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CS 445 

Union/Find 
Aka: Disjoint-set forest 

Alon Efrat 

Problem definition 
Given: A set of  atoms   S={1,2…n} 

 E.g. each represents a commercial name of a drugs. 
 This set consists of different disjoint subsets.  
  
  

 
Problem: suggest a data structures that efficiently supports 
two operations 

•  Find(i,j) – reports  if  the atom i and atom j belong to 
the same set. 

•  Union(i,j) – unify (merged) all elements of the set 
containing i with the set containing j. 

• Example – on the board.  

Naïve attempts 
Idea: Each element “knows” to which set it belongs  

 (recall – each atom belongs to exactly one set)  
 
Bad idea: once two sets are merged, we need to scan all 
elements of one set and “tell” them that they belong to a 
different set – requires lots of work if the set is large.  
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A Promising Attempt 
•  Store a forest of trees. 
•  Each set is stored as a tree (each node is an atom)  
•   Every node points to the parent  

 (different than standard trees)  
Only the root “knows” the name of the set.  
 

2 

3 

4 

8 

7 

5 6 

9 

1 

11 

12 
So the `name’ of the set 
{2,3,4,1} is 2. 
The  name of the set of 
{5,6,7,8} is 8. 
The  name of the set of {9} 
is 9. 
The  name of the set of 
{11,12} is 12. 

To find if two atoms belong to the same set, just check if they belong 
to same tree: Follow the parent pointers from each of them up all the 
way to the root.  Check if this is the same root.  

Disjoint sets forests - cont 
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Find_root(j){ 
   If (p[j] ≠j) return Find_root(p[j]);  
   // p[j]  - points to the parent  
  Else return j ; }  

Find(i,j){ 
  just check if  Find_root(i) == Find_root(j) 
}  

Union(i,j){ 
 Let r = Find_root(j) 
 p[r]=i 

}  

Example – Union(5,11) 

It this efficient?   
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Time per operation depends on  
the height of the tree. Might be 
Θ(n) in the worst case.  
 
(Prove) 
 
So n operations takes Θ(n2)  
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 Could we do better ?   
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Improved union operation – version 1 

Union(i,j){ 
 Let r = Find_root(j) 
 p[r]=Find_root(i)  

  /* rather than p[r]= i ;  */ 
}  

Note that we can also do  

Union(i,j){ 
 Let r = Find_root(i) 
 p[r]=Find_root(j)  

 
}  
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First improvement  

Example – Union(5,11) 

Keeping tracks of # nodes 
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Every root (only roots) stores 
the number of nodes in its tree 
Let r.n denote this field in the 
root r. 

Union(i,j){ 
  Let r1 = Find_root(i);  Let r2 = Find_root(j); 
  /* connect the root of the small tree as a child of the root of 

 the larger tree */ 
  if (r1.n< r2.n )  {    p[r1]=r2 ;    r2.n += r1.n ; } 
  else  {   p[r2]=r1 ;     r1.n += r2.n     } 
} 

4 4 1 2 

Example: Union(9,3) 

111 

   

Proving bounds on the height 
Assume we start from a forest where each node is a singleton  
(a set of one element), and we perform a sequence of union operations. 
 
Lemma: The height of every tree is ≤ log2 n.    (n – number of atoms)  
 
Proof: Show by induction that every tree of height h has ≥ 2h nodes.   
 
Assume true for every tree of height h’<h, and assume that after 
merging trees T1, T2, we created a tree of height exactly h.  
 

T1  
T2 

T2 has height is exactly h-1, so it has ≥ 2h-1 

nodes.  
 

T1 also has 2h-1 nodes, (why ?)  
 
Together they have 2h-1 +2h-1 = 2h nodes.   

h 
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Further improvement: path compression 
So far we know that every tree has height O(log n), so this bounds the 
time for each operation.  
 
Path compression:  during either union or find operation, we scan a 
sequence of nodes on our way from a node j to the root.  
 
Idea: set the parent pointer of all these node to points to the root.  
(Slightly more work to perform it, but pays off in next operations)  
 
 
 Find_root( j ){ 

   If p[j] ≠ j  then p[j]=Find_root(p[j]);  
   return p[j] 
}  

Make sense – but how fast is it ?  
 
 
Thm: Consider a set of n atoms  
 
Any sequence of m U/F operations takes O( m α(n) ).   
 
Here α(n) is the inverse function of Ackerman function, and is 
approaching infinity as n approaching infinity.  
 
However, it does it very slowly.  
 
 
 α(n) <4  when n< 1080.  
 
 

Connected Components in Undirected graphs  

 
 
Let G(V,E)  be a graph.  
 
 
We say that a subset C of V is a connected component (CC) if 
1.  for every pair u,v ∈ C, there is a path connecting them, and all 

the vertices of this path belong to C.  And in addition  
2.  For any vertex u ∈ C, and any vertex v that does not belong to 

C,  there is no path in G(V,E) connecting u to v.  
 
 
Examples 1: If G(V,E)  is connected then V is a CC. 
 
Example 2: If G(V,E) contains no edges, then every node is CC, 

which contains only itself.  
Example 3: If G(V,E) is a tree, and we deleted an edge from E, 

then in the resulting graph there are 2 CCs. 
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Minimum Spanning Trees  
 
 
G(V,E) with positive weights on its edges.  
 
A Minimum spanning tree (MST) is any graph T such that  
 
1.  Every vertex of  V appears in T, and   
2.   T is connected (has a path between every two vertices)    
3.   T is a subset of E  
4.  Sum of weights of its edges are as small as possible   

Application: Kruskal algorithm  
 
 
Kruskal algorithm for finding a MST.  
Input: Graph G(V,E).  Output: Minimal Spanning Tree for G.  

1)  Assume E={e1,..em}    is sorted from cheapest edge to 
most expensive edge.  

2)  Set S=EmptySet.  
3)  For i=1..m   
4)   If ei ∪ S does not contain a cycle, add ei  to S  
   /* We use U/F structure to answer last test */ 

If E is sorted, then the 
time is O(|E| α(|E|) ) 


