
\qquad
\qquad

Searching a key \boldsymbol{x} in a sorted linked list	
head $\rightarrow-\infty \rightarrow$ (7) $14 \rightarrow$ (21) $32 \rightarrow$ (37)	
	(find(71)
	cell ${ }^{*} p=$ head ; find(40)
	while (p->key <x) $p=p$->next;
	return p ; / / which is either equal or larger than
Note:	
- The - ∞ and ∞ elements are not "real" keys.	
- They are in the list to prevent checking special cases	
- Sometimes we prefer to return the element proceeding the one containing x. Then line $\mathbf{2}$ is replaced with	
	while (p->->next->key <x) $\quad p=p$->nerrat

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Sometimes we prefer to return the element proceeding the \qquad ne containing x. Then line 2 is replaced with \qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

- $p=$ top ;
- while(1)
- while ($p \rightarrow$ next \rightarrow key $<\boldsymbol{x}$) $\quad p=\boldsymbol{p} \rightarrow$ next ;
- if $(p \rightarrow$ down $==N U L L)$ return p
- // Note: This returns the element itself. If interested in the predecessor, return p. - $p=p \rightarrow$ down ;
-
- Observe that we return $\operatorname{pred}(\boldsymbol{x})$ (the key proceeding x).

\qquad
\qquad

Determining k

- \boldsymbol{k} - the number of levels at which an element x participate.
- Use a random function OurRnd() --- returns 1 or 0 (True/False) with equal probability.
- $k=1$;
- While(OurRnd()==1) $\boldsymbol{k + +}$;

"expected" on what?

- Claim: The expected number of elements is $\mathrm{O}(n)$.
- he term "expected" here refers to the experiments we do while tossing the coin (or calling OurRnd()). No assumption about input distribution.
- So imagine a given set, given set of operations insert/ del/find, but we repeat many time the experiments of - constructing the SL, and count the \#elements.

Facts about SL

- Def: The height of the SL is the number of levels
- Claim: The expected number of levels is $\mathrm{O}(\log n)$
- (here n is the number of keys)
- "〔 Proof"
- The number of elements participate in the lowest level is \boldsymbol{n}.
- Since the probability of an element to participates in level 2 is $1 / 2$, the expected number of elements in level 2 is $\mathbf{n} / \mathbf{2}$.
- Since the probability of an element to participates in level 3 is $1 / 4$, the expected number of elements in level 3 is $n / 4$.
- ...
- The probability of an element to participate in level j is $(1 / 2)^{j-1}$ so number of elements in this level is $n / 2^{j-1}$
- So after $\log (n)$ levels, no element is left.

Facts about SL

- Claim: The expected number of elements is $\mathrm{O}(n)$.
- (here n is the number of keys)
- "œ Proof" (a rigorous proof requires the use of random variables)
- The total number of elements is
$n+n / 2+n / 4+n / 8 \ldots \leq n(1+1 / 2+1 / 4+1 / 8 \ldots)=2 n$

To reduce the worst case scenario, we verify during insertion that \boldsymbol{k} (the number of levels that an element participates) in) is $\leq \log n$.
Conclusion: The expected storage is $O(5 r)$

| - Thm: The expected time for find/insert/delete is $\mathrm{O}(\log n)$ |
| :--- | :--- |
| - Proof For all Insert and Delete, the time is \leq |
| expected \#elements scanned during find (x) operation. |
| Will show: Need to scan expected $\mathrm{O}(\log n)$ elements. |

\qquad

Thm: Expected time for ' find' operation is $\mathrm{O}(\log n)$

- \cong Proof - we know that there are $O(\log n)$ levels. Will show that we spend $\mathrm{O}(1)$ time in each level.
- Assume during find (x), we scanned t elements, (for $t>8$) in level r. Assume first that r is not the upper level.
- (the search visited \boldsymbol{b}, branched down to \boldsymbol{b}_{1} and then visited $\boldsymbol{b}_{2 \ldots} \boldsymbol{b}_{8}$ (not sure what happed before or after)

All smaller than x
None of these 7 elements reached level $r+1$ (why?)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
The probability that none of these 7 elements reached level $r+1$ is $1 / 2^{7}$. For larger value of 7 - very slim. \qquad

Bounding time for insert/delete/find \qquad

- Putting it together The expected number of elements scanned in each level is O(1)
- There are $O(\log n)$ levels \qquad
- Total time is $\mathrm{O}(\log n)$
- As stated, getting bounds for time for insert/delete are similar
\qquad
- Lets ask how likely it is that the \#levels is \qquad $Z \log _{2} n$, where $Z=1,2,3 \ldots$
That is, we estimate the probability that the height of the SL is
- $\quad \log _{2} n$
- $2 \log _{2} n$
- $3 \log _{2} n$
- $4 \log _{2} n$ \qquad
- ...

