practice

* Quicksort is a great general-purpose
sorting algorithm.

* Quicksort is typically over twice as fast
as merge sort.

* Quicksort behaves well even with
caching and virtual memory.

Median Selection
* (CLRS Section 9.2, page 185).
* For A/1..n] (all different elements) we say that the

rank of x is i if exactly -1 elements in A4 are smaller
than x.

* In particular, the median is the /n/2 [-smallest.

* To find the median, we could sort and pick 4// n/2 []
(taken O(n log n)).

* We can do better.

L4.38

Median Selection-cont
RS(4, p, 1, i)

//Randomize Selection: Returns i "st smallest element in A/p..r].

//Assumption: Input is valid and elements are different.
 If p==r return A[p]
* ¢g=PARTITION(4,p,r) ;
*//Partition using the 5-random element method
* k=q-p
o If i==k+1 return A/q]
e Ifi<kreturn RS(4, p, ¢-1, i) // Note the difference from QS
e Else return RS(4, g+1, 1, i-k-1)

} p q r
=X X =X
S
k

13

Time analyis

Recall: With high probability, we pick a good pivot:

*Not in the 10% smallest or largest:
Hence, we get rid of at least 10% of the elements of 4
So, T(n)=cn+T(0.9 n).

*T(n)=c(n+0.9n+ 0.9°n+0.9°n+...) =

en(1+0.9+ 0.9°+0.9°+...) =

en(1/(1-0.9)) = O(n).
So the expected time is linear. (yuppie)

As in the case of QS, partitions which are not good are not harmful,
just not helpful.

14

