Problem definition

Given: A set of atoms $S = \{1, 2, \ldots, n\}$
E.g. each represents a commercial name of a drugs.
This set consists of different disjoint subsets.

Problem: suggest a data structures that efficiently supports two operations
- $\text{Find}(i, j)$ – reports if the atom i and atom j belong to the same set.
- $\text{Union}(i, j)$ – unify (merged) all elements of the set containing atom i with the set containing j.

Example – on the board.

Naïve attempts

Idea: Each element “known” to which set it belongs
(recall – each element belongs to exactly one set)

Bad idea: once two sets are merged, we need to scan all elements of one set and “tell” them that they belong to a different – lots of work if the set is large.
A Promising attempts

Idea: Store each set as a tree. Every node points to the parent (different than standard trees). Only the root "knows" the name of the set.

So the name of the set of \{2,3,4,1\} is 2.
The name of the set of \{5,6,7,8\} is 8.
The name of the set of \{9\} is 9.
The name of the set of \{11,12\} is 12.

To find if two atoms belong to the same set, just check if they belong to same tree: Follow the parent pointers from each of them up all the way to the root. Check if this is the same root.

Disjoint sets forests - cont

```
Find_root(j)
If (p[j] ≠ j) return Find_root(p[j]);
/* p[j] - points to the parent */
Else return j;
```

```
Find(i,j) {
just check if Find_root(i) == Find_root(j)
}
```

```
Union(i,j) {
Let r = Find_root(j)
p[r]=i
Example - Union(5,11)
}
```

It this efficient?

Improved union operation – version 1

```
Union(i,j) {
Let r = Find_root(i)
p[r]=Find_root(j)
/* rather than p[r]= i; */
}
```

Note that we can also do

```
Union(i,j) {
Let r = Find_root(i)
p[r]=Find_root(j)
}
```

Time per operation depends on the height of the tree. Can be linear in the worst case.

We want short trees.
Keeping tracks of # nodes

Every root (only roots) stores the number of nodes in its tree.
Let \(r.n \) denote this field in the root \(r \).

\[
\text{Union}(i,j)\\
\text{Let } r_1 = \text{Find_root}(i) ; \text{ Let } r_2 = \text{Find_root}(j) ;\\n\text{/* connect the root of the small tree as a child of the root of the larger tree */}\\n\text{if } (r_1.n < r_2.n) \{ \text{ p}[r_1] = r_2 ; \text{ r}_2.n += r_1.n ; \}\text{ else } \{ \text{ p}[r_2] = r_1 ; \text{ r}_1.n += r_2.n \}\}
\]

Example: Union(9,3)

Proving bounds on the height

Assume we start from a forest where each node is a singleton (a set of one element), and we perform a sequence of union operations.

Lemma: The height of every tree is \(\leq \log_2 n \). \(n \) – number of atoms

Proof: Show by induction that every tree of height \(h \) has \(\geq 2^h \) nodes.

Assume true for every tree of height \(h' < h \), and assume that after merging trees \(T_i, T_2 \), we obtained a tree of height exactly \(h \).

\(T_i \) has height exactly \(h-1 \), so it has \(\geq 2^{h-1} \) nodes.

\(T_j \) must have more nodes (why ?) so it also has \(\geq 2^{h-1} \) nodes.

Together they have \(2^{h-1} + 2^{h-1} = 2^h \) nodes.

Further improvement: path compression

So far we know that every tree has height \(O(\log n) \), so this bounds the time for each operation.

Path compression: during either union or find operation, we scan a sequence of nodes on our way from a node \(j \) to the root.

Idea: set the parent pointer of all these node to points to the root.

\[
\text{Find_root}(j)\\n\text{If } p[j] \neq j \text{ then } p[j] = \text{Find_root}(p[j]) ; \text{ return } p[j] ;
\]

Find_root(j)
Theorem: Any sequence of \(m \) U/F operations takes \(O(m \alpha(n)) \) on a set of \(n \) atoms. Here \(\alpha(n) \) is the inverse function of Ackerman function, and is approaching infinity as \(n \) approaching infinity. However, it does it very slowly.

\[\alpha(n) < 4 \quad \text{when } n < 10^{80} \]

Application: Kruskal algorithm

Kruskal algorithm for finding a MST. Input: Graph \(G(V,E) \). Output: Minimal Spanning Tree for \(G \).

1) Assume \(E = \{e_1, \ldots, e_m\} \) is sorted from cheapest edge to most expensive edge.
2) Set \(S = \text{EmptySet} \).
3) For \(i = 1 \ldots m \)
4) If \(e_i \cup S \) does not contain a cycle, add \(e_i \) to \(S \)
 /* We use U/F structure to answer last test */

If \(E \) is sorted, then the time is \(O(|E| \alpha(|E|)) \).