l SkiplList

Alon Efrat
Computer Science Department
University of Arizona

earching a key x in a sorted linked list

= @-0-0-&-0-@-@ ©-&-O

find(71)
find(40)

1. cell *p =head ;
2 while (p->key <x) p=p->next;
3. returnp; //(which is either equal or larger than x)

Note:
= The -0 and o elements are not “real” keys.
= They are in the list to prevent checking special cases

= Sometimes we prefer to return the element proceeding the
one containing x. Then line 2 is replaced with

while (p->->next->key <x) p=p->next

- @-@-@-@- ¢ @eese

To insert 35 - p1

= p=find(35), // find the proceeding element — the
next one is > 35

s CELL *p1 = (CELL *) malloc(sizeof(CELL));
n pl->key=35;

» pl->next = p->next;

= p->next =pl;

- @-0-0-@-@-0-@- & ©©
= To delete 37 - o/ p1

= p=find(37); // Again find proceeding element

» CELL *p1 =p->next;

= p->next = pl1->next;

= free(pl);

maintaining keys in a sorted order

’ SKIP LIST - A data structure for

Rules:
= Consists of several levels.
All keys appear in level 1 key -oo .

-
= Each level is a sorted list. = Last element has key +co
= Ifkey x appears in level i, then & First element in upper level is

it also appears in all levels pointed to by variable zop.
below level i

= First element in each level has

Level 3 . next-pointer ’
+ down-pointer

Level 2

Q—:—ﬂ—Q
. @00 @ @-0-@ & -0

*More rules

= An element in level / >I points (via down pointer) to the element with
the same key in the level below.

= Elements in the lowest level have down-pointer=NULL
= Also maintain a counter specifying the number of levels.

Level 3 . next-pointer .
Downppointer +

Q—:_—H—
- @00 0-0-0-@ & 60

Level 2

* An empty SkipList

Level 1 . .

Finding an element with key x

u p=lop
= while(1){
= while (pPnextDkey <x) p=p=Dnext,
= if (p=Pdown == NULL) return p
= // Note: This returns the element itself. If interested in the predecessor, return p.
= p=p=Ddown;
"}
= Observe that we return pred(x) (the key proceeding x).

find(117), find(116)

Level 3 next-pointer .

lown-pointer

Level 2 G— @)
600066000

*nserting new element x

= Determine &, defined as the number of levels in which x
participates (explained later how

. }’erf?rm find(x), but once the search path is in one of the lowest &
evels:

= x is inserted after the elements at which the search path
branches down or terminates.

= The next-pointer behave like a “standrad” linked list
= The down pointer(s) point between themselves.

find(119) Example - inserting 119. k=2

. next-pointer .

Down-pointer I

% -4

Level 3

’ Inserting an element - cont.

= If k is larger than the current number of levels, add new
levels (and update top, and num_of levels counter)

= Example - insert(119) when k=4

m Heuristic: Add at most one new level
(not needed for the analysis)

= , G————@=©®
Level 2 .—
i1 @-@-@- 5@.*

* Determining k

= k - the number of levels at which an element x
participate.

= Use a random function OurRnd() --- returns 1 or
0 (True/False) with equal probability.
w k=1;
« While(OurRnd()==1) k++ ;

* Deleteing a key x

= Find x in all the levels it participates, using find(x).

= During the “find”, delete x from each level it participates using
the standard “delete from a linked list” method.

= [f one or more of the upper levels become empty, remove them
(and update rop and num_of levels)

Level 3

next-pointer .
lown-pointer

Level 2 G— @)
00PN P 5 S

* “expected” on what ?

= Claim: The expected number of elements is O(7).

= he term “expected” here refers to the experiments we do
while tossing the coin (or calling OurRnd()). No
assumption about input distribution.

= So imagine a given set, given set of operations insert/
del/find, but we repeat many time the experiments of
= constructing the SL, and count the #elements.

* Facts about SL

= Def: The height of the SL is the number of levels

= Claim: The expected number of levels is O(log 1)
= (here n is the number of keys)

s “s Proof”

The number of elements participate in the lowest level is 7.
Since the probability of an element to participates in level 2 is
Y, the expected number of elements in level 2 is n/2.

Since the probability of an element to participates in level 3 is
1/4, the expected number of elements in level 3 is n/4.

