
1

CS 445

Union/Find
Aka: Disjoint-set forest

Alon Efrat

Problem definition
Given: A set of atoms S={1,2…n}

 E.g. each represents a commercial name of a drugs.
 This set consists of different disjoint subsets.

Problem: suggest a data structures that efficiently supports
two operations

•  Find(i,j) – reports if the atom i and atom j belong to
the same set.

•  Union(i,j) – unify (merged) all elements of the set
containing i with the set containing j.

• Example – on the board.

Naïve attempts
Idea: Each element “knows” to which set it belongs

 (recall – each atom belongs to exactly one set)

Bad idea: once two sets are merged, we need to scan all
elements of one set and “tell” them that they belong to a
different set – requires lots of work if the set is large.

2

A Promising Attempt
•  Store a forest of trees.
•  Each set is stored as a tree (each node is an atom)
•  Every node points to the parent

 (different than standard trees)
Only the root “knows” the name of the set.

2

3

4

8

7

5 6

9

1

11

12
So the `name’ of the set
{2,3,4,1} is 2.
The name of the set of
{5,6,7,8} is 8.
The name of the set of {9}
is 9.
The name of the set of
{11,12} is 12.

To find if two atoms belong to the same set, just check if they belong
to same tree: Follow the parent pointers from each of them up all the
way to the root. Check if this is the same root.

Disjoint sets forests - cont

2

3

4

8

7

5 6

9

16

11

12

Find_root(j){
 If (p[j] ≠j) return Find_root(p[j]);
 // p[j] - points to the parent
 Else return j ; }

Find(i,j){
 just check if Find_root(i) == Find_root(j)
}

Union(i,j){
 Let r = Find_root(j)
 p[r]=i

}

Example – Union(5,11)

It this efficient?

2

3

4

8

7

5 6

9

11

12

Time per operation depends on
the height of the tree. Might be
Θ(n) in the worst case.

(Prove)

So n operations takes Θ(n2)

16

3

 Could we do better ?

2

3

4

8

7

5 6

9

11

12

Improved union operation – version 1

Union(i,j){
 Let r = Find_root(j)
 p[r]=Find_root(i)

 /* rather than p[r]= i ; */
}

Note that we can also do

Union(i,j){
 Let r = Find_root(i)
 p[r]=Find_root(j)

}

16

First improvement

Example – Union(5,11)

Keeping tracks of # nodes

2

3

4

8

7

5 6

9

11

12
Every root (only roots) stores
the number of nodes in its tree
Let r.n denote this field in the
root r.

Union(i,j){
 Let r1 = Find_root(i); Let r2 = Find_root(j);
 /* connect the root of the small tree as a child of the root of

 the larger tree */
 if (r1.n< r2.n) { p[r1]=r2 ; r2.n += r1.n ; }
 else { p[r2]=r1 ; r1.n += r2.n }
}

4 4 1 2

Example: Union(9,3)

111

Proving bounds on the height
Assume we start from a forest where each node is a singleton
(a set of one element), and we perform a sequence of union operations.

Lemma: The height of every tree is ≤ log2 n. (n – number of atoms)

Proof: Show by induction that every tree of height h has ≥ 2h nodes.

Assume true for every tree of height h’<h, and assume that after
merging trees T1, T2, we created a tree of height exactly h.

T1
T2

T2 has height is exactly h-1, so it has ≥ 2h-1

nodes.

T1 also has 2h-1 nodes, (why ?)

Together they have 2h-1 +2h-1 = 2h nodes.

h

4

Further improvement: path compression
So far we know that every tree has height O(log n), so this bounds the
time for each operation.

Path compression: during either union or find operation, we scan a
sequence of nodes on our way from a node j to the root.

Idea: set the parent pointer of all these node to points to the root.
(Slightly more work to perform it, but pays off in next operations)

 Find_root(j){

 If p[j] ≠ j then p[j]=Find_root(p[j]);
 return p[j]
}

Make sense – but how fast is it ?

Thm: Consider a set of n atoms

Any sequence of m U/F operations takes O(m α(n)).

Here α(n) is the inverse function of Ackerman function, and is
approaching infinity as n approaching infinity.

However, it does it very slowly.

 α(n) <4 when n< 1080.

Connected Components in Undirected graphs

Let G(V,E) be a graph.

We say that a subset C of V is a connected component (CC) if
1.  for every pair u,v ∈ C, there is a path connecting them, and all

the vertices of this path belong to C. And in addition
2.  For any vertex u ∈ C, and any vertex v that does not belong to

C, there is no path in G(V,E) connecting u to v.

Examples 1: If G(V,E) is connected then V is a CC.

Example 2: If G(V,E) contains no edges, then every node is CC,

which contains only itself.
Example 3: If G(V,E) is a tree, and we deleted an edge from E,

then in the resulting graph there are 2 CCs.

5

Minimum Spanning Trees

G(V,E) with positive weights on its edges.

A Minimum spanning tree (MST) is any graph T such that

1.  Every vertex of V appears in T, and
2.  T is connected (has a path between every two vertices)
3.  T is a subset of E
4.  Sum of weights of its edges are as small as possible

Application: Kruskal algorithm

Kruskal algorithm for finding a MST.
Input: Graph G(V,E). Output: Minimal Spanning Tree for G.

1)  Assume E={e1,..em} is sorted from cheapest edge to
most expensive edge.

2)  Set S=EmptySet.
3)  For i=1..m
4)  If ei ∪ S does not contain a cycle, add ei to S
 /* We use U/F structure to answer last test */

If E is sorted, then the
time is O(|E| α(|E|))

