
1 

CSc445 Algorithms 
 

Alon Efrat 
Based on slides curacy of 

Piotr Indyk  and Carola Wenk 

Quick Sort and median selection 

QuickSort – 
example of the  

divide-and-concourse paradigm 

• Proposed by C.A.R. Hoare in 1962. 
• Sorts “in place” (no need for extra space).  

Like insertion sort, but not like merge sort. 
• Very practical (with tuning). 

Divide and conquer 
Quicksort an n-element array: 
1. Divide: Partition the array into two subarrays 

around a pivot x such that elements in lower 
subarray ≤ x ≤ elements in upper subarray. 

2. Conquer: Recursively sort the two subarrays. 
3. Combine: Trivial. 

≤ x x ≥ x 

Key: Linear-time partitioning subroutine. 
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x 

Running time = O(n) 
for n elements. 

Partitioning subroutine 
PARTITION(A, p, q)  ⊳ A[ p . . q]  

x ← A[ p]  ⊳ pivot = A[ p] 
i ← p 
for j ← p + 1 to q  

do if A[ j] ≤ x   ⊳ Should send A[ j] to the left. 
then{ 

 i ← i + 1   ⊳ Now A[i]>x 
 exchange A[i] ↔ A[ j] ⊳ Fix A[i]>x 

} 
exchange A[ p] ↔ A[i] 
return i 

≤ x > x ? 
p i q j Invariant: 

x ≤ x > x ? 
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Example of partitioning 

i j 
6 10 13 5 8 3 2 11 
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Example of partitioning 

6 10 13 5 8 3 2 11 

6 5 3 10 8 13 2 11 

6 5 13 10 8 3 2 11 

6 5 3 2 8 13 10 11 

i 
2 5 3 6 8 13 10 11 

Pseudocode for quicksort 
QUICKSORT(A, p, r) 

if p < r 
then q ← PARTITION(A, p, r) 

QUICKSORT(A, p, q–1) 
QUICKSORT(A, q+1, r) 

Initial call: QUICKSORT(A, 1, n) 

Analysis of quicksort 

• Assume all input elements are distinct. 
• In practice, there are better partitioning 

algorithms for when duplicate input 
elements may exist. 

• Let T(n) = worst-case running time on 
an array of n elements. 
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Worst-case of quicksort 

• Input sorted or reverse sorted. 
• Partition around min or max element. 
• One side of partition always has no elements. 
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Worst-case recursion tree 
T(n) = T(0) + T(n–1) + cn 

Worst-case recursion tree 
T(n) = T(0) + T(n–1) + cn 

T(n) 
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cn 
T(0) T(n–1) 

Worst-case recursion tree 
T(n) = T(0) + T(n–1) + cn 

cn 
T(0) c(n–1) 

Worst-case recursion tree 
T(n) = T(0) + T(n–1) + cn 

T(0) T(n–2) 

cn 
T(0) c(n–1) 

Worst-case recursion tree 
T(n) = T(0) + T(n–1) + cn 

T(0) c(n–2) 

T(0) 

Θ(1) 

!



9 

L4.25 

cn 
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Worst-case recursion tree 
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T(n) = Θ(n) + Θ(n2) 
 = Θ(n2) 

h = n 
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Best-case and almost best-case 
analysis 

If we are lucky, PARTITION splits the array evenly: 
T(n)  = 2T(n/2) + Θ(n) 

 = Θ(n lg n) (same as merge sort) 

What if the split is always 10
9

10
1 : ? 

( ) ( ) )()( 10
9
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What is the solution to this recurrence? 
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Analysis of “almost-best” case 
)(nT

Analysis of “almost-best” case 
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Analysis of “almost-best” case 
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T(n) ≤ cn log10/9n + Ο(n) 
≤ 8 c log2n  

…
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O(n) leaves 

Randomized quicksort 
How can find a pivot that guarantees partitions with good ratios for 

A[1..n], ?  
We say that q is a good pivot  for if  
•  at least 10% of the elements of A[1..n] are smaller than q, and  
•  at least 10% of the elements of A[1..n] are larger   than q. 
 
