
\qquad
\qquad
\qquad
\qquad
\qquad

Problem definition

\qquad
Given: A set of atoms $S=\{1,2 \ldots n\}$
E.g. each represents a commercial name of a drugs.

This set consists of different disjoint subsets.
Problem: suggest a data structures that efficiently supports
\qquad two operations

- $\operatorname{Find}(i, j)$ - reports if the atom i and atom \boldsymbol{j} belong to \qquad the same set.
- Union(i,j) - unify (merged) all elements of the set containing i with the set containing j.
-Example - on the board.

Naïve attempts

Idea: Each element "knows" to which set it belongs \qquad (recall - each atom belongs to exactly one set)

Bad idea: once two sets are merged, we need to scan all elements of one set and "tell" them that they belong to a different set - requires lots of work if the set is large. \qquad
\qquad
\qquad
\qquad

A Promising Attempt

- Store a forest of trees
- Each set is stored as a tree (each node is an atom)
- Every node points to the parent
(different than standard trees)
Only the root "knows" the name of the set.

\qquad
\qquad
\qquad
\qquad
\qquad
To find if two atoms belong to the same set, just check if they belong to same tree: Follow the parent pointers from each of them up all the way to the root. Check if this is the same root.
\qquad
Let $r=$ Find $\operatorname{root}(j) \quad$ Example - Union $(5,11)$
\}
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

First improvement	Note that we can also do
```Union(i,j){ Let r= Find_root(j) p[r]=Find_root(i) /* rather than }\textrm{p}[\overline{r}]=\boldsymbol{i};*```	$\begin{aligned} & \text { Union }(i, j)\{ \\ & \operatorname{Let} r=\text { Find_root }(i) \\ & \mathrm{p}[r]=\text { Find_root }(j) \end{aligned}$
\}	\}

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Proving bounds on the height

Assume we start from a forest where each node is a singleton (a set of one element), and we perform a sequence of union operations.

Lemma: The height of every tree is $\leq \log _{2} n . \quad(\boldsymbol{n}$ - number of atoms)
Proof: Show by induction that every tree of height $\boldsymbol{h}$ has $\geq 2^{h}$ nodes.
$\qquad$

Assume true for every tree of height $\boldsymbol{h} \boldsymbol{\prime}<\boldsymbol{h}$, and assume that after $\qquad$ merging trees $\boldsymbol{T}_{1,} \boldsymbol{T}_{2}$, we created a tree of height exactly $\boldsymbol{h}$.
$\qquad$ nodes.
$\qquad$
Together they have $2^{h-1}+2^{h-1}=2^{h}$ nodes.

## Further improvement: path compression

So far we know that every tree has height $\mathrm{O}(\log n)$, so this bounds the time for each operation.

Path compression: during either union or find operation, we scan a sequence of nodes on our way from a node $j$ to the root.

Idea: set the parent pointer of all these node to points to the root. (Slightly more work to perform it, but pays off in next operations)

## Find_root( j ) $\{$

If $\mathbf{p}[j] \neq j$ then $\mathbf{p}[\mathbf{j}]=$ Find_root $(\mathbf{p}[j])$; return $\mathrm{p}[j]$
\}

## Make sense - but how fast is it ?

Thm: Consider a set of $n$ atoms
Any sequence of $m \mathrm{U} / \mathrm{F}$ operations takes $\mathrm{O}(\boldsymbol{m} \boldsymbol{\alpha}(\boldsymbol{n})$ )
Here $\alpha(n)$ is the inverse function of Ackerman function, and is approaching infinity as $n$ approaching infinity.

However, it does it very slowly.
$\alpha(n)<4$ when $n<10^{80}$

## Connected Components in Undirected graphs

Let $G(V, E)$ be a graph.

We say that a subset $C$ of $\boldsymbol{V}$ is a connected component (CC) if

1. for every pair $u, v \in C$, there is a path connecting them, and all the vertices of this path belong to C. And in addition
2. For any vertex $u \in C$, and any vertex $\boldsymbol{v}$ that does not belong to $C$, there is no path in $G(V, E)$ connecting $u$ to $v$.

Examples 1: If $G(V, E)$ is connected then $V$ is a CC.
Example 2: If $G(V, E)$ contains no edges, then every node is CC, which contains only itself.
Example 3: If $G(V, E)$ is a tree, and we deleted an edge from E , then in the resulting graph there are 2 CCs .
$\qquad$

## Minimum Spanning Trees

$G(V, E)$ with positive weights on its edges.
A Minimum spanning tree (MST) is any graph $\boldsymbol{T}$ such that

1. Every vertex of $\boldsymbol{V}$ appears in $\boldsymbol{T}$, and
2. $\boldsymbol{T}$ is connected (has a path between every two vertices)
3. $\boldsymbol{T}$ is a subset of $\boldsymbol{E}$
4. Sum of weights of its edges are as small as possible
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Application: Kruskal algorithm

$\qquad$
Kruskal algorithm for finding a MST.
Input: Graph $G(V, E)$. Output: Minimal Spanning Tree for $G$. $\qquad$

1) Assume $E=\left\{e_{1}, . . e_{m}\right\} \quad$ is sorted from cheapest edge to most expensive edge.
$\qquad$
2) Set $S=$ EmptySet.
3) For $i=1 . . m$
4) If $e_{i} \cup S$ does not contain a cycle, add $e_{i}$ to $S$
/* We use U/F structure to answer last test */