Reminder from probability

\qquad

- Assume that $\boldsymbol{A}, \boldsymbol{B}$ are two events. Let
- $\operatorname{Pr}(\boldsymbol{A})$ be the probability that \boldsymbol{A} happens,
- $\operatorname{Pr}(\boldsymbol{B})$ be the probability that \boldsymbol{B} happens
- $\operatorname{Pr}(\boldsymbol{A} \cup \boldsymbol{B})$ is the probability that either event \boldsymbol{A} happens or event \boldsymbol{B} happens (or both).
- So probably that at least one of them happened is $\operatorname{Pr}(\boldsymbol{A})+\operatorname{Pr}(\boldsymbol{B})-\operatorname{Pr}(\boldsymbol{A} \cap \boldsymbol{B}) \leq \operatorname{Pr}(\boldsymbol{A})+\operatorname{Pr}(\boldsymbol{B})$
Similarly, for 3 Events $\boldsymbol{A}_{\mathbf{1}}, \boldsymbol{A}_{\mathbf{2}}, \boldsymbol{A}_{\mathbf{3}}$. The probability that at least one of them happens
$\operatorname{Pr}\left(\boldsymbol{A}_{\mathbf{1}} \cup \boldsymbol{A}_{\mathbf{2}} \cup \boldsymbol{A}_{\mathbf{3}}\right) \leq \operatorname{Pr}\left(\boldsymbol{A}_{\boldsymbol{1}}\right)+\operatorname{Pr}\left(\boldsymbol{A}_{\boldsymbol{2}}\right)+\operatorname{Pr}\left(\boldsymbol{A}_{\mathbf{3}}\right)$
Example: In a roulette, we pick a number \boldsymbol{k} between $1 . .38$ \qquad
- Event A: \boldsymbol{k} is even. $\operatorname{Pr}(\boldsymbol{A})=\operatorname{Pr}(\boldsymbol{k}$ is even $)=19 / 38=0.5$
- Event $\mathbf{B}: \boldsymbol{k}$ is divided by $3 \operatorname{Pr}(\boldsymbol{B})=12 / 38=0.315$
- $\operatorname{Pr}(\mathbf{A}$ or $\mathbf{B})=\operatorname{Pr}((\boldsymbol{k}$ is divided by 2$)$ or $(\boldsymbol{k}$ is divided by 3$))$ $\leq 0.5+0.3=0.8$

But how likely is that the SL is too tall ? \qquad

- Assume the keys in the SL are $\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$
-The probability that $\boldsymbol{x}_{\boldsymbol{1}}$ participates in at least k levels is $\mathbf{2}^{\boldsymbol{- k}}$
- (same probability for all x_{i}).
- Define: $\boldsymbol{A}_{\boldsymbol{1}}$ is the event that $\boldsymbol{x}_{\boldsymbol{1}}$ participates in $\geq \boldsymbol{k}$ levels.
- $\operatorname{Pr}\left(\boldsymbol{A}_{1}\right) \leq \mathbf{2}^{-k}$
- Define: $\boldsymbol{A}_{\boldsymbol{j}}$ is the event that $\boldsymbol{x}_{\boldsymbol{j}}$ participates in $\geq \boldsymbol{k}$ levels
- $\operatorname{Pr}\left(\boldsymbol{A}_{j}\right) \leq \mathbf{2}^{-k}$
- If the height of $S L \geq \boldsymbol{k}$ then
at least one of the x_{j} participate in $\geq \boldsymbol{k}$ levels.
- The probability that any $\boldsymbol{x}_{\mathrm{i}}$ participates in $\geq \boldsymbol{k}$ levels is \leq $\operatorname{Pr}\left(\boldsymbol{A}_{\mathbf{1}}\right)+\operatorname{Pr}\left(\boldsymbol{A}_{\mathbf{2}}\right)+\ldots .+\operatorname{Pr}\left(\boldsymbol{A}_{\boldsymbol{n}}\right)=\boldsymbol{n} \boldsymbol{2}^{-\boldsymbol{k}}$
- This is the probability that the height of the $S L$ is $\geq k$

But how likely is that the SL is tall ?

-The probability that any $\boldsymbol{x}_{\mathrm{i}}$ participates in at least \boldsymbol{k} levels is
$\leq \boldsymbol{n} \mathbf{2}^{-\boldsymbol{k}}$. Then the height of the $\mathrm{SL} \geq \boldsymbol{k}$.
-Recall $\boldsymbol{y}^{(a b)}=\left(\boldsymbol{y}^{a}\right)^{b}$.
-Write $\boldsymbol{k}=\boldsymbol{Z} \boldsymbol{\operatorname { l o g }}_{2} \boldsymbol{n}$, and recall that $\mathbf{2}^{\log \boldsymbol{n}}=\boldsymbol{n}$.
-Want to find: The probability that the height is \boldsymbol{Z} times $\boldsymbol{\operatorname { l o g }}_{2} \boldsymbol{n}$. -Twice, 3 time, 4 times.
-Then $2^{-k}=2^{-(z \log n)}=\left(2^{\log n}\right)^{-z}=n^{-z=1 / n^{z}}$
-So $n 2^{-k} \leq n / n^{z}=1 / n^{z-1}$
-This is the probability that the height of $\mathrm{SL} \geq \boldsymbol{Z} \boldsymbol{\operatorname { l o g }}_{2} \boldsymbol{n}$.Example: $\boldsymbol{n = 1 0 0 0}$.
.The probability that the heigh $\geq 7 \log _{2} n$ is $\leq 1 / 1000^{6} 1 / 10^{18}$.The prob. that the heigh $\geq 10 \log _{2} n$ is $\leq 1 / 1000^{29}=1 / \mathbf{1 0}^{27}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

In other words (and with some hand-waving) \qquad
-Assume we have a set of $n>1000$ keys, and we keep rebuilding Skiplists for them.
-Call a SL bad if its height $>\boldsymbol{7} \boldsymbol{\operatorname { l o g }}_{2} \boldsymbol{n}$
-First build SL_{1}
-Then build SL_{2} (for the same keys) \qquad
-Then ...
-Then SL_{M} where $\underline{M=10^{20}}$
-Then less than 100 of them are bad. \qquad