The probability of an element to participate in level j is (1/2) /!

so number of elements in this level is n /27
So after log(n) levels, no element is left.

$ Facts about SL

= Claim: The expected number of elements is O().
= (here 7 is the number of keys)

= “=Proof” (arigorous proof requires the use of random
variables)

» The total number of elements is
n+n/2+n/4+n/8... sn(1+1/2+1/4+1/8...) =2n

To reduce the worst case scenario, we verify
during insertion that & (the number of levels that an
element participates) in) is < log n.

Conclusion: The expected storage is Og)

* More facts

= Thm: The expected time for find/insert/delete is O(log n)

= Proof For all Insert and Delete, the timeis <
expected #elements scanned during find(x) operation.

= Will show: Need to scan expected O(log n) elements.

*Thm: Expected time for “find’ operation is O(log n)

==Proof — we know that there are O(log n) levels. Will show
that we spend O(1) time in each level.
=Assume during find(x), we scanned t elements, (for t>8) in
level r. Assume first that r is not the upper level.
= (the search visited b, branched down to b, and then visited b, bg
(not sure what happed before or after)
®-

All smaller than x

None of these 7 elements reached level r+1 (why?)
The probability that none of these 7 elements reached
level r+1is 1/27. For larger value of 7 — very slim.

Level r+1

* Bounding time for insert/delete/find

= Putting it together The expected number of elements
scanned in each level is O(1)

There are O(log n) levels

Total time is O(log n)

As stated, getting bounds for time for insert/delete are
similar

* How likely is that the SL is too tall ?

= Lets ask how likely it is that the #levels is

Zlog, n, where Z=1,2,3...
That is, we estimate the probability that the height of
the SL is

. log,n
. 2 log,n
= 3 log,n
. 4 log;n

* Reminder from probability

me that A,B are two events. Let
= Pr(A) be the probability that A happens,
= Pr(B) be the probability that B happens
= Pr(AU B) is the probability that either event A happens or event
B happens (or both).
= So probably that at least one of them happened is
Pr(A)+Pr(B)-Pr(A (B) < Pr(A)+Pr(B)
Similarly, for 3 Events A, A, A; The probability that at least one of
them happens
Pr(A,lJ A, Az) < Pr(A;)+Pr(A,)+Pr(A;)
Example: In a roulette, we pick a number k between 1..38
= Event A: kis even. Pr(A)=Pr(kis even) = 19/38 = 0.5
= Event B : kis divided by 3. Pr(B)= 12/38=0.315
= Pr(A or B) = Pr((kis divided by 2) or (ks divided by 3))
=0.5+0.3=0.8

i But how likely is that the SL is too tall ?

= Assume the keys in the SL are {x;, X, ... X, }
aThe probability that x, participates in at least k levels is 2 &
= (same probability for all x;).
» Define: A, is the event that x; participates in =k levels.
= Pr(A,) = 2k
= Define: A;is the event that x; participates in = k levels
= Pr(A) = 2k
= If the height of SL =k then
at least one of the x; participate in =k levels.
= The probability that any x; participates in> k levels is <
Pr(A;) +Pr(Ay)+...+Pr(A,) =n2*
= This is the probability that the height of the SL is > k

* But how likely is that the SL is tall ?

=The probability that any x; participates in at least k levels is
<n2*, Then the height of the SL = k.

=Recall y(ab)=(y2)b,
«Write k= Z log, n, and recall that 2 /09 " = p,

=Want to find: The probability that the height is Z times log,n.
=Twice, 3 time, 4 times...

«Then 2k = 2-(Zlogn) = (Zlog n)-Z =n<Z =1/nZ

S0 n2k=n/nZ=1/n*1

=This is the probability that the height of SL =Z log, n
sExample: n=1000.

«The probability that the heigh=7 log,n is = 1/ 1000° 1/10*¢
=The prob. that the heigh=10log,n is < 1/ 1000? =1/10%7

* In other words (and with some hand-waving)

sAssume we have a set of 7>/000 keys, and we keep
rebuilding Skiplists for them.

«Call a SL bad if its height > 7 log,n

=First build SL,

=Then build SL, (for the same keys)
«Then ...

«Then SL,; where M=10%’

«Then less than 100 of them are bad.
23

+

=Using Similar techniques we can also bound the probability that
the search takes more than Z log, n

