
1

Quadtrees:

A data simple data structure for geometric objects(e.g.
points, houses, an image, 3D scene)

Support efficiently a very wide variety of queries.

2

QuadTrees
Assume we are given a red/green
picture defined a 2h × 2h grid. E.g. pixels.
Each pixel is either green or red.

(more general and interesting examples
– soon)

Need to represent the shape “compactly”

Need a data structure that could answers multiple types of
queries. For example:
1.  For a given point q, is q red or green ?

2.  For a given query disk D, are there any green points in D ?

3.  How many green points are there in D ?
4.  Etc etc

D2

D1 D3

3

QuadTrees
Assume we are given a
red/green picture defined
a 2h × 2h grid. E.g. pixels.

Alg constructQT (input – a shape R. Output – a Quadtree corresponding to R).

• If R is fully green, or R is fully red– store as one (leaf) node v, labeled Green
or Red. //Note: A pixel always have a unique color.
• Otherwise, divide the shape into 4 equal-size quadrants NW,NE, SW, SE.
• Call constructQT recursively for each quadrant.
• Create an internal node v having 4 children, corresponding to the 4
quadrants. Return v.

3

0
11

2

10

13
120 121

123 122

NW

SW SE

NW SE

2

4

QuadTrees

Consider a black/whie
picture stored on an
2h × 2h grid.

We can represent the
shape “compactly”
using a QT.

Height – at most h.
Point location operation – given a point q, is it black or white

 – takes time O(h)
 - could it be much smaller ?

Many other operations are very simple to implement.

3

0
11

2

10

13
120 121

123 122

NW SE

5

QuadTrees for a set of points
Now consider a set of
points (red) but on a
2h × 2h grid.

Splitting policy: Split
until each quadrant
contains ≤1 point.

Build a similar QT, but we stop splitting a quadrant when it contain ≤1 point (or
some other small constant)
Point location operation – given a point q, is it black or white

 – takes time O(h) (and less in practice)

Many other splitting polices are very simple to implement.

 (eg. A leaf could contain contains ≤17 points)

3

0
11

a b

c

d

d a

b

c

 e

e

6

Regions of nodes
In general, every node v
is associated with a
region R(v) in the plane

R(root) is the whole
region

The smallest area of R(v)
is a single pixel.

Let NW(v) denote the
North West child of v.
(similarly NE, SW, SE)

R(v) = is the union of
 R(NW(v)), R(NE(v)) R(SW(v)), R(SE(v))

3

0

11

d a

b

c

R(NW(root))

R(root))

3

7

QuadTrees for a set of points
Report(Q,v)
// Q – a query disk
/*report all the points in stored
at the subtree rooted at v, which
are also inside Q. */

1.  If v is NULL – return.
2.  If R(v) is disjoint from Q –
return

3.  If R(v) is fully contained in Q
– report all points in the
subtree rooted at v.

4.  If v is a leaf – check each
point in R(v) if inside Q

5.  Else
u  Report(Q, NW(v))
u  Report(Q, NE(v))
u  Report(Q, SW(v))
u  Report(Q, SE(v))

3

0

11

a

c

d

d a

b

c
Q

b

8

QuadTrees for shape

Input: Set S of triangles
S={t1…tn }

Splitting policy: Split
quadrant if it intersects
more than 1 triangle of S.

3

0

11
c

d

d a

b

c
Q

a

a a

b

Note – a triangle might be stored in multiple leaves.
Some leaves might store no triangles.

Finding all triangles inside a query region Q –
essentially same Report Report(Q,v) as before

 (minor modifications)

Terrain representations

Raw data – a grid of points (xi, yj , zij)
For every grid point i,j

4

Triangulated terrain
(TIN – Triangulated irregular network

Each triangle approximately fits the surface below it

How to find good triangulation ?

Each triangle approximately fits the surface below it
(credit SCALGO)

How to find good triangulation ?

u Split the plane into squares
(quadrants)

u Split each square into 2 right-hand
triangles

u Assign to each vertex the height of
the terrain above it.

u The approximated elevation of the
terrain at any point is the linear
interpolation of its vertices.

u Further split if approximation is not
actuate enough

u Eg., for some data point, the
measured elevation is too far from
the interpolated elevation.

5

Level Of Details

Levels of Detail (LOD)
● Coarser representations for distant objects

● Hierarchy of representations of the same object at
different resolutions

● The same idea can also be used for textures
(mipmapping)

69,451 polys 2,502 polys 251 polys 76 polys

§  Idea – the same object is stored several times, but with a
different level of details

§  Coarser representations for distant objects
§  Decision which level to use is accepted `on the fly’

(eg in graphics applications, if we are far away from a
terrain, we could tolerate usually large error)

