

while $(p \rightarrow next \rightarrow key < x)$ $p = p \rightarrow next$

Determining k

- *k* the number of levels at which an element *x* participate.
- Use a random function *OurRnd()* --- returns 1 or 0 (True/False) with equal probability.
 - **k**=1;
 - While(OurRnd()==1) k++;

"expected" on what ?

- Claim: The expected number of elements is O(n).
- he term "expected" here refers to the experiments we do while tossing the coin (or calling OurRnd()). No assumption about input distribution.
- So imagine a given set, given set of operations insert/ del/find, but we repeat many time the experiments of • constructing the SL, and count the #elements.

Facts about SL

- **Def:** The height of the SL is the number of levels
- Claim: The expected number of levels is O(log n)
- (here *n* is the number of keys)
- "≃ Proof"
- The number of elements participate in the lowest level is *n*.
- Since the probability of an element to participates in level 2 is $\frac{1}{2}$, the expected number of elements in level 2 is n/2.
- Since the probability of an element to participates in level 3 is 1/4, the expected number of elements in level 3 is n/4.
- The probability of an element to participate in level j is (1/2) j-1
- so number of elements in this level is $n/2^{j-1}$
- So after log(n) levels, no element is left.

Facts about SL

- Claim: The expected number of elements is O(n).
- (here *n* is the number of keys)
- "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "

 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 variables)
 - The total number of elements is $n+n/2+n/4+n/8... \le n(1+1/2+1/4+1/8...) = 2n$
 - To reduce the worst case scenario, we verify during insertion that k (the number of levels that an element participates) in) is $\leq \log n$.

Conclusion: The expected storage is O(n)

More facts

- Thm: The expected time for find/insert/delete is O(log n)
- Proof For all Insert and Delete, the time is ≤ expected #elements scanned during find(x) operation.
- Will show: Need to scan expected O(log *n*) elements.

Bounding time for insert/delete/find

- Putting it together The expected number of elements scanned in each level is O(1)
- There are O(log n) levels
- Total time is O(log n)
- As stated, getting bounds for time for insert/delete are similar

How likely is that the SL is too tall ?

Lets ask how likely it is that the #levels is Zlog₂ n, where Z=1,2,3...

That is, we estimate the probability that the height of the SL is

- log₂n
- 2 log₂n
- 3 log₂n
- 4 log₂n
- Reminder from probabilityAssume that A, B are two events. Let• Pr(A) be the probability that A happens,• Pr(B) be the probability that B happens• Pr($A \cup B$) is the probability that either event A happens or event B happens (or both).• So probably that at least one of them happened is
Pr($A \cup PF(B)$ -Pr($A \cap B$) \leq Pr(A)+Pr(B)Similarly, for 3 Events $A_{1,}A_{2,}A_{3,}$ The probability that at least one of them happens
Pr($A_{1} \cup A_{2} \cup A_{3}$) \leq Pr(A_{1})+Pr(A_{2})+Pr(A_{3})Example: In a roulette, we pick a number k between 1..38
Event A: k is even. Pr(A)=Pr(k is even) = 19/38 = 0.5
Event B: k is divided by 3. Pr(B) = 12/38=0.315
Pr($A \circ B$) = Pr((k is divided by 2) or (k is divided by 3))
 \leq 0.5+0.3=0.8

- Assume the keys in the SL are $\{x_{1'}, x_{2'}, \dots, x_n\}$
- •The probability that $\boldsymbol{x_1}$ participates in at least k levels is $\boldsymbol{2^{-k}}$
- (same probability for all x_i).
- Define: A_1 is the event that x_1 participates in $\geq k$ levels.
- Pr(A₁) ≤ 2^{-k}
- Define: A_j is the event that x_j participates in $\geq k$ levels
- $Pr(\boldsymbol{A}_i) \leq 2^{-k}$
- If the height of SL ≥k then
- at least one of the x_j participate in $\geq k$ levels.
- The probability that **any** x_i participates in $\geq k$ levels is $\leq \Pr(A_1) + \Pr(A_2) + ... + \Pr(A_n) = n 2^{-k}$
- This is the probability that the height of the SL is $\geq k$

The probability that **any** x_i participates in at least k levels is $\leq n2^{-k}$. Then the height of the SL $\geq k$.

Recall y^(ab)=(y^a)^b.

•Write $k = Z \log_2 n$, and recall that $2^{\log n} = n$.

•Want to find: The probability that the height is **Z** times *log_n*. •Twice, 3 time, 4 times...

- •Then $2^{-k} = 2^{-(Z \log n)} = (2^{\log n})^{-Z} = n^{-Z} = 1/n^Z$
- ■So *n2^{-k}≤n / n ^z = 1/n^{z-1}*

This is the probability that the height of SL ≥ Z log₂ n
Example: n=1000.

■The probability that the heigh≥ $7 \log_2 n$ is $\le 1/1000^6 1/10^{18}$ ■The prob. that the heigh≥ $10\log_2 n$ is $\le 1/1000^{29} = 1/10^{27}$

In other words (and with some hand-waving)

Assume we have a set of *n*>1000 keys, and we keep rebuilding Skiplists for them.
Call a SL *bad* if its height > 7 *log₂n*

 \bullet First build SL₁

 $\hfill \label{eq:linear}$ Then build SL_2 (for the same keys)

Then ...

- •Then SL_M where $M=10^{20}$
- Then less than 100 of them are bad.

Using Similar techniques we can also bound the probability that the search takes more than $Z \log_2 n$

23