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Searching a key x in a sorted linked list 

1.  cell *p =head ;!
2.  while (p->key  < x )   p=p->next ; !
3.  return p ; //(which is either equal or larger than x )!
!
Note:  
n  The -∞ and ∞ elements are not “real” keys.  

n  They are in the list to prevent checking special cases 
n  Sometimes we  prefer to return the element proceeding the 

one containing x.   Then line 2 is replaced with  
!while (p->->next->key  < x )   p=p->next  
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inserting a key into a Sorted linked list 

To insert 35 -  
n  p= find(35); // find the proceeding element – the 

next one is > 35 
n  CELL *p1 = (CELL *) malloc(sizeof(CELL)); 
n  p1->key=35; 
n  p1->next = p->next ;  
n  p->next  = p1 ;  
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deleteing a key from a sorted list 

n  To delete 37 -  
n  p=find(37); // Again find proceeding element  
n  CELL *p1 =p->next;  
n  p->next = p1->next ;  
n  free(p1);  

7 14 21 32 37 71 85 117 -∞ ∞ head 

p p1 

5 

SKIP LIST - A data structure for 
maintaining keys in a sorted order 

Rules: 
n  Consists of several levels.  
n  All keys appear in level 1 
n  Each level is a sorted list.  
n  If key x appears in level i, then 

it also appears in all levels 
below level i 
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n  First element in each level has 

key  -∞  .  
n  Last element has key +∞   
n  First element in upper level is 

pointed to by variable top. 
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More rules  

n  An element in level i >1 points (via down pointer) to the element with 
the same key in the level below.  

n  Elements in the lowest level have down-pointer=NULL 
n  Also maintain a counter specifying the number of levels.  
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An empty SkipList  
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Finding an element with key x 
n  p=top ;  
n  while(1){ 

n  while (pènextèkey < x )  p=pènext; 
n  if (pèdown == NULL ) return p   

n  // Note: This returns the element itself. If interested in the predecessor, return p. 
n  p=pèdown ;  

n  }       
n   Observe that we return  pred(x) (the key proceeding x).  
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Inserting new element x 

n  Determine k,  defined as the number of levels in which x 
participates (explained later how) 

n  Perform find(x), but once the search path is in one of the lowest k 
levels:  
n  x is inserted after the elements at which the search path 

branches down or terminates. 
n  The next-pointer behave like a “standrad” linked list 
n  The down pointer(s) point between themselves.  

n                                   Example - inserting 119. k=2 
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Inserting an element - cont.  

n  If k is larger than the current number of levels, add new 
levels (and update top, and num_of_levels counter) 

n  Example - insert(119) when k=4  
n  Heuristic: Add at most one new level 
(not needed for the analysis)  
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Determining k  

n  k - the number of levels at which an element x 
participate.  

n  Use a random function OurRnd() --- returns 1 or 
0 (True/False) with equal probability.  
n  k=1 ;  
n  While( OurRnd()==1 ) k++ ;  
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Deleteing a key x    
n  Find x in all the levels it participates, using find(x).   
n  During the  “find”,  delete x from each level it participates using 

the standard “delete from a linked list” method. 
n  If one or more of the upper levels become empty, remove them 

(and update top  and num_of_levels ) 

7 14 21 32 37 71 85 117 

71 37 21 7 

37 21 

Level 1 

Level 2 

Level 3  

Top 

-∞ 

-∞ 

-∞ ∞ 

∞ 

∞ next-pointer 

down-pointer 

delete(71) 



5 

“expected” on what ?  

n  Claim: The expected number of elements is  O( n ).  

n  he term “expected” here refers to the experiments we do 
while tossing the coin (or calling OurRnd() ). No 
assumption about input distribution.  

 
n  So imagine a given set, given set of operations insert/

del/find, but we repeat many time the experiments of  
n  constructing the SL, and count the #elements.  

Facts about SL 
n  Def: The height of the SL is the number of levels  
n  Claim: The expected number of levels is O( log n )      
n  (here n  is the number of keys) 
n  “≅ Proof”    

n  The number of elements participate in the lowest level is n. 
n  Since the probability of an element to participates in level 2 is 
½, the expected number of elements in level 2 is n/2. 

n  Since the probability of an element to participates in level 3 is 
1/4, the expected number of elements in level 3 is n/4. 

n  … 
n  The probability of an element to participate in level j is (1/2) j-1  

so  number of elements in this level is  n /2 j-1  
n  So after log(n) levels, no element is left. 
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Facts about SL 

n  Claim: The expected number of elements is  O( n ).  
n  (here n is the number of keys) 
n  “≅ Proof”  (a rigorous proof requires the use of random 

variables) 
n  The total number of elements is  

n+n/2+n/4+n/8… ≤ n(1+1/2+1/4+1/8…) =2n 
 
 To reduce the worst case scenario, we verify 
during insertion that k (the number of levels that an 
element participates) in) is ≤ log n. 

