
1

Alon Efrat
Computer Science Department

University of Arizona

SkipList

2

Searching a key x in a sorted linked list

1.  cell *p =head ;!
2.  while (p->key < x) p=p->next ; !
3.  return p ; //(which is either equal or larger than x)!
!
Note:
n  The -∞ and ∞ elements are not “real” keys.

n  They are in the list to prevent checking special cases
n  Sometimes we prefer to return the element proceeding the

one containing x. Then line 2 is replaced with
!while (p->->next->key < x) p=p->next

7 14 21 32 37 71 85 117 -∞ ∞ head

find(71)
find(40)

p1

inserting a key into a Sorted linked list

To insert 35 -
n  p= find(35); // find the proceeding element – the

next one is > 35
n  CELL *p1 = (CELL *) malloc(sizeof(CELL));
n  p1->key=35;
n  p1->next = p->next ;
n  p->next = p1 ;

7 14 21 32 37 71 85 117 -∞ ∞ head

p 35

2

deleteing a key from a sorted list

n  To delete 37 -
n  p=find(37); // Again find proceeding element
n  CELL *p1 =p->next;
n  p->next = p1->next ;
n  free(p1);

7 14 21 32 37 71 85 117 -∞ ∞ head

p p1

5

SKIP LIST - A data structure for
maintaining keys in a sorted order

Rules:
n  Consists of several levels.
n  All keys appear in level 1
n  Each level is a sorted list.
n  If key x appears in level i, then

it also appears in all levels
below level i

7 14 21 32 37 71 85 117

71 37 21 7

37 21

Level 1

Level 2

Level 3

top

-∞

-∞

-∞ ∞

∞

∞

n  First element in each level has

key -∞ .
n  Last element has key +∞
n  First element in upper level is

pointed to by variable top.

next-pointer

down-pointer

6

More rules

n  An element in level i >1 points (via down pointer) to the element with
the same key in the level below.

n  Elements in the lowest level have down-pointer=NULL
n  Also maintain a counter specifying the number of levels.

7 14 21 32 37 71 85 117

71 37 21 7

37 21

Level 1

Level 2

Level 3

Top

-∞

-∞

-∞ ∞

∞

∞ next-pointer

Down-pointer

3

An empty SkipList

Level 1

Top

-∞ ∞

8

Finding an element with key x
n  p=top ;
n  while(1){

n  while (pènextèkey < x) p=pènext;
n  if (pèdown == NULL) return p

n  // Note: This returns the element itself. If interested in the predecessor, return p.
n  p=pèdown ;

n  }
n  Observe that we return pred(x) (the key proceeding x).

7 14 21 32 37 71 85 117

71 37 21 7

37 21

Level 1

Level 2

Level 3

Top

-∞

-∞

-∞ ∞

∞

∞ next-pointer

down-pointer

find(117), find(116)

9

Inserting new element x

n  Determine k, defined as the number of levels in which x
participates (explained later how)

n  Perform find(x), but once the search path is in one of the lowest k
levels:
n  x is inserted after the elements at which the search path

branches down or terminates.
n  The next-pointer behave like a “standrad” linked list
n  The down pointer(s) point between themselves.

n  Example - inserting 119. k=2

7 14 21 32 37 71 85

71 37 21 7

37 21

Level 1

Level 2

Level 3

Top

-∞

-∞

-∞ ∞

∞

∞ next-pointer

Down-pointer

119

119

find(119)

4

10

Inserting an element - cont.

n  If k is larger than the current number of levels, add new
levels (and update top, and num_of_levels counter)

n  Example - insert(119) when k=4
n  Heuristic: Add at most one new level
(not needed for the analysis)

7 14 21 32 37 71 85

71 37 21 7

37 21

Level 1

Level 2

Level 3

Top

-∞

-∞

-∞ ∞

∞

∞

119

119

119

119 ∞ -∞

Determining k

n  k - the number of levels at which an element x
participate.

n  Use a random function OurRnd() --- returns 1 or
0 (True/False) with equal probability.
n  k=1 ;
n  While(OurRnd()==1) k++ ;

12

Deleteing a key x
n  Find x in all the levels it participates, using find(x).
n  During the “find”, delete x from each level it participates using

the standard “delete from a linked list” method.
n  If one or more of the upper levels become empty, remove them

(and update top and num_of_levels)

7 14 21 32 37 71 85 117

71 37 21 7

37 21

Level 1

Level 2

Level 3

Top

-∞

-∞

-∞ ∞

∞

∞ next-pointer

down-pointer

delete(71)

5

“expected” on what ?

n  Claim: The expected number of elements is O(n).

n  he term “expected” here refers to the experiments we do
while tossing the coin (or calling OurRnd()). No
assumption about input distribution.

n  So imagine a given set, given set of operations insert/

del/find, but we repeat many time the experiments of
n  constructing the SL, and count the #elements.