     10% ≥ q 10% ≤ q 

Best pivot: Pick the median of A[1..n],  as pivot. 
(median – an element  that is larger than half of the elements ) 
Then the time would obey T(n) = cn+2T(n/2) 
Problem – need to work too hard to find the median (best pivot), so 
we will do with (only) a good pivot. 
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Finding a good pivot for A[1..n] 

5-random-elements method. :   
•  Pick the indices of 5 elements at random from A[1..n],  
•  For k=1 to 5  

X[k] = A[ n rnd() ] 

•  Set q to be the median of X[1..5] 
 
   

A[1..n] 
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Finding a good pivot for A[1..n] 
5-random-elements method. :  Pick 5 elements at random from 

A[1..n], and set q to be their median. 
What it is the probability that q is not a good pivot ? 
•  Let S be the elements of A[1..n] which are the 10% smallest. 
•  The probability that an elements picked at random is in S is 0.1.  

• q  is in S only if at least 3 of the 5 elements that we pick are in S.  
•  The probability that this happens is  
  0.15 +           5•0.14 •0.9 +                       10• 0.13 •0.92  =  

         all in S           4 in S, one not in S                 2 not in S  
=      0.00001     +         0.00045             +           0.00810=  0.00856 
•  This is also the probability that q is in the 10% largest elements. 
•  In other words: with probability  ≥98%,   q is a good pivot.  
 
         S:10% ≤ q 

Randomized quicksort – cont 
Finding good pivots  

Putting it together, during QS, each time that we need to find a pivot, 
we use the “5 random elements” method.  

With probability 98%, we find a good pivot.  
The overall time that we spend on good partitions is much smaller than 

the time we spent on bad partitions.  
(note – bad partitions are not harmful – they are just not helpful) 
So the recursions formula T(n) = cn+ T(n /10 ) + T(n 9/10) still apply, 

leading to running time O( n log n).  
This is expected running time – there is a chance that the actual 

running time is Θ(n2), but the probability that it happens is very slim.  

 10%   ≥ q 10%   ≤ q 
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Quicksort in practice 

• Quicksort is a great general-purpose 
sorting algorithm. 

• Quicksort is typically over twice as fast 
as merge sort. 

• Quicksort behaves well even with 
caching and virtual memory. 
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Median Selection 
•  (CLRS Section 9.2, page 185). 
• For A[1..n]  (all different elements) we say that the 

rank of x is i  if  exactly i-1 elements in A are smaller 
than x.  

•  In particular, the median is the ⎣n/2⎦-smallest. 
• To find the median, we could sort and pick A[⎣ n/2⎦] 

 (taken O(n log n) ). 
• We can do better. 

Median Selection-cont 
RS( A, p, r, i){ 

//Randomize Selection: Returns i’st smallest element in  A[p..r].  
//Assumption: Input is valid and elements are different. 

•  If p==r return A[p] 
•  q=PARTITION(A,p,r) ;  

• //Partition using the 5-random element method 
•  k=q-p 
•  If i==k+1 return A[q]  
•  If i<k return RS(A, p,     q-1, i  ) // Note the difference from QS 
•  Else   return RS(A, q+1, r,    i-k-1)  
}   p q r 

≤ x x ≥ x 

k 
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Time analyis 
•  Recall: With high probability, we pick a good pivot:  

• Not in the 10% smallest or largest: 
•  Hence, we get rid of at least 10% of the elements of A 
•  So, T(n)=cn+T(0.9 n). 

• T(n)=c(n+0.9n+ 0.92n+0.93n+…) = 
cn(1+0.9+ 0.92+0.93+…) =  
cn(1/(1-0.9)) = O(n). 

•  So the expected time is linear. (yuppie) 
 
As in the case of QS, partitions which are not good are not harmful, 
just not helpful. 
 
 
 
 