Conclusion: The expected storage is O(n)   
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More facts  

 
n  Thm: The expected time for find/insert/delete is O( log n) 

n  Proof For all Insert and Delete,  the time is ≤  
 expected #elements scanned during find(x) operation. 

n  Will show: Need to scan expected O(log n ) elements.  

Thm: Expected time for `find’ operation is O( log n) 

n ≅Proof – we know that there are O( log n) levels. Will show 
that we spend O(1) time in each level.  

n Assume during find(x), we scanned t  elements, (for t>8 ) in 
level r.  Assume first that r  is not the upper level.  

n  (the search visited b, branched down to b1 and then visited b2…b8 
(not sure what happed before or after)  

All smaller than x 
None of these 7 elements reached level r+1 (why?) 

Level r 
b2 

> x 

≤ x 

Level r+1 

The probability that none of these 7 elements reached 
level r+1 is 1/27. For larger value of 7   – very slim. 

b3 b4 b7 

b 

b1 

c 

b5 b6 b8 

Bounding time for insert/delete/find 

n  Putting it together The expected number of elements 
scanned in each level is O(1)  

n  There are O(log n) levels  
n  Total time is O( log n ) 
n   As stated, getting bounds for time for insert/delete are 

similar 
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How likely is that the SL is too tall ?  

n  Lets ask how likely it is that the #levels is   
  Zlog2 n, where Z=1,2,3…   
That is, we estimate the probability that the height of 
the SL is  
 
n     log2n 
n   2 log2n 
n   3 log2n 
n   4 log2n 

n  … 

 
 

Reminder from probability 
n  Assume that A,B are two events. Let  

n  Pr(A ) be the probability that A  happens, 
n  Pr(B ) be the probability that B  happens 
n  Pr(A    B ) is the probability that either event A happens or event 

B  happens (or both). 
n  So probably that at least one of them happened is 

  Pr(A)+Pr(B)-Pr(A     B ) ≤ Pr(A )+Pr(B ) 
Similarly, for 3 Events A1, A2,  A3. The probability that at least one of 
them happens 

  Pr(A1     A2       A3  ) ≤ Pr(A1 )+Pr(A2 )+Pr(A3 ) 
Example: In a roulette, we pick a number k between 1..38 
n  Event A: k is even.    Pr(A)=Pr(k is even) = 19/38 = 0.5 
n  Event B : k is divided by 3. Pr( B )= 12/38=0.315 
n  Pr(A or B) = Pr((k is divided by 2) or (k is divided by 3)) 
≤0.5+0.3=0.8  

[
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But how likely is that the SL is too tall ?  

n  Assume the keys in the SL are {x1, x2, … xn.} 

n The probability that x1 participates in at least k  levels is 2 –k 

n  (same probability for all xi ).   
n  Define: A1 is the event that x1 participates in ≥k levels.  
n  Pr(A1) ≤ 2-k  
n  Define: Aj is the event that xj  participates in ≥k levels 
n  Pr(Aj) ≤ 2-k  
n  If the height of SL ≥k then   

 at least one of the xj participate in ≥k  levels.   

n  The probability that any xi participates in≥ k levels is ≤ 
       Pr(A1) +Pr(A2)+….+Pr(An )  =n 2-k  
n  This is the probability that the height of the SL is ≥ k  
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But how likely is that the SL is tall ?  

n The probability that any xi participates in at least k levels is 
≤n2-k . Then the height of the SL ≥ k.  

n Recall y(ab)=(ya)b.  
n Write  k= Z log2 n, and recall that 2 log n = n.  
n Want to find: The probability that the height is Z times log2n.  

n Twice, 3 time, 4 times…  

n Then 2-k = 2- (Z log n) = ( 2 log n)-Z = n-Z  =1/nZ    
n So   n2-k≤n / n Z = 1/nZ-1 

n This is the probability that the height of SL  ≥Z log2 n   

n Example: n=1000.   
n The probability that the heigh≥7 log2n  is ≤ 1/ 10006 1/1018 

n The prob. that the heigh≥10log2n  is ≤ 1/ 1000 9 =1/1027 
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In other words (and with some hand-waving )  

 

n Assume we have a set of n>1000 keys, and we keep 
rebuilding Skiplists for them. 
n Call a SL bad if its height > 7 log2n  

n First build SL1 

n Then build SL2 (for the same keys)  
n Then … 

n Then  SLM where M=1020 

n Then less than 100 of them are bad.   

n Using Similar techniques we can also bound the probability that 
the search takes more than Z log2 n  