Facts about SL
n  Def: The height of the SL is the number of levels
n  Claim: The expected number of levels is O(log n)
n  (here n is the number of keys)
n  “≅ Proof”

n  The number of elements participate in the lowest level is n.
n  Since the probability of an element to participates in level 2 is
½, the expected number of elements in level 2 is n/2.

n  Since the probability of an element to participates in level 3 is
1/4, the expected number of elements in level 3 is n/4.

n  …
n  The probability of an element to participate in level j is (1/2) j-1

so number of elements in this level is n /2 j-1
n  So after log(n) levels, no element is left.

15

Facts about SL

n  Claim: The expected number of elements is O(n).
n  (here n is the number of keys)
n  “≅ Proof” (a rigorous proof requires the use of random

variables)
n  The total number of elements is

n+n/2+n/4+n/8… ≤ n(1+1/2+1/4+1/8…) =2n

 To reduce the worst case scenario, we verify
during insertion that k (the number of levels that an
element participates) in) is ≤ log n.

Conclusion: The expected storage is O(n)

6

More facts

n  Thm: The expected time for find/insert/delete is O(log n)

n  Proof For all Insert and Delete, the time is ≤
 expected #elements scanned during find(x) operation.

n  Will show: Need to scan expected O(log n) elements.

Thm: Expected time for `find’ operation is O(log n)

n ≅Proof – we know that there are O(log n) levels. Will show
that we spend O(1) time in each level.

n Assume during find(x), we scanned t elements, (for t>8) in
level r. Assume first that r is not the upper level.

n  (the search visited b, branched down to b1 and then visited b2…b8
(not sure what happed before or after)

All smaller than x
None of these 7 elements reached level r+1 (why?)

Level r
b2

> x

≤ x

Level r+1

The probability that none of these 7 elements reached
level r+1 is 1/27. For larger value of 7 – very slim.

b3 b4 b7

b

b1

c

b5 b6 b8

Bounding time for insert/delete/find

n  Putting it together The expected number of elements
scanned in each level is O(1)

n  There are O(log n) levels
n  Total time is O(log n)
n  As stated, getting bounds for time for insert/delete are

similar

7

How likely is that the SL is too tall ?

n  Lets ask how likely it is that the #levels is
 Zlog2 n, where Z=1,2,3…
That is, we estimate the probability that the height of
the SL is

n  log2n
n  2 log2n
n  3 log2n
n  4 log2n

n  …

Reminder from probability
n  Assume that A,B are two events. Let

n  Pr(A) be the probability that A happens,
n  Pr(B) be the probability that B happens
n  Pr(A B) is the probability that either event A happens or event

B happens (or both).
n  So probably that at least one of them happened is

 Pr(A)+Pr(B)-Pr(A B) ≤ Pr(A)+Pr(B)
Similarly, for 3 Events A1, A2, A3. The probability that at least one of
them happens

 Pr(A1 A2 A3) ≤ Pr(A1)+Pr(A2)+Pr(A3)
Example: In a roulette, we pick a number k between 1..38
n  Event A: k is even. Pr(A)=Pr(k is even) = 19/38 = 0.5
n  Event B : k is divided by 3. Pr(B)= 12/38=0.315
n  Pr(A or B) = Pr((k is divided by 2) or (k is divided by 3))
≤0.5+0.3=0.8

[

\

[[

But how likely is that the SL is too tall ?

n  Assume the keys in the SL are {x1, x2, … xn.}

n The probability that x1 participates in at least k levels is 2 –k

n  (same probability for all xi).
n  Define: A1 is the event that x1 participates in ≥k levels.
n  Pr(A1) ≤ 2-k
n  Define: Aj is the event that xj participates in ≥k levels
n  Pr(Aj) ≤ 2-k
n  If the height of SL ≥k then

 at least one of the xj participate in ≥k levels.

n  The probability that any xi participates in≥ k levels is ≤
 Pr(A1) +Pr(A2)+….+Pr(An) =n 2-k
n  This is the probability that the height of the SL is ≥ k

8

22

But how likely is that the SL is tall ?

n The probability that any xi participates in at least k levels is
≤n2-k . Then the height of the SL ≥ k.

n Recall y(ab)=(ya)b.
n Write k= Z log2 n, and recall that 2 log n = n.
n Want to find: The probability that the height is Z times log2n.

n Twice, 3 time, 4 times…

n Then 2-k = 2- (Z log n) = (2 log n)-Z = n-Z =1/nZ
n So n2-k≤n / n Z = 1/nZ-1

n This is the probability that the height of SL ≥Z log2 n

n Example: n=1000.
n The probability that the heigh≥7 log2n is ≤ 1/ 10006 1/1018

n The prob. that the heigh≥10log2n is ≤ 1/ 1000 9 =1/1027

23

In other words (and with some hand-waving)

n Assume we have a set of n>1000 keys, and we keep
rebuilding Skiplists for them.
n Call a SL bad if its height > 7 log2n

n First build SL1

n Then build SL2 (for the same keys)
n Then …

n Then SLM where M=1020

n Then less than 100 of them are bad.

n Using Similar techniques we can also bound the probability that
the search takes more than Z log2 n

